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Abstract 

In this paper we explore the power of 
surface text patterns for open-domain 
question answering systems.  In order to 
obtain an optimal set of patterns, we have 
developed a method for learning such 
patterns automatically. A tagged corpus 
is built from the Internet in a 
bootstrapping process by providing a few 
hand-crafted examples of each question 
type to Altavista. Patterns are then 
automatically extracted from the returned 
documents and standardized. We 
calculate the precision of each pattern, 
and the average precision for each 
question type. These patterns are then 
applied to find answers to new questions.  
Using the TREC-10 question set, we 
report results for two cases: answers 
determined from the TREC-10 corpus 
and from the web. 

 

1 Introduction 

Most of the recent open domain question-
answering systems use external knowledge 
and tools for answer pinpointing. These may 
include named entity taggers, WordNet, 
parsers, hand-tagged corpora, and ontology 
lists (Srihari and Li, 00; Harabagiu et al., 01; 
Hovy et al., 01; Prager et al., 01). However, at 
the recent TREC-10 QA evaluation 
(Voorhees, 01), the winning system used just 
one resource: a fairly extensive list of surface 
patterns (Soubbotin and Soubbotin, 01). The 

apparent power of such patterns surprised 
many. We therefore decided to investigate 
their potential by acquiring patterns 
automatically and to measure their accuracy. 

It has been noted in several QA systems 
that certain types of answer are expressed 
using characteristic phrases (Lee et al., 01; 
Wang et al., 01). For example, for 
BIRTHDATEs (with questions like “When 
was X born?”), typical answers are  

“Mozart was born in 1756.” 
“Gandhi (1869–1948)…” 

These examples suggest that phrases like  
“<NAME> was born in <BIRTHDATE>” 
“<NAME> (<BIRTHDATE>–” 

when formulated as regular expressions, can 
be used to locate the correct answer.  

In this paper we present an approach for 
automatically learning such regular 
expressions (along with determining their 
precision) from the web, for given types of 
questions.  Our method uses the machine 
learning technique of bootstrapping to build a 
large tagged corpus starting with only a few 
examples of QA pairs.  Similar techniques 
have been investigated extensively in the field 
of information extraction (Riloff, 96).  These 
techniques are greatly aided by the fact that 
there is no need to hand-tag a corpus, while 
the abundance of data on the web makes it 
easier to determine reliable statistical 
estimates. 

Our system assumes each sentence to be a 
simple sequence of words and searches for 
repeated word orderings as evidence for 



 

useful answer phrases.  We use suffix trees 
for extracting substrings of optimal length.  
We borrow the idea of suffix trees from 
computational biology (Gusfield, 97) where it 
is primarily used for detecting DNA 
sequences. Suffix trees can be processed in 
time linear on the size of the corpus and, more 
importantly, they do not restrict the length of 
substrings.  We then test the patterns learned 
by our system on new unseen questions from 
the TREC-10 set and evaluate their results to 
determine the precision of the patterns. 

 

2 Learning of Patterns 

We describe the pattern-learning algorithm 
with an example.  A table of patterns is 
constructed for each individual question type 
by the following procedure (Algorithm 1).  
1. Select an example for a given question 

type. Thus for BIRTHYEAR questions we 
select “Mozart 1756” (we refer to 
“Mozart” as the question term and “1756” 
as the answer term). 

2. Submit the question and the answer term 
as queries to a search engine.  Thus, we 
give the query +“Mozart” +“1756” to 
AltaVista (http://www.altavista.com). 

3. Download the top 1000 web documents 
provided by the search engine. 

4. Apply a sentence breaker to the 
documents. 

5. Retain only those sentences that contain 
both the question and the answer term.  
Tokenize the input text, smooth variations 
in white space characters, and remove html 
and other extraneous tags, to allow simple 
regular expression matching tools such as 
egrep to be used. 

6. Pass each retained sentence through a 
suffix tree constructor.  This finds all 
substrings, of all lengths, along with their 
counts. For example consider the  
sentences “The great composer Mozart 
(1756–1791) achieved fame at a young 
age” “Mozart (1756–1791) was a genius”, 
and “The whole world would always be 
indebted to the great music of Mozart 
(1756–1791)”. The longest matching 
substring for all 3 sentences is “Mozart 

(1756–1791)”, which the suffix tree would 
extract as one of the outputs along with the 
score of 3. 

