
Atomic Broadcast in
Asynchronous Crash-Recovery

Distributed Systems

Lúıs Rodrigues
Michel Raynal

DI–FCUL TR–99–7

Departamento de Informática
Faculdade de Ciências da Universidade de Lisboa

Campo Grande, 1749-016 Lisboa
Portugal

Technical reports are available at http://www.di.fc.ul.pt/biblioteca/tech-reports.
The files are stored in PDF, with the report number as filename. Alternatively, reports
are available by post from the above address.

Atomic Broadcast in Asynchronous

Crash-Recovery Distributed Systems∗

Lúıs Rodrigues

Universidade de Lisboa
FCUL, Campo Grande,

1749-016 Lisboa, Portugal

ler@di.fcul.pt

Michel Raynal

IRISA
Campus de Beaulieu

35 042 Rennes-cedex, France

raynal@irisa.fr

Abstract

Atomic Broadcast is a fundamental problem of distributed systems: it
states that messages must be delivered in the same order to their des-
tination processes. This paper describes a solution to this problem in
asynchronous distributed systems in which processes can crash and re-
cover.

A Consensus-based solution to the Atomic Broadcast problem has been
designed by Chandra and Toueg for asynchronous distributed systems
where crashed processes do not recover. Although our solution is based
on different algorithmic principles, it follows the same idea: it transforms
any Consensus protocol suited to the crash-recovery model into an Atomic
Broadcast protocol suited to the same model. We show that Atomic
Broadcast can be implemented without requiring any additional log op-
erations in excess of those required by the Consensus. The paper also
discusses how additional log operations can improve the protocol in terms
of faster recovery and better throughput. Our work benefits from recent
results in the study of the Consensus problem in the crash-recovery model.

Keywords: Distributed Fault-Tolerance, Asynchronous Systems, Atomic
Broadcast, Consensus, Process Crash, Process Recovery.

1 Introduction

Atomic Broadcast is one of the most important agreement problems encountered
in the design and in the implementation of fault-tolerant distributed systems.
This problem consists in providing processes with a communication primitive
that allows them to broadcast and deliver messages in such a way that processes
agree not only on the set of messages they deliver but also on the order of
message deliveries. Atomic Broadcast (sometimes called Total Order Broadcast)
has been identified as a basic communication primitive in many systems (such as
the ones described in [16]). It is particularly useful to implement fault-tolerant

∗This report revises and expands parts of TR-99-1, “Atomic Broadcast and Quorum-based
Replication in Asynchronous Crash-Recovery Distributed Systems”.

1

services by using software-based replication [8]. By employing this primitive
to disseminate updates, all correct copies of a service deliver the same set of
updates in the same order, and consequently the state of the service is kept
consistent.

Solutions to the Atomic Broadcast problem in asynchronous systems prone
to process crash (no-recovery) failures are now well known [3, 6, 17]. In this
model, process crashes are definitive (i.e., once crashed, a process never re-
covers), so, a failed process is a crashed process. Unfortunately, the crash-no
recovery model is unrealistic for the major part of applications. That is why, in
this paper, we consider the more realistic crash-recovery model. In this model,
processes can crash and later recover. We assume that when a process crashes
(1) it loses the content of its volatile memory, and (2) the set of messages that
has been delivered while it was crashed is also lost. This model is well-suited to
feature real distributed systems that support user applications. Real systems
provide processes with stable storage that make them to cope with crash fail-
ures. A stable storage allows a process to log critical data. But in order to
be efficient, a protocol must not consider all its data as critical and must not
log a critical data every time it is updated (the protocol proposed in this paper
addresses these efficiency issues).

