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Abstract

Combining fine-grained opinion informa-
tion to produce opinion summaries is im-
portant for sentiment analysis applica-
tions. Toward that end, we tackle the
problem of source coreference resolution
– linking together source mentions that re-
fer to the same entity. The partially super-
vised nature of the problem leads us to de-
fine and approach it as the novel problem
of partially supervised clustering. We pro-
pose and evaluate a new algorithm for the
task of source coreference resolution that
outperforms competitive baselines.

1 Introduction

Sentiment analysis is concerned with extracting
attitudes, opinions, evaluations, and sentiment
from text. Work in this area has been motivated
by the desire to provide information analysis ap-
plications in the arenas of government, business,
and politics (e.g. Coglianese (2004)). Addition-
ally, sentiment analysis can augment existing NLP
applications such as question answering, informa-
tion retrieval, summarization, and clustering by
providing information about sentiment (e.g. Stoy-
anov et al. (2005), Riloff et al. (2005)). To date,
research in the area (see Related Work section)
has focused on the problem of extracting senti-
ment both at the document level (coarse-grained
sentiment information), and at the level of sen-
tences, clauses, or individual expressions (fine-
grained sentiment information).

In contrast, our work concerns thesumma-
rization of fine-grained information aboutopin-
ions. In particular, while recent research ef-
forts have shown that fine-grained opinions (e.g.

Riloff and Wiebe (2003), Bethard et al. (2004),
Wiebe and Riloff (2005)) as well as their sources
(e.g. Bethard et al. (2004), Choi et al. (2005),
Kim and Hovy (2005)) can be extracted auto-
matically, little has been done to createopin-
ion summaries, where opinions from the same
source/target are combined, statistics are com-
puted for each source/target and multiple opinions
from the same source to the same target are ag-
gregated. A simple opinion summary is shown in
figure 1.1 We expect that this type of opinion sum-
mary, based on fine-grained opinion information,
will be important for information analysis applica-
tions in any domain where the analysis of opinions
is critical.

This paper addresses the problem of opinion
summarization by considering the creation of sim-
ple opinion summaries like those of figure 1. We
proposesource coreference resolution— the task
of determining which mentions of opinion sources
refer to the same entity — as the primary mecha-
nism for identifying the set of opinions attributed
to each real-world source. For this type of sum-
mary, source coreference resolution constitutes an
integral step in the process of generating full opin-
ion summaries. For example, given the opinion
expressions of figure 1, their polarity, and the asso-
ciated opinion sources and targets, the bulk of the
resulting summary can be produced by recogniz-
ing that source mentions “Zacarias Moussaoui”,
“he”, “my”, and “Mr. Moussaoui” all refer to
the same person; and that source mentions “Mr.
Zerkin” and “Zerkin” refer to the same person.2

1For simplicity, the example summary does not contain
any source/target statistics.

2In addition, the summary would require the closely re-
lated task of target coreference resolution and a means for ag-
gregating the conflicting opinions fromZerkin towardMous-
saoui.



At first glance, source coreference resolution
appears equivalent to the task of noun phrase
coreference resolution and therefore amenable to
traditional coreference resolution techniques (e.g.
Ng and Cardie (2002), Morton (2000)). We hy-
pothesize in Section 3, however, that the task is
likely to succumb to a better solution by treating
it in the context of a new machine learning set-
ting that we refer to aspartially supervised clus-
tering. In particular, due to high coreference an-
notation costs, data sets that are annotated with
opinion information (like ours) do not typically in-
clude supervisory coreference information forall
noun phrases in a document (as would be required
for the application of traditional coreference reso-
lution techniques), but only for noun phrases that
act as opinion sources (or targets).

