Semi-Supervised Learning for Structured Output Variables

Author: Ulf Brefeld, Tobias Scheffer Presentation: Yunsong Guo

Nov 7, 2006

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

The Problem

- Structured Learning with unlabeled data.
- How to utilize unlabeled data to improve performance?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Theorem 1 With probability at least $1 - \delta$ over the choice of the sample *S*, we have that for all h_1 and h_2 , if $\gamma_i(h_1, h_2, \delta) > 0$ for $1 \le i \le k$ then (a) *f* is a permutation and (b) for all $1 \le i \le k$,

$$P(h_1 \neq i \mid f(y) = i, h_1 \neq \bot) \leq \frac{\widehat{P}(h_1 \neq i \mid h_2 = i, h_1 \neq \bot) + \epsilon_i(h_1, h_2, \delta)}{\gamma_i(h_1, h_2, \delta)}.$$

- h_1 predicts y from x_1 , and h_2 predicts y from x_2 .
- This theorem states in essence, if the sample size is large, and h_1 and h_2 (called partial prediction rules) largely agree on unlabeled data, then the disagreement is a good measure of error rate.
- This requires the assumption that x₁ and x₂ are conditionally independent given y.

- Dasgupta et al. (2001) give PAC bounds on the error of co-training.
- In terms of the disagreement rate of hypotheses on unlabeled data in two independent views.
- A corollary of their results that holds under general assumptions is:

$$Pr(f^1 \neq f^2) \ge \max\{Pr(err(f^1)), Pr(err(f^2))\}.$$

The Natural Idea

To minimize the error for labeled examples and maximize the agreement for unlabeled examples (among different views).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Normal Stuff

• Linear model: $\hat{y} = \operatorname{argmax}_{\overline{y} \in Y} f(x, \overline{y})$

•
$$f(x, y) = \langle w, \phi(x, y) \rangle$$

• Search for a minimizer for the empirical risk: $R_{emp}(f) = \sum_{i=1}^{n} \Delta(y_i, \operatorname{argmax}_{\overline{y}} f(x_i, \overline{y}))$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 少へ⊙

- In co-learning, $\phi(x, y)$ are decomposed into disjoint sets $\phi^0(x, y)$ and $\phi^1(x, y)$.
- The spaces spanned are called views.
- For example, in hypertext classification we have two natural views on a page, either by the contained text or by the anchor text of its inbound links.
- The representation in each view has to be sufficient for the decoding.

3 Problems

- Multi-Class Classification
- 2 Label Sequence Learning
- Natural Language Parsing

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- Large margin approach.
- Formulated 6 optimization problems incrementally.
- First 4 are more algorithmic, while the last 2 dual representations are for computational conveniences.

Optimization Problem 1 Given *n* labeled examples; over all \mathbf{w} minimize $\frac{1}{2} \|\mathbf{w}\|^2$ subject to the constraints $\forall_{i=1}^n, \forall_{\bar{\mathbf{y}}\neq\mathbf{y}_i} \langle \mathbf{w}, \Phi(\mathbf{x}_i, \mathbf{y}_i) - \Phi(\mathbf{x}_i, \bar{\mathbf{y}}) \rangle \geq 1$.

Optimization Problem 2 Given *n* labeled examples, let C > 0 and r = 1, 2; over all \mathbf{w} and ξ_i minimize $\frac{1}{2} \|\mathbf{w}\|^2 + \frac{C}{r} \sum_{i=1}^n \xi_i^r$ subject to the constraints $\forall_{i=1}^n \xi_i \geq 0$ and $\forall_{i=1}^n, \forall_{\mathbf{y}\neq\mathbf{y}_i} \langle \mathbf{w}, \Phi(\mathbf{x}_i, \mathbf{y}_i) - \Phi(\mathbf{x}_i, \mathbf{\bar{y}}) \rangle \geq 1 - \xi_i$.

- Want to: integrate a loss function Δ into structured optimization problems.
- Two possible approaches: margin re-scaling (Taskar et al, 04) and slack re-scaling (Tsochantaridis et al, 05).
- Use slack re-scaling in this paper because with re-scaled slack variables, $\sum \xi_i$ still bounds the empirical lost.