It has been shown in [3] that Atomic Broadcast and Consensus are equivalent
problems in asynchronous systems prone to process crash (no-recovery) failures.
The Consensus problem is defined in the following way: each process proposes
an initial value to the others, and, despite failures, all correct processes have
to agree on a common value (called decision value), which has to be one of the
proposed values. Unfortunately, this apparently simple problem has no deter-
ministic solution in asynchronous distributed systems that are subject to even a
single process crash failure: this is the so-called Fischer-Lynch-Paterson’s (FLP)
impossibility result [5]. The FLP impossibility result has motivated researchers
to find a set of minimal assumptions that, when satisfied by a distributed sys-
tem, makes Consensus solvable in this system. The concept of unreliable failure
detector introduced by Chandra and Toueg constitutes an answer to this chal-
lenge [3]. From a practical point of view, an unreliable failure detector can be
seen as a set of oracles: each oracle is attached to a process and provides it
with information regarding the status of other processes. An oracle can make
mistakes, for instance, by not suspecting a failed process or by suspecting a not
failed one. Although failure detectors were originally defined for asynchronous
systems where processes can crash but never recover, the concept has been ex-
tended to the crash-recovery model [1, 4, 11, 14]. The reader should be aware
that the existing definitions of failure detectors in the former model do have
quite significant differences.

Chandra and Toueg have also shown how to transform any Consensus proto-
col into an Atomic Broadcast protocol in the asynchronous crash (no-recovery)
model [3]. In the present paper we follow a similar line of work and we show
how to transform a protocol that solves Consensus in the crash-recovery model
in a protocol that solves Atomic Broadcast in the same model. Thus, our pro-
tocol assumes a solution to the Consensus problem in the crash-recovery model
(such protocols are described in [1, 4, 11, 14]]). Our transformation owns several
interesting properties. In the first place, it does not require the explicit use of
failure detectors (although those are required to solve the Consensus problem).

2

Thus, it is not bound to any particular failure detection mechanism. It relies on
a gossip mechanism for message dissemination, avoiding the problem of reliable
multicast in the crash-recovery model. Also, it allows recovering processes to
skip over Consensus executions that already have a decided outcome. Addition-
ally, our solution is non-blocking [2], i.e., as long as the system allows Consensus
to terminate the Atomic Broadcast is live. Finally, but not the least, we show
that Atomic Broadcast can be implemented without requiring any additional
log operations in excess of those required by the Consensus. Thus, our protocol
is optimal in terms of number of log operations.

Chandra-Toueg’s approach and ours are similar in the sense that both of
them transform a Consensus protocol into an Atomic Broadcast protocol. But,
as they consider different models (crash-no recovery), they are based on very
different algorithmic principles. This comes from the fact that we have to cope
with process crashes and message losses (that is why our protocol requires a gos-
siping mechanism, which is not necessary in a crash-no recovery + no message
loss model). Actually, when solving a distributed system problem, modifying
the underlying system model very often requires the design of protocols suited
to appropriate models [9].

The paper is organized as follows. Section 2 defines the crash-recovery model
and the Atomic Broadcast problem in such a model. Then, Section 3 presents
the underlying building blocks on top of which the proposed protocol is built,
namely, a transport protocol and a Consensus protocol suited to the crash-
recovery model. A minimal version of our Atomic Broadcast protocol for the
crash-recovery model is then presented in Section 4. As indicated before, this
protocol actually extends to the crash-recovery model the approach proposed by
Chandra and Toueg for the crash-no recovery model [3]. The protocol proceeds
in asynchronous rounds. Each round defines a delivery order for a batch of
messages. This common delivery order is defined by solving an instance of the
Consensus problem. The extension of this approach to the crash-recovery model
is not trivial as (due to crashes) messages can be lost, and (due to crashes
and recoveries) process states can also be lost. The impact of additional log
operations on the protocol is discussed in Section 5. Section 6 relates the Atomic
Broadcast problem in the crash-recovery with other relevant problems. Finally,
Section 7 concludes the paper.

2 Atomic Broadcast in the Crash-Recovery Model

2.1 The Crash-Recovery Model

We consider a system consisting of a finite set of processes Π = {p, . . . , q}. At a
given time, a process is either up or down. When it is up, a process progresses at
its own speed behaving according to its specification (i.e., it correctly executes
its program text). While being up, a process can fail by crashing: it then stops
working and becomes down. A down process can later recover: it then becomes
up again and restarts by invoking a recovery procedure. So, the occurrence of
the local event crash (resp. recover) generated by the local environment of a
process, makes this process transit from up to down (resp. from down to up).