7. Pass each phrase in the suffix tree through 
a filter to retain only those phrases that 
contain both the question and the answer 
term. For the example, we extract only 
those phrases from the suffix tree that 
contain the words “Mozart” and “1756”.  

8. Replace the word for the question term by 
the tag “<NAME>” and the word for the 
answer term by the term “<ANSWER>”.   

 
This procedure is repeated for different 

examples of the same question type.  For 
BIRTHDATE we also use “Gandhi 1869”, 
“Newton 1642”, etc. 

For BIRTHDATE, the above steps 
produce the following output: 
a. born in <ANSWER> , <NAME>   
b. <NAME> was born on <ANSWER> ,  
c. <NAME> ( <ANSWER> -  
d. <NAME> ( <ANSWER - ) 
... 

These are some of the most common 
substrings of the extracted sentences that 
contain both <NAME> and <ANSWER>.  
Since the suffix tree records all substrings, 
partly overlapping strings such as c and d are 
separately saved, which allows us to obtain 
separate counts of their occurrence 
frequencies.  As will be seen later, this allows 
us to differentiate patterns such as d (which 
records a still living person, and is quite 
precise) from its more general substring c 
(which is less precise).   
 
Algorithm 2: Calculating the precision of each 
pattern. 
1. Query the search engine by using only the 

question term (in the example, only 
“Mozart”). 

2. Download the top 1000 web documents 
provided by the search engine. 

3. As before, segment these documents into 
individual sentences. 

4. Retain only those sentences that contain 
the question term. 

5. For each pattern obtained from Algorithm 
1, check the presence of each pattern in the 



 

sentence obtained from above for two 
instances: 
i) Presence of the pattern with 

<ANSWER> tag matched by any 
word. 

ii) Presence of the pattern in the sentence 
with <ANSWER> tag matched by the 
correct answer term. 

In our example, for the pattern “<NAME> 
was born in <ANSWER>” we check the 
presence of the following strings in the 
answer sentence 
i) Mozart was born in <ANY_WORD> 
ii) Mozart was born in 1756 

Calculate the precision of each pattern by 
the formula P = Ca / Co where  

Ca = total number of patterns with the 
answer term present  
Co = total number of patterns present 
with answer term replaced by any word 

6. Retain only the patterns matching a 
sufficient number of examples (we choose 
the number of examples > 5). 
 
We obtain a table of regular expression 

patterns for a given question type, along with 
the precision of each pattern.  This precision 
is the probability of each pattern containing 
the answer and follows directly from the 
principle of maximum likelihood estimation. 

For BIRTHDATE the following table is 
obtained: 
1.0 <NAME>( <ANSWER> - ) 
0.85 <NAME> was born on <ANSWER>, 
0.6 <NAME> was born in <ANSWER> 
0.59 <NAME> was born <ANSWER>  
0.53 <ANSWER> <NAME> was born 
0.50 – <NAME> ( <ANSWER> 
0.36 <NAME> ( <ANSWER> - 

For a given question type a good range of 
patterns was obtained by giving the system as 
few as 10 examples.  The rather long list of 
patterns obtained would have been very 
difficult for any human to come up with 
manually.   

The question term could appear in the 
documents obtained from the web in various 
ways.  Thus “Mozart” could be written as 
“Wolfgang Amadeus Mozart”, “Mozart, 
Wolfgang Amadeus”, “Amadeus Mozart” or 
“Mozart”.  To learn from such variations, in 

step 1 of Algorithm 1 we specify the various 
ways in which the question term could be 
specified in the text.  The presence of any of 
these names would cause it to be tagged as the 
original question term “Mozart”.  

The same arrangement is also done for the 
answer term so that presence of any variant of 
the answer term would cause it to be treated 
exactly like the original answer term.  While 
easy to do for BIRTHDATE, this step can be 
problematic for question types such as 
DEFINITION, which may contain various 
acceptable answers.  In general the input 
example terms have to be carefully selected 
so that the questions they represent do not 
have a long list of possible answers, as this 
would affect the confidence of the precision 
scores for each pattern.  All the answers need 
to be enlisted to ensure a high confidence in 
the precision score of each pattern, in the 
present framework.   