Optimization Problem 3 Given *n* labeled examples, loss function $\Delta : \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}^+_0$, tradeoff C > 0, and r = 1, 2; over all \mathbf{w} and ξ_i minimize $\frac{1}{2} ||\mathbf{w}||^2 + \frac{C}{r} \sum_{i=1}^n \xi_i^r$ subject to the constraints $\forall_{i=1}^n \xi_i \ge 0$ and $\forall_{i=1}^n, \forall_{\bar{\mathbf{y}}\neq\mathbf{y}_i} \langle \mathbf{w}, \Phi(\mathbf{x}_i, \mathbf{y}_i) - \Phi(\mathbf{x}_i, \bar{\mathbf{y}}) \rangle \ge 1 - \frac{\xi_i}{\sqrt[r]{}\Delta(\mathbf{y}_i, \bar{\mathbf{y}})}.$

(日) (同) (三) (三) (三) (○) (○)

According to the consensus maximizing principle, need to minimize number of errors for labeled examples and disagreement for unlabeled examples.

• Use the prediction of the other view as the "right" label.

$$f^{v}(\mathbf{x}_{i}, \hat{\mathbf{y}}_{i}^{\bar{v}}) - \max_{\bar{\mathbf{y}} \neq \mathbf{y}_{i}} f^{v}(\mathbf{x}_{i}, \bar{\mathbf{y}}) = \gamma_{i}^{v} \ge 1$$

Optimization Problem 4 Given n labeled examples and m unlabeled examples, loss function Δ , let $C, C_u > 0$, r = 1, 2, and v = 0, 1; over all \mathbf{w} and ξ minimize $\frac{1}{2} \|\mathbf{w}\|^2 + \frac{C}{r} \left(\sum_{i=1}^n \xi_i^r + C_u \sum_{i=n+1}^{n+m} (\min\{\gamma_i^{\bar{v}}, 1\}) \xi_i^r \right)$ subject to the constraints $\forall_{i=1}^{n+m} \xi_i \geq 0$ and $\forall_{i=1}^n, \forall_{\bar{\mathbf{y}}\neq\mathbf{y}_i} \langle \mathbf{w}, \Phi(\mathbf{x}_i, \mathbf{y}_i) - \Phi(\mathbf{x}_i, \bar{\mathbf{y}}) \rangle \geq 1 - \frac{\xi_i}{r\sqrt{\Delta(\mathbf{y}_i, \bar{\mathbf{y}})}},$ $\forall_{i=n+1}^{n+m}, \forall_{\bar{\mathbf{y}}\neq\mathbf{y}^{\bar{v}}} \langle \mathbf{w}, \Phi(\mathbf{x}_i, \mathbf{y}_i^{\bar{v}}) - \Phi(\mathbf{x}_i, \bar{\mathbf{y}}) \rangle \geq 1 - \frac{\xi_i}{r\sqrt{\Delta(\mathbf{y}_i^{\bar{v}}, \bar{\mathbf{y}})}}.$

(日) (同) (三) (三) (三) (○) (○)

Co-Support Vector Learning: Dual Representation

- Introduce Lagrangian multipliers.
- Then take derivative of Lagrangian with respect to weight vector *w*.

• This leads to the dual representation.

Optimization Problem 5 Given n labeled and m unlabeled examples, loss function Δ , $C, C_u > 0$; over all $\alpha_{i,\bar{y}}$ maximize

$$\sum_{i=1}^{n+m} \sum_{\bar{\mathbf{y}}\neq\mathbf{y}_i} \alpha_{i,\bar{\mathbf{y}}} - \frac{1}{2} \sum_{i,j=1}^{n+m} \sum_{\substack{\bar{\mathbf{y}}\neq\mathbf{y}_i\\ \bar{\mathbf{y}}'\neq\mathbf{y}_j}} \alpha_{i,\bar{\mathbf{y}}} \alpha_{j,\bar{\mathbf{y}}'} K\left((\mathbf{x}_i,\bar{\mathbf{y}}), (\mathbf{x}_j,\bar{\mathbf{y}}')\right)$$

subject to the constraints $\forall_{i=1}^{n} \sum_{\bar{\mathbf{y}}\neq\mathbf{y}_{i}} \frac{\alpha_{i,\bar{\mathbf{y}}}}{\Delta(\mathbf{y}_{i},\bar{\mathbf{y}})} \leq C, \quad \forall_{i=n+1}^{n+m} \sum_{\bar{\mathbf{y}}\neq\mathbf{y}_{i}} \frac{\alpha_{i,\bar{\mathbf{y}}}}{\Delta(\mathbf{y}_{i}^{\bar{v}},\bar{\mathbf{y}})} \leq (\min\{\gamma_{i}^{\bar{v}},1\})C_{u}C, \text{ and } \forall_{i=1}^{n+m} \forall_{\bar{\mathbf{y}}\neq\mathbf{y}_{i}}\alpha_{i,\bar{\mathbf{y}}} \geq 0.$