As a result, we define the task ofpartially su-
pervised clustering, the goal of which is to learn
a clustering function from a set of partially spec-
ified clustering examples (Section 4). We are not
aware of prior work on the problem of partially
supervised clustering and argue that it differs sub-
stantially from that of semi-supervised clustering.
We propose an algorithm for partially supervised
clustering that extends a rule learner with structure
information and is generally applicable to prob-
lems that fit the partially supervised clustering def-
inition (Section 5). We apply the algorithm to
the source coreference resolution task and evalu-
ate its performance on a standard sentiment analy-
sis data set that includes source coreference chains
(Section 6). We find that our algorithm outper-
forms highly competitive baselines by a consid-
erable margin –B3 score of 83.2 vs. 81.8 and
67.1 vs. 60.9 F1 score for the identification of
positive source coreference links.

2 Related Work

Work relevant to our problem can be split into
three main areas – sentiment analysis, traditional
noun phrase coreference resolution, and super-
vised and weakly supervised clustering. Related
work in the former two areas is summarized briefly
below. Supervised and weakly supervised cluster-
ing approaches are discussed in Section 4.

Sentiment analysis. Much of the relevant re-
search in sentiment analysis addresses sentiment
classification, a text categorization task of extract-
ing opinion at the coarse-grained document level.
The goal in sentiment classification is to assign to

[Source Zacarias Moussaoui] [− complained] at length today
about[Target his own lawyer], telling a federal court jury that
[Target he] was[− more interested in achieving fame than sav-
ing Moussaoui’s life].

Mr. Moussaouisaid he was appearing on the witness stand to
tell the truth. And one part of the truth,[Source he] said, is that
[Target sending him to prison for life] would be “[− a greater
punishment] than being sentenced to death.”

“ [− [Target You] have put your interest ahead of[Source my]
life],” [Source Mr. Moussaoui] told his court-appointed lawyer
Gerald T. Zerkin.

...
But, [Source Mr. Zerkin] pressed[Target Mr. Moussaoui], was
it [− not true] that he told his lawyers earlier not to involve
any Muslims in the defense, not to present any evidence that
might persuade the jurors to spare his life?

...
[Source Zerkin] seemed to be trying to show the jurors
that while [Target the defendant] is generally[+ an honest
individual], his conduct shows[Target he] is [− not stable
mentally], and thus[− undeserving] of [Target the ultimate
punishment].

Moussaoui

Zerkin

prison for life

ultimate punishment

−

−

−

−/ +

Figure 1: Example text containing opinions
(above) and a summary of the opinions (be-
low). Sources and targets of opinions are brack-
eted; opinion expressions are shown in italics and
bracketed with associated polarity, either positive
(+) or negative (-). The underlined phrase will be
explained later in the paper.

a document either positive (“thumbs up”) or nega-
tive (“thumbs down”) polarity (e.g. Das and Chen
(2001), Pang et al. (2002), Turney (2002), Dave
et al. (2003)). Other research has concentrated
on analyzing fine-grained opinions at, or below,
the sentence level. Recent work, for example, in-
dicates that systems can be trained to recognize
opinions and their polarity, strength, and sources
to a reasonable degree of accuracy (e.g. Dave et
al. (2003), Riloff and Wiebe (2003), Bethard et
al. (2004), Wilson et al. (2004), Yu and Hatzivas-
siloglou (2003), Choi et al. (2005), Kim and Hovy
(2005), Wiebe and Riloff (2005)). Our work ex-
tends research on fine-grained opinion extraction
by augmenting the opinions with additional infor-
mation that allows the creation of concise opinion
summaries. In contrast to the opinion extracts pro-
duced by Pang and Lee (2004), our summaries are
not text extracts, but rather explicitly identify and



characterize the relations between opinions and
their sources.