A process is equipped with two local memories: a volatile memory and a

3

stable storage. The primitives log and retrieve allow an up process to access
its stable storage. When it crashes, a process definitely loses the content of its
volatile memory; the content of a stable storage is not affected by crashes.

Processes communicate and synchronize by sending and receiving messages
through channels. We assume there is a bidirectional channel between each pair
of processes. Channels are not necessarily FIFO; moreover, they can duplicate
messages. Message transfer delays are finite but arbitrary. Even if channels are
reliable, the combination of crashes, recoveries and arbitrary message transfer
delays can entail message losses: the set of messages that arrive at a process
while it is down are lost. Thus, the protocol must be prepared to recover from
messages losses.

The multiplicity of processes and the message-passing communication makes
the system distributed. The absence of timing assumptions makes it asyn-
chronous. It is the role of upper layer protocols to make it reliable.

2.2 Atomic Broadcast

Atomic Broadcast allows processes to reliably broadcast messages and to receive
them in the same delivery order. Basically, it is a reliable broadcast plus an
agreement on a single delivery order. We assume that all messages are distinct.
This can be easily ensured by adding an identity to each message, an identity
being composed of a pair (local sequence number, sender identity)..

At the syntactical level, Atomic Broadcast is composed of two primitives:
A-broadcast(m) (used to send messages) and µp =A-deliver-sequence() (used by
the upper layer to obtain the sequence of ordered messages). As in [3], when
a process executes A-broadcast(m) we say that it “A-broadcasts” m. We also
define a boolean predicate A-delivered(m, µp) which evaluates to “true” is m ∈ µp

or “false” otherwise. We also say that some process p “A-delivers” m if A-
delivered(m, A-deliver-sequence()) is “true” at p.

In the context of asynchronous distributed systems where processes can crash
and recover, the semantics1 of Atomic Broadcast is defined by the four following
properties: Validity, Integrity, Termination and Total Order. This means that any
protocol implementing these communication primitives in such a crash-recovery
context has to satisfy these properties.

The validity property specifies which messages can be A-delivered by processes:
it states that the set of A-delivered messages can not contain spurious messages.

• Validity: If a process A-delivers a message m, then some process has A-
broadcast m.

The integrity property states there are no duplicates.

• Integrity: Let µp be the delivery sequence at a given process p. A message
m appears at most once in µp.

The termination property specifies the situations where a message m has to be
A-delivered.

1We actually consider the definition of the Uniform Atomic Broadcast problem [10].

4

• Termination: For any message m, (1) if the process that issues A-broadcast(m)
eventually remains permanently up, or (2) if a process A-delivers a mes-
sage m, then all processes that eventually remain up A-deliver m.

The total order property specifies that there is a single total order in which
messages are A-delivered. This is an Agreement property that, joined to the
termination property, makes the problem non-trivial.

• Total Order: Let µp be the sequence of messages A-delivered to process p.
For any pair (p, q), either µp is a prefix of µq or µq is a prefix of µp.

3 Underlying Building Blocks

The protocol proposed in Section 4 is based on two underlying building blocks:
a Transport Protocol and a protocol solving the Uniform Consensus problem.
This section describes the properties and interfaces of these two building blocks.

3.1 Transport Protocol

The transport protocol allows processes to exchange messages. A process sends
a message by invoking a send or multisend primitive2. Both send and multisend
are unreliable: the channel can lose messages but it is assumed to be fair, i.e.,
if a message is sent infinitely often by a process p then it is received infinitely
often by its receiver [13]. When a message arrives at a process it is deposited in
its input buffer that is a part of its volatile memory. The process will consume
it by invoking a receive primitive. If the input buffer is empty, this primitive
blocks its caller until a message arrives.

3.2 Consensus Interface

In the Consensus problem each process proposes a value and all correct processes
have to decide on some value v that is related to the set of proposed values [5].
The interface with the Consensus module is defined in terms of two primitives:
propose and decided. As in previous works (e.g., [3]), when a process p invokes
propose(w), where w is its proposal to the Consensus, we say that p “proposes”
w. A process proposes by logging its initial value on stable storage; this is
the only logging required by our basic version of the protocol. In the same way,
when p invokes decided and gets v as a result, we say that p “decides” v (denoted
decided(v)).