 The precision of the patterns obtained 
from one QA-pair example in algorithm 1 is 
calculated from the documents obtained in 
algorithm 2 for other examples of the same 
question type.  In other words, the precision 
scores are calculated by cross-checking the 
patterns across various examples of the same 
type.  This step proves to be very significant 
as it helps to eliminate dubious patterns, 
which may appear because the contents of 
two or more websites may be the same, or the 
same web document reappears in the search 
engine output for algorithms 1 and 2. 

Algorithm 1 does not explicitly specify 
any particular question type.  Judicious choice 
of the QA example pair therefore allows it to 
be used for many question types without 
change.    

 

3 Finding Answers 

Using the patterns to answer a new question 
we employ the following algorithm:  
1. Determine the question type of the new 

question.  We use our existing QA system 
(Hovy et al., 2002b; 2001) to do so.   

2. The question term in the question is 
identified, also using our existing system. 



 

3. Create a query from the question term and 
perform IR (by using a given answer 
document corpus such as the TREC-10 
collection or web search otherwise).   

4. Segment the documents obtained into 
sentences and smooth out white space 
variations and html and other tags, as 
before. 

5. Replace the question term in each sentence 
by the question tag (“<NAME>”, in the 
case of BIRTHYEAR).  

6. Using the pattern table developed for that 
particular question type, search for the 
presence of each pattern.  Select words 
matching the tag “<ANSWER>” as the 
answer. 

7. Sort these answers by their pattern’s 
precision scores.  Discard duplicates (by 
elementary string comparisons).  Return 
the top 5 answers. 

 

4 Experiments 

From our Webclopedia QA Typology 
(Hovy et al., 2002a) we selected 6 different 
question types: BIRTHDATE, LOCATION, 
INVENTOR, DISCOVERER, DEFINITION, 
WHY-FAMOUS.  The pattern table for each 
of these question types was constructed using 
Algorithm 1.  

Some of the patterns obtained along with 
their precision are as follows 

 
BIRTHYEAR  
1.0 <NAME> ( <ANSWER> - ) 
0.85 <NAME> was born on <ANSWER> , 
0.6 <NAME> was born in <ANSWER> 
0.59 <NAME> was born <ANSWER> 
0.53 <ANSWER> <NAME> was born 
0.5 - <NAME> ( <ANSWER> 
0.36 <NAME> ( <ANSWER> - 
0.32 <NAME> ( <ANSWER> ) , 
0.28 born in <ANSWER> , <NAME> 
0.2 of <NAME> ( <ANSWER> 

 
INVENTOR 
1.0 <ANSWER> invents <NAME> 
1.0 the <NAME> was invented by 

<ANSWER> 
1.0 <ANSWER> invented the <NAME> in 

1.0 <ANSWER> ' s invention of the 
<NAME> 

1.0 <ANSWER> invents the <NAME> . 
1.0 <ANSWER> ' s <NAME> was 
1.0 <NAME> , invented by <ANSWER> 
1.0 <ANSWER> ' s <NAME> and 
1.0 that <ANSWER> ' s <NAME> 
1.0 <NAME> was invented by <ANSWER> , 

 
DISCOVERER 

1.0 when <ANSWER> discovered 
<NAME> 

1.0 <ANSWER> ' s discovery of <NAME> 
1.0 <ANSWER> , the discoverer of 

<NAME> 
1.0 <ANSWER> discovers <NAME> . 
1.0 <ANSWER> discover <NAME> 
1.0 <ANSWER> discovered <NAME> , the 
1.0 discovery of <NAME> by <ANSWER>. 
0.95 <NAME> was discovered by 

<ANSWER> 
0.91 of <ANSWER> ' s <NAME> 
0.9 <NAME> was discovered by 

<ANSWER> in 
 
DEFINITION 
1.0 <NAME> and related <ANSWER>s 
1.0 <ANSWER> ( <NAME> , 
1.0 <ANSWER> , <NAME> . 
1.0 , a <NAME> <ANSWER> , 
1.0 ( <NAME> <ANSWER> ) , 
1.0 form of <ANSWER> , <NAME> 
1.0 for <NAME> , <ANSWER> and 
1.0 cell <ANSWER> , <NAME> 
1.0 and <ANSWER> > <ANSWER> > 