Coreference resolution. Coreference resolution
is a relatively well studied NLP problem (e.g.
Morton (2000), Ng and Cardie (2002), Iida et al.
(2003), McCallum and Wellner (2003)). Corefer-
ence resolution is defined as the problem of decid-
ing which noun phrases in the text (mentions) re-
fer to the same real world entities (are coreferent).
Generally, successful approaches to coreference
resolution have relied on supervised classification
followed by clustering. For supervised classifica-
tion these approaches learn a pairwise function to
predict whether a pair of noun phrases is corefer-
ent. Subsequently, when making coreference res-
olution decisions on unseen documents, the learnt
pairwise NP coreference classifier is run, followed
by a clustering step to produce the final clusters
(coreference chains) of coreferent NPs. For both
training and testing, coreference resolution algo-
rithms rely on feature vectors for pairs of noun
phrases that encode linguistic information about
the NPs and their local context. Our general ap-
proach to source coreference resolution is inspired
by the state-of-the-art performance of one such ap-
proach to coreference resolution, which relies on a
rule learner and single-link clustering as described
in Ng and Cardie (2002).

3 Source Coreference Resolution

In this section we introduce the problem of source
coreference resolution in the context of opinion
summarization and argue for the need for novel
methods for the task.

The task ofsource coreference resolutionis to
decide which mentions of opinion sources refer to
the same entity. Much like traditional coreference
resolution, we employ a learning approach; how-
ever, our approach differs from traditional coref-
erence resolution in its definition of the learn-
ing task. Motivated by the desire to utilize unla-
beled examples (discussed later), we define train-
ing as an integrated task in which pairwise NP
coreference decisions are learned together with
the clustering function as opposed to treating each
NP pair as a training example. Thus, our train-
ing phase takes as input a set of documents with
manually annotated opinion sources together with
coreference annotations for the sources; it outputs
a classifier that can produce source coreference
chains for previously unseen documents contain-

ing marked (manually or automatically) opinion
sources. More specifically, the source coreference
resolution training phase proceeds through the fol-
lowing steps:

1. Source-to-NP mapping: We preprocess
each document by running a tokenizer, sen-
tence splitter, POS tagger, parser, and an NP
finder. Subsequently, we augment the set of
NPs found by the NP finder with the help of
a system for named entity detection. We then
map the sources to the NPs. Since there is
no one-to-one correspondence, we use a set
of heuristics to create the mapping. More de-
tails about why heuristics are needed and the
process used to map sources to NPs can be
found in Stoyanov and Cardie (2006).

2. Feature vector creation: We extract a fea-
ture vector for every pair of NPs from the pre-
processed corpus. We use the features intro-
duced by Ng and Cardie (2002) for the task
of coreference resolution.

3. Classifier construction: Using the feature
vectors from step 2, we construct a training
set containing one training example per doc-
ument. Each training example consists of the
feature vectors for all pairs of NPs in the doc-
ument, including those that do not map to
sources, together with the available corefer-
ence information for thesource noun phrases
(i.e. the noun phrases to which sources are
mapped). The training instances are pro-
vided as input to a learning algorithm (see
Section 5), which constructs a classifier that
can take the instances associated with a new
(previously unseen) document and produce a
clustering over all NPs in the document.

The testing phase employs steps 1 and 2 as de-
scribed above, but replaces step 3 by a straightfor-
ward application of the learnt classifier. Since we
are interested in coreference information only for
the source NPs, we simply discard the non-source
NPs from the resulting clustering.

The approach to source coreference resolution
described here would be identical to traditional
coreference resolution when provided with train-
ing examples containing coreference information
for all NPs. However, opinion corpora in general,
and our corpus in particular, contain no corefer-
ence information about general NPs. Neverthe-
less, after manual sources are mapped to NPs in



step 1 above, our approach can rely on the avail-
able coreference information for the source NPs.
Due to the high cost of coreference annotation, we
desire methods that can work in the presence of
only this limited amount of coreference informa-
tion.

