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The Problem

@ Structured Learning with unlabeled data.

@ How to utilize unlabeled data to improve performance?



Dasgupta et al. 2001

Theorem 1 With probability at least 1 — § over the choice of the sample S, we have that
Jorall hy and ha, if yi(h1,ho,8) > 0for 1 < i < kthen (a) f is a permutation and (b) for
alll1 <i<k

B(hi#i|ha=1i,ln # L)+ €i(h, ha, )

P #il fly) =i # 1) < ¥i(ha, ha, 8)

@ hy predicts y from x71, and hy predicts y from xo.

@ This theorem states in essence, if the sample size is large, and
hi and hy (called partial prediction rules) largely agree on
unlabeled data, then the disagreement is a good measure of
error rate.

@ This requires the assumption that x; and x» are conditionally
independent given y.



Important ldea

@ Dasgupta et al. (2001) give PAC bounds on the error of
co-training.

@ In terms of the disagreement rate of hypotheses on unlabeled
data in two independent views.

@ A corollary of their results that holds under general
assumptions is:

Prift £ f%) > max{Pr[err{fl)}.P-ri:er-rt:f’?])}.



The Natural Idea

To minimize the error for labeled examples and maximize the agree-
ment for unlabeled examples (among different views).




Normal Stuff

@ Linear model: y = argmaxycy f(x,y)

@ Search for a minimizer for the empirical risk:
Remp(f) = 27:1 Al(yi, argmaxyf (xi,y))



Introduction of Views

@ In co-learning, ¢(x,y) are decomposed into disjoint sets
¢°(x,y) and ¢*(x, y).

@ The spaces spanned are called views.

@ For example, in hypertext classification we have two natural
views on a page, either by the contained text or by the anchor
text of its inbound links.

@ The representation in each view has to be sufficient for the
decoding.



3 Problems

© Multi-Class Classification
© Label Sequence Learning
© Natural Language Parsing



Co-Support Vector Learning

o Large margin approach.
@ Formulated 6 optimization problems incrementally.

@ First 4 are more algorithmic, while the last 2 dual
representations are for computational conveniences.



Co-Support Vector Learning

imizati . ' Jiven no labeled  exam-
Optimization Problem 1 ¢

ples: over all w minimize = s‘-ubjr’('f to the con-
Fog e YT L " .

straints Vi_y, Vyzy, (W, O(x;,y:) — ©(x:,¥)) > 1.

Optimization Problem 2 Given n labeled eram-
ples, lel C' >0 andr = 1,2; over all w and & minimize
1 ||VVH2+ Zz_l & subject to the constraints V& >
(l and Vi, Vgzy AW, P(X;,y:) — (x;.¥)) > 1 —&l



Co-Support Vector Learning

@ Want to: integrate a loss function A into structured
optimization problems.

@ Two possible approaches: margin re-scaling (Taskar et al, 04)
and slack re-scaling (Tsochantaridis et al, 05).

@ Use slack re-scaling in this paper because with re-scaled slack
variables, > &; still bounds the empirical lost.



Co-Support Vector Learning

Optimization Problem 3 Given n labeled exam-
ples, loss function A Y x YV — Rar . tradeoff C' > 0,
- - - 2
and v = 1,2; over all w and & minimize %|w|? +
C S, & subject to the constraints ¥Vi—y& > 0 and
. £
V2 1 gy (W, O(x,¥:) — O(x:,5)) > 1 — ——.
Vi=1: Vy#yi\ (%i,¥4) (x:,¥)) 2 By



Co-Support Vector Learning: Incorporate Unlabeled Data

According to the consensus maximizing principle, need to minimize
number of errors for labeled examples and disagreement for unla-
beled examples.

@ Use the prediction of the other view as the "right” label.



Co-Support Vector Learning: Incorporate Unlabeled Data

(%, ¥7) — max fU(x;.¥) =7 >
e :J m 7 3 .: 1
y#yi

Optimization Problem 4 Given n labeled examples
and m unlabeled examples, loss function A, let C',C, >
0, r=1,2, and v = 0.1; over all w and & minimize

Hiwl? + S (T & + Cu X (minfa?, 11)e))

subject to the constraints Y& > 0 and
n v/ o) I T
Vi Vyzy (W, O(x,y;) — P(x,¥)) = 1 SINTIL

VAWYLY)
T

Vi=n41 #y© A W, (I)ﬂx? Y )_(I)£X? V) = 1= V’—\‘(i’ivj




Co-Support Vector Learning: Dual Representation

@ Introduce Lagrangian multipliers.

@ Then take derivative of Lagrangian with respect to weight
vector w.

@ This leads to the dual representation.



Co-Support Vector Learning: Dual Representation

Optimization Problem 5 Given n labeled and m
unlabeled examples, loss function A, C,C, > 0; over
all a; 3 mazimize

n-+rm 1 n4+m
‘ . - = =/
> X oy —3 ..Z _‘z i g9 K (%, ¥), (%5, 7))
i=1 y#y,; i,j=1 ¥#¥
¥y,
subject to the constraints Vi, foiv,- ﬁ =
T mtm G4y 2 inl® 1N €. i
C, ViZati1 2gzys Aoty < (min{4?,1})C, C, and
Mmoo
Vid" Vyay, iy 2> 0.