<NAME> 
0.94 as <NAME> , <ANSWER> and 

 
WHY-FAMOUS 
1.0 <ANSWER> <NAME> called 
1.0 laureate <ANSWER> <NAME> 
1.0 by the <ANSWER> , <NAME> , 
1.0 <NAME> - the <ANSWER> of 
1.0 <NAME> was the <ANSWER> of 
0.84 by the <ANSWER> <NAME> , 
0.8 the famous <ANSWER> <NAME> , 
0.73 the famous <ANSWER> <NAME> 
0.72 <ANSWER> > <NAME> 
0.71 <NAME> is the <ANSWER> of 

 
LOCATION 
1.0 <ANSWER> ' s <NAME> . 



 

1.0 regional : <ANSWER> : <NAME> 
1.0 to <ANSWER> ' s <NAME> , 
1.0 <ANSWER> ' s <NAME> in 
1.0 in <ANSWER> ' s <NAME> , 
1.0 of <ANSWER> ' s <NAME> , 
1.0 at the <NAME> in <ANSWER> 
0.96 the <NAME> in <ANSWER> , 
0.92 from <ANSWER> ' s <NAME> 
0.92 near <NAME> in <ANSWER> 

 
For each question type, we extracted the 

corresponding questions from the TREC-10 
set.  These questions were run through the 
testing phase of the algorithm.  Two sets of 
experiments were performed.  In the first 
case, the TREC corpus was used as the input 
source and IR was performed by the IR 
component of our QA system (Lin, 2002).  In 
the second case, the web was the input source 
and the IR was performed by the AltaVista 
search engine.  

Results of the experiments, measured by 
Mean Reciprocal Rank (MRR) score 
(Voorhees, 01), are:  
 
TREC Corpus 

Question type Number of 
questions 

MRR on 
TREC docs 

BIRTHYEAR 8 0.48 
INVENTOR 6 0.17 
DISCOVERER 4 0.13 
DEFINITION 102 0.34 
WHY-FAMOUS 3 0.33 
LOCATION 16 0.75 

 
Web 

Question type Number of 
questions 

MRR on the 
Web 

BIRTHYEAR 8 0.69 
INVENTOR 6 0.58 
DISCOVERER 4 0.88 
DEFINITION 102 0.39 
WHY-FAMOUS 3 0.00 
LOCATION 16 0.86 

 
The results indicate that the system 

performs better on the Web data than on the 
TREC corpus.  The abundance of data on the 
web makes it easier for the system to locate 
answers with high precision scores (the 
system finds many examples of correct 

answers among the top 20 when using the 
Web as the input source).  A similar result for 
QA was obtained by Brill et al. (2001).  The 
TREC corpus does not have enough candidate 
answers with high precision score and has to 
settle for answers extracted from sentences 
matched by low precision patterns.  The 
WHY-FAMOUS question type is an 
exception and may be due to the fact that the 
system was tested on a small number of 
questions.   

 

5 Shortcoming and Extensions 

No external knowledge has been added to 
these patterns.  We frequently observe the 
need for matching part of speech and/or 
semantic types, however.  For example, the 
question: “Where are the Rocky Mountains 
located?” is answered by “Denver’s new 
airport, topped with white fiberglass cones in 
imitation of the Rocky Mountains in the 
background, continues to lie empty”, because 
the system picked the answer “the 
background” using the pattern “the <NAME> 
in <ANSWER>,”. Using a named entity 
tagger and/or an ontology would enable the 
system to use the knowledge that 
“background” is not a location. 

DEFINITION questions pose a related 
problem.  Frequently the system’s patterns 
match a term that is too general, though 
correct technically.  For “what is nepotism?” 
the pattern “<ANSWER>, <NAME>” 
matches “…in the form of widespread 
bureaucratic abuses: graft, nepotism…”; for 
“what is sonar?” the pattern “<NAME> and 
related <ANSWER>s” matches “…while its 
sonar and related underseas systems are 
built…”. 