A possible workaround the absence of full NP
coreference information is to train a traditional
coreference system only on the labeled part of the
data (indeed that is one of the baselines against
which we compare). However, we believe that
an effective approach to source coreference res-
olution has to utilize the unlabeled noun phrases
because links between sources might be realized
through non-source mentions. This problem is il-
lustrated in figure 1. The underlinedMoussaoui
is coreferent with all of the Moussaoui references
marked as sources, but, because it is used in an
objective sentence rather than as the source of
an opinion, the reference would be omitted from
the Moussaouisource chain. Unfortunately, this
proper noun phrase might be critical in establish-
ing the coreference of the final source referencehe
with the other mentions of the sourceMoussaoui.

As mentioned previously, in order to utilize
the unlabeled data, our approach differs from tra-
ditional coreference resolution, which uses NP
pairs as training instances. We instead follow the
framework of supervised clustering (Finley and
Joachims, 2005; Li and Roth, 2005) and consider
each document as a training example. As in super-
vised clustering, this framework has the additional
advantage that the learning algorithm can consider
the clustering algorithm when making decisions
about pairwise classification, which could lead to
improvements in the classifier. In the next section
we describe our approach to classifier construction
for step 3 and compare our problem to traditional
weakly supervised clustering, characterizing it as
an instance of the novel problem of partially su-
pervised clustering.

4 Partially Supervised Clustering

In our desire to perform effective source corefer-
ence resolution we arrive at the following learning
problem – the learning algorithm is presented with
a set of partially specified examples of clusterings
and acquires a function that can cluster accurately
an unseen set of items, while taking advantage of
the unlabeled information in the examples.

This setting is to be contrasted with semi-

supervised clustering (or clustering with con-
straints), which has received much research at-
tention (e.g. Demiriz et al. (1999), Wagstaff and
Cardie (2000), Basu (2005), Davidson and Ravi
(2005)). Semi-supervised clustering can be de-
fined as the problem of clustering a set of items
in the presence of limited supervisory informa-
tion such as pairwise constraints (e.g. two items
must/cannot be in the same cluster) or labeled
points. In contrast to our setting, in the semi-
supervised case there is no training phase – the
algorithm receives all examples (labeled and un-
labeled) at the same time together with some dis-
tance or cost function and attempts to find a clus-
tering that optimizes a given measure (usually
based on the distance or cost function).

Source coreference resolution might alterna-
tively be approached as a supervised clustering
problem. Traditionally, approaches to supervised
clustering have treated the pairwise link decisions
as a classification problem. These approaches first
learn a distance metric that optimizes the pairwise
decisions; and then follow the pairwise classifica-
tion with a clustering step. However, these tradi-
tional approaches have no obvious way of utilizing
the available unlabeled information.

In contrast, we follow recent approaches to su-
pervised clustering that propose ways to learn
the distance measure in the context of the clus-
tering decisions (Li and Roth, 2005; Finley and
Joachims, 2005; McCallum and Wellner, 2003).
This provides two advantages for the problem of
source coreference resolution. First, it allows the
algorithm to take advantage of the complexity of
the rich structural dependencies introduced by the
clustering problem. Viewed traditionally as a hur-
dle, the structural complexity of clustering may be
beneficial in the partially supervised case. We be-
lieve that provided with a few partially specified
clustering examples, an algorithm might be able
to generalize from the structural dependencies to
infer correctly the whole clustering of the items.
In addition, considering pairwise decisions in the
context of the clustering can arguably lead to more
accurate classifiers.

Unfortunately, none of the supervised cluster-
ing approaches is readily applicable to the partially
supervised case. However, by adapting the for-
mal supervised clustering definition, which we do
next, we can develop approaches to partially su-
pervised clustering that take advantage of the un-



labeled portions of the data.

Formal definition. For partially supervised
clustering we extend the formal definition of su-
pervised clustering given by Finley and Joachims
(2005). In the fully supervised setting, an al-
gorithm is given a setS of n training examples
(x1, y1), ..., (xn, yn) ∈ X × Y , whereX is the
set of all possible sets of items andY is the set of
all possible clusterings of these sets. For a train-
ing example(x, y), x = {x1, x2, ..., xk} is a set
of k items andy = {y1, y2, ..., yr} is a clustering
of the items inx with eachyi ⊆ x. Addition-
ally, each item can be in no more than one cluster
(∀i, j.yi ∩ yj = ∅) and in the fully supervised case
each item is in at least one cluster (x =

⋃
yi).