The definition of the Consensus problem requires a definition of a “correct
process”. This is done in Section 3.3. As the words “correct” and “faulty” are
used with a precise meaning in the crash (no-recovery) model [3], and as, for
clarity purpose, we do not want to overload them semantically, we define their
equivalents in the crash-recovery model, namely, “good” and “bad” processes
(we use the terminology of [1]). If crashed processes never recover, “good” and
“bad” processes are equivalent with “correct” and “faulty” processes, respec-
tively. Section 3.4 specifies the three properties defining the Consensus problem
in this model.

2The primitive multisend is actually a macro that allows a process p to send (by using the
basic send primitive) a message to all processes (including itself).

5

3.3 Good and Bad Processes

A good process is a process that eventually remains permanently up. A bad
process is a process that is not good. So, after some time, a good process never
crashes. On the other hand, after some time, a bad process either permanently
remains crashed or permanently oscillates between crashes (down periods) and
recoveries (up periods). From a practical point of view, a good process is a
process that, after some time, remains up long enough to complete the upper
layer protocol. In the Atomic Broadcast problem for example, this means that a
good process that invokes A-broadcast(m) will eventually terminate this invoca-
tion (it is possible that this termination occurs only after some (finite) number
of crashes).

It is important to note that, when considering a process, the words “up”
and “down” refer to its current state (as seen by an external observer), while
the words “good” and “bad” refer to its whole execution.

3.4 Consensus Definition

The definition of the Consensus problem in the crash-recovery model is obtained
from the one given in the crash (no-recovery) model by replacing “correct pro-
cess” by “good process”.

Each process pi has an initial value vi that it proposes to the others, and all
good processes have to decide on a single value that has to be one of the pro-
posed values. More precisely, the Consensus problem is defined by the following
three properties (we actually consider the Uniform version [3] of the Consensus
problem):

• Termination: Every good process eventually decides some value.

• Uniform Validity: If a process decides v, then v was proposed by some
process.

• Uniform Agreement: no two processes (good or bad) decide differently.

3.5 Enriching the Model to Solve Consensus

As noted previously, the Consensus problem has no deterministic solution in the
simple crash (no-recovery) model. This model has to be enriched with a failure
detector that, albeit unreliable, satisfies some minimal conditions in order that
the Consensus be solvable.

In the same way, the crash-recovery model has to be augmented with a failure
detector so that the Consensus can be solved. Different types of failure detectors
have been proposed to solve the Consensus problem in the crash-recovery model.
Protocols proposed in [11, 14] use similar failure detectors that outputs list of
“suspects”; so, their outputs are bounded. [1] uses failure detectors whose
outputs are unbounded (in addition to lists of suspects, the outputs include
counters). The advantage of the later is that they do not require the failure
detector to predict the future behavior of bad processes. A positive feature
of our protocol is that it does not require the explicit use of failure detectors
(although these are required to solve the Consensus problem). Thus, it is not
bound to any particular failure detector mechanism.

6

Unordered

Application

Atomic Broadcast

(k, proposed)
result

Consensus

add−to−tail (m)

multisend (m) receive (m)

Transport

Agreed

A_delivered−sequence()

A−delivered−sequence ()

A−broadcast (m)

Figure 1: Protocol Interfaces

4 The Basic Protocol

4.1 Basic Principles

The proposed protocol borrows some of its principles from the total order pro-
tocol designed for the crash (no-recovery) model that is described in [3].

As illustrated in Figure 1, the protocol interfaces the upper layer through
two variables: the Unordered set and the Agreed queue. Messages requested
to be atomically broadcast are added to the Unordered set. Ordered messages
are inserted in the Agreed queue, according to their relative order. The Agreed
is a representation of the delivery sequence. Operations on the Unordered and
Agreed variables must be idempotent, i.e., if the same message is added twice
the result is the same as if it is added just once (since message have unique
identifiers, duplicates can be detected and eliminated).