The patterns cannot handle long-distance 
dependencies.  For example, for “Where is 
London?” the system cannot locate the answer 
in “London, which has one of the most busiest 
airports in the world, lies on the banks of the 
river Thames” due to the explosive danger of 
unrestricted wildcard matching, as would be 
required in the pattern “<QUESTION>, 
(<any_word>)*, lies on <ANSWER>”.  This 
is one of the reasons why the system performs 



 

very well on certain types of questions from 
the web but performs poorly with documents 
obtained from the TREC corpus.  The 
abundance and variation of data on the 
Internet allows the system to find an instance 
of its patterns without losing answers to long-
term dependencies.  The TREC corpus, on the 
other hand, typically contains fewer candidate 
answers for a given question and many of the 
answers present may match only long-term 
dependency patterns. 

More information needs to be added to the 
text patterns regarding the length of the 
answer phrase to be expected.  The system 
searches in the range of 50 bytes of the 
answer phrase to capture the pattern. It fails to 
perform under certain conditions as 
exemplified by the question “When was 
Lyndon B. Johnson born?”.  The system 
selects the sentence “Tower gained national 
attention in 1960 when he lost to democratic 
Sen. Lyndon B. Johnson, who ran for both re-
election and the vice presidency” using the 
pattern “<NAME> <ANSWER> –“.  The 
system lacks the information that the 
<ANSWER> tag should be replaced exactly 
by one word.  Simple extensions could be 
made to the system so that instead of 
searching in the range of 50 bytes for the 
answer phrase it could search for the answer 
in the range of 1–2 chunks (basic phrases in 
English such as simple NP, VP, PP, etc.). 

A more serious limitation is that the 
present framework can handle only one 
anchor point (the question term) in the 
candidate answer sentence.  It cannot work for 
types of question that require multiple words 
from the question to be in the answer 
sentence, possibly apart from each other.  For 
example, in “Which county does the city of 
Long Beach lie?”, the answer “Long Beach is 
situated in Los Angeles County” requires the 
pattern. “<QUESTION_TERM_1> situated in 
<ANSWER> <QUESTION_TERM_2>”, 
where <QUESTION_TERM_1> and 
<QUESTION_TERM_2> represent the terms 
“Long Beach” and “county” respectively.  
The performance of the system depends 
significantly on there being only one anchor 
word, which allows a single word match 
between the question and the candidate 

answer sentence.  The presence of multiple 
anchor words would help to eliminate many 
of the candidate answers by simply using the 
condition that all the anchor words from the 
question must be present in the candidate 
answer sentence. 

The system does not classify or make any 
distinction between upper and lower case 
letters.  For example, “What is micron?” is 
answered by “In Boise, Idaho, a spokesman 
for Micron, a maker of semiconductors, said 
Simms are ‘ a very high volume product for 
us …’ ”.  The answer returned by the system 
would have been perfect if the word “micron” 
had been capitalized in the question. 

Canonicalization of words is also an issue.  
While giving examples in the bootstrapping 
procedure, say, for BIRTHDATE questions, 
the answer term could be written in many 
ways (for example, Gandhi’s birth date can be 
written as “1869”, “Oct. 2, 1869”, “2nd 
October 1869”,  “October 2 1869”, and so 
on).  Instead of enlisting all the possibilities a 
date tagger could be used to cluster all the 
variations and tag them with the same term.  
The same idea could also be extended for 
smoothing out the variations in the question 
term for names of persons (Gandhi could be 
written as “Mahatma Gandhi”, “Mohandas 
Karamchand Gandhi”, etc.). 
 

6 Conclusion 
The web results easily outperform the 

TREC results.  This suggests that there is a 
need to integrate the outputs of the Web and 
the TREC corpus.  Since the output from the 
Web contains many correct answers among 
the top ones, a simple word count could help 
in eliminating many unlikely answers.  This 
would work well for question types like 
BIRTHDATE or LOCATION but is not clear 
for question types like DEFINITION. 

The simplicity of this method makes it 
perfect for multilingual QA.  Many tools 
required by sophisticated QA systems (named 
entity taggers, parsers, ontologies, etc.) are 
language specific and require significant 
effort to adapt to a new language.  Since the 
answer patterns used in this method are 



 

learned using only a small number of manual 
training terms, one can rapidly learn patterns 
for new languages, assuming the web search 
engine is appropriately switched. 
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