・ロト・日本・モート モー うへぐ

Optimization Problem 6 Given n labeled and m unlabeled examples, loss function Δ , $C, C_u > 0$; over all $\alpha_{i,\bar{\mathbf{y}}}$ maximize

$$\sum_{i=1}^{n+m} \sum_{\bar{\mathbf{y}}\neq \mathbf{y}_i} \alpha_{i,\bar{\mathbf{y}}} - \frac{1}{2} \sum_{\substack{i,j=1\\ \bar{\mathbf{y}}\neq \mathbf{y}_i}}^{n+m} \sum_{\substack{\bar{\mathbf{y}}\neq \mathbf{y}_i\\ \bar{\mathbf{y}}'\neq \mathbf{y}_j}} \alpha_{i,\bar{\mathbf{y}}} \alpha_{j,\bar{\mathbf{y}}'} K'((\mathbf{x}_i,\bar{\mathbf{y}}), (\mathbf{x}_j,\bar{\mathbf{y}}'))$$

subject to the constraints $\forall_{i=1}^{n+m} \forall_{\bar{\mathbf{y}}\neq \mathbf{y}_i} \alpha_{i,\bar{\mathbf{y}}} \ge 0.$

$$K'((\mathbf{x}_i, \bar{\mathbf{y}}), (\mathbf{x}_j, \bar{\mathbf{y}}')) = K((\mathbf{x}_i, \bar{\mathbf{y}}), (\mathbf{x}_j, \bar{\mathbf{y}}')) + \delta_{i\bar{\mathbf{y}}, j\bar{\mathbf{y}}'}$$

Co-Support Vector Learning: Algorithm

Algorithm 1 CoSVM Optimization Algorithm

Input: *i*-th unlabeled example \mathbf{x}_i , $S_{i\neq i}^0$, $S_{i\neq i}^1$, C, C_u , norm r, repetitions r_{max} . 1: Set $S_i^0 = S_i^1 = \emptyset$, $\alpha_{i,\mathbf{y}}^0 = \alpha_{i,\mathbf{y}}^1 = 0$ for all $\mathbf{y} \in \mathcal{Y}$ 2: repeat 3: for each view v = 0.1 do $\hat{\mathbf{y}}^{v} = \operatorname{argmax}_{\mathbf{y}} \langle \mathbf{w}^{v}, \Phi^{v}(\mathbf{x}_{i}, \mathbf{y}) \rangle$ 4: 5: $\bar{\mathbf{y}}^{v} = \operatorname{argmax}_{\mathbf{y}\neq\hat{\mathbf{y}}^{v}} (1 - \langle \mathbf{w}^{v}, \Phi^{v}_{i,\hat{\mathbf{y}}^{v},\mathbf{y}} \rangle) \sqrt[r]{\Delta(\hat{\mathbf{y}}^{v},\mathbf{y})}$ $\xi_i^v = \max_{\mathbf{y} \in S_i^v} \{ (1 - \langle \mathbf{w}, \Phi_{i, \hat{\mathbf{y}}^v, \mathbf{y}}^v \rangle) \sqrt[r]{\Delta(\hat{\mathbf{y}}^v, \mathbf{y})} \}$ 6: $\gamma^v = f^v(\mathbf{x}_i, \hat{\mathbf{y}}^v) - f^v(\mathbf{x}_i, \bar{\mathbf{y}}^v)$ 7: 8. end for if $[[\hat{\mathbf{y}}^0 \neq \hat{\mathbf{y}}^1]] \vee [[\langle \mathbf{w}^v, \Phi^v_{i, \hat{\mathbf{y}}^v, \bar{\mathbf{y}}^v} \rangle < 1 - \frac{\xi^v_i}{\Gamma / \Lambda(\hat{\mathbf{v}}^v, \bar{\mathbf{v}}^v)}]],$ 9: v = 0.1 then 10: for each view v = 0.1 do Substitute former target $\mathbf{y}_i^v = \hat{\mathbf{y}}^{\bar{v}}$ 11: if $[[\hat{\mathbf{y}}^0 \neq \hat{\mathbf{y}}^1]]$ then 12: $\hat{S}_i^v = \hat{S}_i^v \cup \{\hat{\mathbf{y}}^v\}$ 13:14:else 15: $S_i^v = S_i^v \cup \{\bar{\mathbf{y}}^v\}$ 16:end if 17: Optimize $\alpha_{i,\bar{\mathbf{y}}}^v$ over S_i^v with $S_{j\neq i}^v$ fixed $\forall \bar{\mathbf{y}} \in S^v$ with $\alpha_{i,\bar{\mathbf{y}}}^v = 0$: $S_i^v = S_i^v \setminus \{\bar{\mathbf{y}}\}$ 18:19:end for 20:end if 21: until consensus or r_{max} repetitions **Output:** Optimized α_i^0 and α_i^1 , sets S_i^0 and S_i^1