The protocol requires the use of a Consensus protocol and of an unreliable
(but fair) transport protocol offering the send, multisend, and receive primitives
described in Section 3. The transport protocol is used to gossip information
among processes. The interface with the Consensus protocol is provided by the
propose and decided primitives. The propose primitive accepts two parameters:
an integer, identifying a given instance of the Consensus, and a proposed value (a
set of messages) for that instance. When a Consensus execution terminates, the
decided primitive returns the messages decided by that instance of the Consensus
in the variable result. The Consensus primitives must also be idempotent: upon
recovery, a process may (re-)invoke these primitives for a Consensus instance
that has already started or even terminated.

The Atomic Broadcast protocol works in consecutive rounds. In each round,
messages from the Unordered set are proposed to Consensus and the resulting
decided messages moved to the Agreed queue. Before proceeding to the next
round, the process logs its state in stable storage such that, if it crashes and

7

later recovers, it can re-start ordering messages from the last agreed messages.
Processes periodically gossip their round number and their Unordered set

of messages to other processes. This mechanism provides the basis for the
dissemination of unordered messages among good processes. When a gossip
message is received from a process with a lower round number, this means
that the sender of the gossip message may have been down and missed the last
broadcasts.

4.2 Protocol Description

We now provide a more detailed description of the protocol. The protocol is
illustrated in Figure 2. The state of each process p is composed of:

• kp: the round counter (initialized to 0)

• Proposedp: an array of sets of messages proposed to Consensus. Pro-
posedp[kp] is the set of messages proposed to the kth

p Consensus. All
entries of the array are initialized to ⊥ (⊥ means “this entry of the array
has not yet been used”).

• Unorderedp: a set of unordered messages, requested for broadcast (initial-
ized to ∅)

• Agreedp: a queue of already ordered messages (initialized to ⊥)

• gossip-kp: a variable that keeps the value of the highest Consensus round
known as already decided (this value is obtained via the gossiping mech-
anism).

The first four variables can be structured as two pairs of variables. The
(kp,Proposedp) pair is related to the current (and previous) Consensus in which
p is (was) involved. The (Agreedp,Unorderedp) pair is related to the upper
layer interface. Statements associated with message receptions are executed
atomically. The sequencer task and the gossip task constitute the core of the
protocol. Both tasks access atomically the variables kp and Unorderedp.

A-broadcast(m) issued by process p consists in adding m to its set Unorderedp.
Then the protocol constructs the common delivery order. A-deliver issued by p
takes the next message from the Agreedp queue and A-delivers it to the upper
layer application. The activation of the protocol is similar in the initial case
and in the recovery case: the gossip and sequencer tasks are started (line a).

The gossip task This task is responsible for disseminating periodically a rele-
vant part of the current state of processes. The gossip message sent by a process
p, namely gossip(kp,Unorderedp), contains its round number and its set of un-
ordered messages. The goal of the gossip task is twofold. In first place, it ensures
the dissemination of data messages, such that they are eventually proposed to
Consensus by all good processes. In second place, it allows a process that has
been down to know which is the most up-to-date round.

Upon reception of a gossip message, an active process p updates its Unorderedp

set and checks if the sender q has a higher round number (kp > kq). In this
case, p records that it has lagged behind by updating the gossip-kp variable.
This variable is used by the sequencer task to get the result of the Consensus p
has missed.

8

Initial values:
kp = 0;
∀k : Proposedp[k] = ⊥;
Unorderedp=∅;
Agreedp=⊥; gossip-kp = 0;

procedure replay ():
// may be shortened by logging kp and Agreedp

// (see discussion in Section 5)
kp ← 0;
while Proposedp[kp] 6= ⊥ do

propose(kp,Proposedp[kp]);
wait until decided (kp, result);
kp ← kp + 1; Agreedp ← Agreedp⊕ result
// Messages in result and not in Agreedp

// are moved to the tail of the Agreedp queue
// according to a predetermined determinisitic rule

end while

upon initialization or recovery:
retrieve (Proposedp);
replay ();