Co-Support Vector Learning: Dual Representation

Optimization Problem 6 Given n labeled and m
unlabeled examples. loss function A, C,C, > 0: over
all o; g mazimize

n4m n4m

1 ol — ik
Y, 2. Qg —3g > a; g e K'((%:,5), (x5, 7))
i=1§2y, i,j=152y;
v #y;

R

subject to the constraints ¥V, " Vgxy oy g > 0.

K'((%:,¥).(x;.¥") = K((x:,¥). (x;.5")) + dig sy



Co-Support Vector Learning: Algorithm

Algorithm 1 CoSVM OPTIMIZATION ALGORITHM

Input: i-th uulzlbg\lo(l example x;, S;;l. S}#I. ., Oy,
norm 7, repetitions rmaz.

1: Set SY =S =0,af, =aj, =0forally €y

2: repeat

3:  for each view v =0,1 do

4: ¥" = argmax (w", ®"(x;,y))

5: ¥ = argmax oo (1 — (W, &7 50 ) /Aly?,y)
6: &= maxyesy {(1 —(w, ‘I’z y y>) \/A(y AlyTy)}
7 7Y =% 3 = U (xe

8  end t&or L

9: i [y # ¥ VW, B g ge) < 1 —

v=20,1 then

10: for each view v = 0,1 do
11: Substitute furlncr target y. =y°
12: if [y # y ]] then
13: SP=SruU{yT}
14: else
15: Sy =Sruly”t
16: end if
17: Optimize o} 5 over S? with 57, fixed
18: Yy €57 with o] (), Sy =SI\{y}
19: end for

20:  end if
21: until consensus or 7,4, repetitions

Output: Optimized of and o}, sets S and S}




Experiment: TSVM
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Figure 2: The maximum margin hyperplanes. Posi-
tive/negative examples are marked as +/—, test ex-
amples as dots. The dashed line is the solution of the
inductive SVM. The solid line shows the transductive
classification.



Experiment: TSVM

@ Use normal SVM on training set.
© Predict on test set, get y*.

© Solve the following optimization problem:

OP 2 (Transductive SVM (non-sep. case))
Minimize over (yi, ..., u5, W, 0, &1, ..., &0, &7, -, €F)-

Loy o% N
§||WHE+(;Z££+C pE:
i=0 j=0

subject to: Vil u[W- &b > 18
Vi i yf [0 T+ > 1§
;":1 & >0

Vil & >0



Experiment

Table 1. Error rates for the Cora data set.
00 L:400
U:0 U:400 U:300 U:0 U:800 U:2000
SVM | 46.74 +0.26 - - 38.39 +0.22 - -
TSVM | 46.13 £0.41 | 4854 +0.28 | 50.84 £ 0.30 | 37.65 £ 025 | 39.31 +£0.45 | 42.72 £ 0.60
coSVM | 41.94 +0.30 | 42.51 +0.33 | 41.524+0.26 | 32.80+ 0.22 | 32.79£0.21 | 32.72 +0.26
Table 2. Token error for the Biocreative (BC) and Spanish news wire (SN) data sets.
L:5 L:10 L:20
U:0 U:25 U:0 U:50 U0 U100
HMM | 17.98 £0.69 - 1432+ 053 1231£0323 -
BC SVM | 10.27 +0.16 - 9.70 & 0.07 - 9.47 £0.05 -
coSVM [ 9.71 £0.07 | 9.54+0.08 | 9.484+0.05 | 951+0.05 | 94+0.05 | 9.37 £0.06
HMM | 23.59 4 2.00 - 20.04 £1.27 - 15.31 £0.78 -
SN SVM | 10.95+0.18 - 0.98 + 0.09 - 8.07 +0.08 -
coSVM | 13.86 £0.78 | 10.28 £0.14 | 11.26 £ 0.13 | 9.60£0.11 | 11.73 £ 0.43 | 8.99 + 0.09
Table 3. F1 scores for the wall street journal (WSJ) and the Negra (NEG) corpus.
L:4 L:40
U0 U:80 U0 U:80 U:200
Ws1 SVM [ 4540+ 0.61 - TI.73£029 - -
coSVM | 47.92£0.59 | 48,23+ 0.55 | 73.854+0.24 | 74.074+0.25 | 75.01 £0.31
NEG SVM | 47.58 +£0.37 - 63.70 +£0.29 - -
coSVM | 48.81 £0.37 | 4946+ 0.33 | 64.94 4+ 0.27 | 65.13 £0.25 | 65.70 £0.25




Experiment
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Figure 2. Execution time.



Conclusion

© Devised a semi-supervised variant of SVM for structured
learning.

© Devised 1-norm and 2-norm optimization problems that allow
to use arbitrary feature mappings.

© Better performance of coSVM comes with the price of longer
execution time.