The goal of the learning algorithm is to acquire a
functionh : X → Y that can accurately cluster a
(previously unseen) set of items.

In the context of source coreference resolution
the training set contains one example for each doc-
ument. The items in each training example are the
NPs and the clustering over the items is the equiv-
alence relation defined by the coreference infor-
mation. For source coreference resolution, how-
ever, clustering information is unavailable for the
non-source NPs. Thus, to be able to deal with this
unlabeled component of the data we arrive to the
setting of partially supervised clustering, in which
we relax the condition that each item is in at least
one cluster (x =

⋃
yi) and replace it with the con-

dition x ⊇
⋃

yi. The items with no linking infor-
mation (items inx \

⋃
yi) constitute the unlabeled

(unsupervised) component of the partially super-
vised clustering.

5 Structured Rule Learner

We develop a novel method for partially super-
vised clustering, which is motivated by the success
of a rule learner (RIPPER) for coreference resolu-
tion (Ng and Cardie, 2002). We extend RIPPER
so that it can learn rules in the context of single-
link clustering, which both suits our task (i.e. pro-
nouns link to their single antecedent) and has ex-
hibited good performance for coreference resolu-
tion (Ng and Cardie, 2002). We begin with a brief
overview of RIPPER followed by a description of
the modifications that we implemented. For ease
of presentation, we assume that we are in the fully
supervised case. We end this section by describing
the changes for the partially supervised case.

procedure StRip(TrainData){
GrowData, PruneData = Split(TrainData);
//Keep instances from the same document together
while(there are positive uncovered instances){

r = growRule(GrowData);
r = pruneRule(r, PruneData);
DL = relativeDL(Ruleset);
if(DL ≤ minDL + d bits)

Ruleset.add(r);
Mark examples covered by r as +;

else
exit loop with Ruleset

}
}
procedure growRule(growData){

r = empty rule;
for(every unused feature f){

if (f is nominal feature){
for(every possible value v of f){

mark all instances that have values of v for f with +;
compute the transitive closure of the positive instances
//(including instances marked + from previous rules);
compute the infoGain for the future/value combination;

}
} else{ //Numeric feature

create one bag for each feature value and split the instances into bags;
do a forward and a backward pass over the bags keeping a running
clustering and compute the information gain for each value;

}
}
add the future/value pair with the best infoGain to r;
growData = growData - all negative instances;
return r;

}
procedure pruneRule(r, pruneData){

for(all antecedents a in the rule){
apply all antecedents in r up to a to pruneData;
compute the transitive closure of the positive instances;
compute A(a) – the accuracy of the rule up to antecedent a;

}
Remove all antecedents after the antecedent for which A(a) is maximum.

}

Figure 2: The StRip algorithm. Additions to RIP-
PER are shown in bold.

5.1 The RIPPER Algorithm

RIPPER (for Repeated Incremental Pruning to
Produce Error Reduction) was introduced by Co-
hen (1995) as an extension of an existing rule
induction algorithm. Cohen (1995) showed that
RIPPER produces error rates competitive with
C4.5, while exhibiting better running times. RIP-
PER consists of two phases – a ruleset is grown
and then optimized.

The ruleset creation phasebegins by ran-
domly splitting the training data into a rule-
growing set (2/3 of the training data) and a pruning
set (the remaining 1/3). A rule is then grown on
the former set by repeatedly adding theantecedent
(the feature value test) with the largest information
gain until the accuracy of the rule becomes 1.0 or
there are no remaining potential antecedents. Next
the rule is applied to the pruning data and any rule-
final sequence that reduces the accuracy of the rule
is removed.