(a) fork task { sequencer and gossip }

Task gossip:
repeat forever

multisend gossip(kp,Unorderedp)

upon A-broadcast(m): // (issued by the upper layer)
Unorderedp ← (Unorderedp ∪ {m}) � Agreedp;
wait until (m ∈ Agreedp) // see discussion

upon receive gossip(kq ,Uq) from q:
Unorderedp ← (Unorderedp ∪ Uq) � Agreedp;
if (kq > kp) then gossip-kp ← max (gossip-kp,kq) fi // q was ahead

Task sequencer :
repeat forever

if Proposedp[kp]=⊥ then
// Process p has to define its initial value for the next Consensus
wait until ((Unorderedp 6= ∅) or (gossip-kp > kp));
Proposedp[kp] ← Unorderedp;
// Ensure that despite crashes

p always proposes the same input to the kth
p Consensus

log(Proposedp[kp]);
propose(kp,Proposedp[kp]);
// Actually, the log is done as the first operation of the Consensus (see Section 4.3)

fi;
wait until decided (kp, result);
// Messages in result and not in Agreedp are moved to the tail of
// the Agreedp queue according to a predetermined determinisitic rule
// Initializes the new round and commits results from previous round
[kp ← kp + 1; Agreedp ← Agreedp⊕ result];
Unorderedp ← Unorderedp � Agreedp

end repeat

upon A-delivered-sequence: // (issued by the upper layer)
return Agreedp

Figure 2: Atomic Broadcast protocol (Behavior of Process p)

9

The sequencer task This task is the heart of the ordering protocol [3]. The
protocol proceeds in rounds. In the round k, a process p proposes its Unorderedp

set to the kth instance of Consensus. Before starting the Consensus, the pro-
posed value is saved in stable storage. Note that the propose primitive must
be idempotent: in case of crash and recovery, it may be called for the same
round more than once. The result of the Consensus is the set of messages to be
assigned sequence number k. These messages are moved (according to a deter-
ministic rule) from the Unorderedp set to the Agreedp queue. Then, the round
number kp is incremented and the messages that remain in the Unorderedp set
are proposed by process p during the next Consensus.

To avoid running unnecessary instances of Consensus, a process does not
starts a new round unless it has some messages to propose or it knows it has
lagged behind other processes. In the later case, it can propose an empty set
as the initial value for those Consensus it has missed (this is because for those
Consensus a decision has already been taken without taking p’s proposal into
account).

The sequencer task has to execute some statements atomically with respect
to the processing of gossip messages. This is indicated by bracketing with “[“
and “]” the corresponding statements in the sequencer task.

Logging into stable storage Logging is used to create checkpoints from
which a recovering process can continue its execution and consequently make the
protocol live. So, at a critical point, the values of relevant variables are logged
into stable storage. In this paper we are interested in discussing a protocol that
makes a minimal number of ckeckpoints (independently of those required by the
underlying Consensus protocols). Thus, we only log the initial value proposed
for each Consensus round. This guarantees that if process p crashes before the
Consensus decides, p will propose the same value again after recovering. We
will later argue that this logging step cannot be avoided.

Note that we do not log the Unorderedp set or the Agreedp queue. The
Agreedp queue is re-constructed upon recovery from the results of past Con-
sensus rounds by the replay procedure. To ensure that messages proposed to
Atomic Broadcast are not lost, the A-broadcast(m) primitive does not returns
until the message m is in the agree queue. If the process fails before that, there
is no guaranty that the message has been logged, so the message may have or
may have not been A-broadcasted. The latter case, it is the same as if the
process has failed immediately before calling A-broadcast(m). Note that these
design options that aim at minimizing the number of logging operations, do not
necessarily provide the more efficient implementation. Alternative designs are
discussed below.

Recovery Since the protocol only logs the initial values proposed for each
instance of Consensus, the current round kp and the Agreedp queue have to be
re-constructed upon recovery. The current round is simply the round for which
no initial value has been proposed yet. The agreed queue can be reconstructed
by reading the results of the Consensus instances that have terminated. Thus,
before forking the sequencer and gossip tasks, the process parses the log of
proposed and agreed values (which is kept internally by Consensus).