Experiment: TSVM

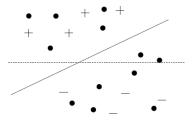


Figure 2: The maximum margin hyperplanes. Positive/negative examples are marked as +/-, test examples as dots. The dashed line is the solution of the inductive SVM. The solid line shows the transductive classification.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- Use normal SVM on training set.
- 2 Predict on test set, get y^* .
- Solve the following optimization problem:

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 ● のへで

Experiment

	L:200			L:400		
	U:0	U:400	U:800	U:0	U:800	U:2000
SVM	46.74 ± 0.26	-	-	38.39 ± 0.22	-	-
TSVM	46.13 ± 0.41	48.54 ± 0.28	50.84 ± 0.30	37.65 ± 0.25	39.31 ± 0.45	42.72 ± 0.60
$\cos NM$	41.94 ± 0.30	42.51 ± 0.33	41.52 ± 0.26	32.80 ± 0.22	32.79 ± 0.21	32.72 ± 0.26

Table 1. Error rates for the Cora data set.

Table 2. Token error for the Biocreative (BC) and Spanish news wire (SN) data sets.

		L:5		L:10		L:20	
		U:0	U:25	U:0	U:50	U:0	U:100
BC	HMM	17.98 ± 0.69	-	14.32 ± 0.53	-	12.31 ± 0.23	-
	SVM	10.27 ± 0.16	-	9.70 ± 0.07	-	9.47 ± 0.05	-
	\cos VM	9.71 ± 0.07	9.54 ± 0.08	9.48 ± 0.05	9.51 ± 0.05	9.4 ± 0.05	9.37 ± 0.06
SN	HMM	23.59 ± 2.00	-	20.04 ± 1.27	-	15.31 ± 0.78	-
	SVM	10.95 ± 0.18	-	9.98 ± 0.09	-	8.97 ± 0.08	-
	$\cos VM$	13.86 ± 0.78	10.28 ± 0.14	11.26 ± 0.13	9.60 ± 0.11	11.73 ± 0.43	8.99 ± 0.09

Table 3. F1 scores for the wall street journal (WSJ) and the Negra (NEG) corpus.

		L:4		L:40			
		U:0	U:80	U:0	U:80	U:200	
WSJ	SVM	45.40 ± 0.61	-	71.73 ± 0.29	-	-	
11.33	coSVM	47.92 ± 0.59	48.23 ± 0.55	73.85 ± 0.24	74.07 ± 0.25	75.01 ± 0.31	
NEG	SVM	47.58 ± 0.37	-	63.70 ± 0.29	-	-	
	$\cos VM$	48.81 ± 0.37	49.46 ± 0.33	64.94 ± 0.27	65.13 ± 0.25	65.70 ± 0.25	

Experiment

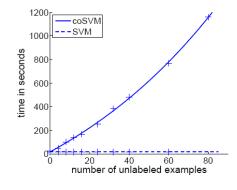


Figure 2. Execution time.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Conclusion

- Devised a semi-supervised variant of SVM for structured learning.
- Oevised 1-norm and 2-norm optimization problems that allow to use arbitrary feature mappings.
- Better performance of coSVM comes with the price of longer execution time.