The optimization phaseuses the full training



set to first grow a replacement rule and a revised
rule for each rule in the ruleset. For each rule,
the algorithm then considers the original rule, the
replacement rule, and the revised rule, and keeps
the rule with the smallest description length in the
context of the ruleset. After all rules are con-
sidered, RIPPER attempts to grow residual rules
that cover data not already covered by the rule-
set. Finally, RIPPER deletes any rules from the
ruleset that reduce the overall minimum descrip-
tion length of the data plus the ruleset. RIPPER
performs two rounds of this optimization phase.

5.2 The StRip Algorithm

The property of partially supervised clustering that
we want to explore is the structured nature of the
decisions. That is, each decision of whether two
items (saya andb) belong to the same cluster has
an implication for all itemsa′ that belong toa’s
cluster and all itemsb′ that belong tob’s cluster.

We target modifications to RIPPER that will al-
low StRip (for Structured RIPPER) to learn rules
that produce good clusterings in the context of
single-link clustering. We extend RIPPER so that
every time it makes a decision about a rule, it con-
siders the effect of the rule on the overall clus-
tering of items (as opposed to considering the in-
stances that the rule classifies as positive/negative
in isolation). More precisely, we precede every
computation of rule performance (e.g. informa-
tion gain or description length) by a transitive clo-
sure (i.e. single link clustering) of the data w.r.t. to
the pairwise classifications. Following the transi-
tive closure, all pairs of items that are in the same
cluster are considered covered by the rule for per-
formance computation.

The StRip algorithm is given in figure 2, with
modifications to the original RIPPER algorithm
shown in bold. Due to space limitations the op-
timization stage of the algorithm is omitted. Our
modifications to the optimization stage of RIPPER
are in the spirit of the rest of the StRip algorithm.

Partially supervised case. So far we described
StRip only for the fully supervised case. We
use a very simple modification to handle the par-
tially supervised setting: we exclude the unla-
beled pairs when computing the performance of
the rules. Thus, the unlabeled items do not count
as correct or incorrect classifications when acquir-
ing or pruning a rule, although they do participate
in the transitive closure. Links in the unlabeled

data are inferred entirely through the indirect links
between items in the labeled component that they
introduce. In the example of figure 1, the two
problematic unlabeled links are the link between
the source mention “he” and the underlined non-
source NP “Mr. Moussaoui” and the link between
the underlined “Mr. Moussaoui” to any source
mention ofMoussaoui. While StRip will not re-
ward any rule (or rule set) that covers these two
links directly, such rules will be rewarded indi-
rectly since they put the sourcehe in the chain for
the sourceMoussaoui.

StRip running time. StRip’s running time is
generally comparable to that of RIPPER. We com-
pute transitive closure by using a Union-Find
structure, which runs in timeO(log∗n), which for
practical purposes can be considered linear (O(n))
3. However, when computing the best information
gain for a nominal feature, StRip has to make a
pass over the data for each value that the feature
takes, while RIPPER can split the data into bags
and perform the computation in one pass.

6 Evaluation and Results

This section describes the source coreference data
set, the baselines, our implementation of StRip,
and the results of our experiments.

6.1 Data set

For evaluation we use the MPQA corpus (Wiebe
et al., 2005).4 The corpus consists of 535 doc-
uments from the world press. All documents in
the collection are manually annotated with phrase-
level opinion information following the annota-
tion scheme of Wiebe et al. (2005). Discussion
of the annotation scheme is beyond the scope of
this paper; for our purposes it suffices to say that
the annotations include the source of each opin-
ion and coreference information for the sources
(e.g. source coreference chains). The corpus con-
tains no additional noun phrase coreference infor-
mation.

For our experiments, we randomly split the data
set into a training set consisting of 400 documents
and a test set consisting of the remaining 135 doc-
uments. We use the same test set for all experi-

3For the transitive closure,n is the number of items in a
document, which isO(

√
k), wherek is the number of NP

pairs. Thus, transitive closure is sublinear in the number of
training instances.

4The MPQA corpus is available at
http://nrrc.mitre.org/NRRC/publications.htm .



ments, although some learning runs were trained
on 200 training documents (see next Subsection).
The test set contains a total of 4736 source NPs
(average of 35.34 source NPs per document) split
into 1710 total source NP chains (average of 12.76
chains per document) for an average of 2.77 source
NPs per chain.

6.2 Implementation

We implemented the StRip algorithm by modify-
ing JRip – the java implementation of RIPPER in-
cluded in the WEKA toolkit (Witten and Frank,
2000). The WEKA implementation follows the
original RIPPER specification. We changed the
implementation to incorporate the modifications
suggested by the StRip algorithm; we also mod-
ified the underlying data representations and data
handling techniques for efficiency. Also due to ef-
ficiency considerations, we train StRip only on the
200-document training set.

6.3 Competitive baselines

We compare the results of the new method to three
fully supervised baseline systems, each of which
employs the same traditional coreference resolu-
tion approach. In particular, we use the afore-
mentioned algorithm proposed by Ng and Cardie
(2002), which combines a pairwise NP corefer-
ence classifier with single-link clustering.

For one baseline, we train the coreference reso-
lution algorithm on theMPQA srccorpus — the
labeled portion of the MPQA corpus (i.e. NPs
from the source coreference chains) with unla-
beled instances removed.

The second and third baselines investigate
whether the source coreference resolution task can
benefit from NP coreference resolution training
datafrom a different domain. Thus, we train the
traditional coreference resolution algorithm on the
MUC6andMUC7coreference-annotated corpora5

that contain documents similar in style to those in
the MPQA corpus (e.g. newspaper articles), but
emanate from different domains.

For all baselines we targeted the best possi-
ble systems by trying two pairwise NP classifiers
(RIPPER and an SVM in theSV M light imple-
mentation (Joachims, 1998)), many different pa-
rameter settings for the classifiers, two different
feature sets, two different training set sizes (the

5We train each baseline using both the development set
and the test set from the corresponding MUC corpus.

full training set and a smaller training set consist-
ing of half of the documents selected at random),
and three different instance selection algorithms6.
This variety of classifier and training data settings
was motivated by reported differences in perfor-
mance of coreference resolution approaches w.r.t.
these variations (Ng and Cardie, 2002). More de-
tails on the different parameter settings and in-
stance selection algorithms as well as trends in the
performance of different settings can be found in
Stoyanov and Cardie (2006). In the experiments
below we report the best performance of each of
the two learning algorithms on the MPQA test
data.

6.4 Evaluation

In addition to the baselines described above, we
evaluate StRip both with and without unlabeled
data. That is, we train on the MPQA corpus StRip
using either all NPs or just opinion source NPs.

We use theB3 (Bagga and Baldwin, 1998) eval-
uation measure as well as precision, recall, and
F1 measured on the (positive) pairwise decisions.
B3 is a measure widely used for evaluating coref-
erence resolution algorithms. The measure com-
putes the precision and recall for each NP mention
in a document, and then averages them to produce
combined results for the entire output. More pre-
cisely, given a mentioni that has been assigned
to chainci, the precision for mentioni is defined
as the number of correctly identified mentions in
ci divided by the total number of mentions inci.
Recall fori is defined as the number of correctly
identified mentions inci divided by the number of
mentions in the gold standard chain fori.

Results are shown in Table 1. The first six
rows of results correspond to the fully supervised
baseline systems trained on different corpora —
MUC6, MUC7, andMPQA src. The seventh row
of results shows the performance of StRip using
only labeled data. The final row of the table shows
the results for partially supervised learningwith
unlabeled data. The table lists results from the best
performing run for each algorithm.

Performance among the baselines trained on the
MUC data is comparable. However, the two base-
line runs trained on theMPQA srccorpus (i.e. re-
sults rows five and six) show slightly better perfor-
mance on theB3 metric than the baselines trained

6The goal of the instance selection algorithms is to bal-
ance the data, which contains many more negative than posi-
tive instances



ML Framework Training set Classifier B3 precision recall F1
Fully supervised MUC6 SVM 81.2 72.6 52.5 60.9

RIPPER 80.7 57.4 63.5 60.3
MUC7 SVM 81.7 65.6 55.9 60.4

RIPPER 79.7 71.6 48.5 57.9
MPQA src SVM 81.8 57.5 62.9 60.2

RIPPER 81.8 72.0 52.5 60.6
StRip 82.3 76.5 56.1 64.6

Partially supervised MPQA all StRip 83.2 77.1 59.4 67.1

Table 1: Results for Source Coreference.MPQA srcstands for the MPQA corpus limited to only source
NPs, whileMPQA fullcontains the unlabeled NPs.

on the MUC data, which indicates that for our
task the similarity of the documents in the train-
ing and test sets appears to be more important
than the presence of complete supervisory infor-
mation. (Improvements over the RIPPER runs
trained on the MUC corpora are statistically sig-
nificant7, while improvements over the SVM runs
are not.)

Table 1 also shows that StRip outperforms the
baselines on both performance metrics. StRip’s
performance is better than the baselines when
trained onMPQA src (improvement not statisti-
cally significant,p > 0.20) and even better when
trained on the full MPQA corpus, which includes
the unlabeled NPs (improvement over the base-
lines and the former StRip run statistically signif-
icant). These results confirm our hypothesis that
StRip improves due to two factors: first, consider-
ing pairwise decisions in the context of the clus-
tering function leads to improvements in the clas-
sifier; and, second, StRip can take advantage of
the unlabeled portion of the data.

StRip’s performance is all the more impressive
considering the strength of the SVM and RIPPER
baselines, which which represent the best runs
across the 336 different parameter settings tested
for SV M light and 144 different settings tested for
RIPPER. In contrast, all four of the StRip runs us-
ing the full MPQA corpus (we vary the loss ratio
for false positive/false negative cost) outperform
those baselines.

7 Future Work

Source coreference resolution is only one aspect
of opinion summarization. Additionally, an opin-
ion summarization system will need to handle

7Statistical significance is measured using both a 2-tailed
paired t-test and the Wilcoxon matched-pairs signed-ranks
test (p < 0.05). The two tests agreed on all significance
judgements, so we will not report them separately.

the closely related task of target coreference res-
olution in order to cluster targets of opinions8

and combine multiple conflicting opinions from a
source to the same targets. Furthermore, a fully
automatic opinion summarizer requires automatic
source and opinion extractors. While we antici-
pate that target coreference resolution will be sub-
ject to error rates similar to those of source coref-
erence resolution, incorporating these imperfect
opinions and sources will further impair the per-
formance of the opinion summarizer. We are not
aware of any measure that can be directly used
to assess the goodness of opinion summaries, but
plan to develop such in future work in conjunc-
tion with the development of methods for creating
opinion summaries completely automatically. The
evaluation metrics will likely have to depend on
the task for which the summaries are used.

A limitation of our approach to partially super-
vised clustering is that we do not directly optimize
for the performance measure (e.g.B3). Other ef-
forts in the area of supervised clustering (Finley
and Joachims, 2005; Li and Roth, 2005) have sug-
gested ways to learn distance measures that can
optimize directly for a desired performance mea-
sure. We plan to investigate algorithms that can di-
rectly optimize for complex measures (such asB3)
for the problem of partially supervised clustering.
Unfortunately, a measure as complex asB3 makes
extending existing approaches far from trivial due
to the difficulty of establishing the connection be-
tween individual pairwise decisions (the distance
metric) and the score of the clustering algorithm.
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