10

4.3 On the Minimal Logging

Our solution only requires the logging of the initial proposed value for each
round of Consensus. We argue that this logging operation is required for every
atomic protocol that uses Consensus as a black box. In fact, all Consensus
protocols for the crash-recovery model we are aware of assume that a process
p proposes a value by writing it on stable storage. For instance, upon recovery
the protocol of [1] checks the stable storage to see if a initial value has been
proposed.

5 An Alternative Protocol

We now present a number of modifications to our basic protocol that, although
increasing slightly the complexity and the number of log operations, may pro-
vide some benefits in practical systems. The protocol proposes a state transfer
mechanism and additional log operations to reduce the recovery overhead and
increase throughput. Additionally, the protocol shows how to prevent the num-
ber of entries in the logs from growing indefinitely, by taking application-level
checkpoints. These changes are described below. The version of the protocol
that takes into account the previous considerations is illustrated in Figure 3 and
Figure 4.

5.1 Avoiding the Replay Phase

In the previous protocol, we have avoided any logging operation that is not
strictly required to ensure protocol correctness. In particular, we have avoided
to log the current round (kp) and agreed queue (Agreedp), since they can be
recomputed from the entries of the array proposedp that have been logged.
However, this forces the recovering process to replay the actions taken for each
Consensus result (i.e., insert the messages in the agreed queue according to the
predetermined deterministic rule).

Faster recovery can be obtained at the expense of periodically checkpointing
both variables. The frequency of this checkpointing has no impact on correctness
and is an implementation choice (that must weight the cost of checkpointing
against the cost of replaying). Note that old proposed values that do are not
going to be replayed can be discarded from the log (line c).

5.2 Size of logs and application-level checkpoint

A problem with the current algorithm is that the size of the logs grows indef-
initely. A way to circumvent this behavior is to rely on an application-level
checkpointing has described below.

In some applications, the state of the application will be determined by the
(totally ordered) messages delivered. Thus, instead of logging all the messages,
it might be more efficient to log the application state which logically “contains”
the Agreed queue. For instance, when the Atomic Broadcast is used to update
replicated data, the most recent version of the data can be logged instead of all
the past updates. Thus, a checkpoint of the application state can substitute the
associated prefix of the delivered message log.

11

Initial values:
kp = 0;
∀k : Proposedp[k] = ⊥;
Unorderedp=∅;
Agreedp=(A-checkpoint(⊥), V C(⊥)); gossip-kp = 0;

procedure replay (): ***** same as before without its first line *****
while Proposedp[kp] 6= ⊥ do

propose(kp,Proposedp[kp]);
wait until decided (kp, result);
kp ← kp + 1; Agreedp ← Agreedp⊕ result
// Messages in result and not in Agreedp are moved to the tail of
// the Agreedp queue according to a predetermined determinisitic rule

upon initialization or recovery:
**** same as before with the addition of the first line *****

retrieve (kp,Agreedp); retrieve (Unorderedp);
retrieve (Proposedp);
replay ();

(a) fork task { sequencer and gossip and checkpoint }

upon A-broadcast(m): // (issued by the upper layer) ***** first line: same as before *****
Unorderedp ← (Unorderedp ∪ {m}) � Agreedp;
log(Unorderedp)

upon receive gossip(kq ,Uq) from q: ***** first two lines: same as before *****
Unorderedp ← (Unorderedp ∪ Uq) � Agreedp;
if (kq > kp) then gossip-kp ← max(gossip-kp,kq) // q is ahead

(d) else if (kp > kq + δ) then
// δ is a configuration parameter

send state(kp − 1, Agreedp) to q
fi fi

upon receive state(kq ,Aq) from q: ***** new message *****
if kp < kq − δ then // p is late

(e) terminate task {sequencer};
// Skip Consensus whose number k is such that kp ≤ k < kq

// so, during the processing of the state message, the sequencer task is aborted
kp ← kq + 1; Agreedp ← Aq ;

(f) fork task { sequencer }
else

gossip-kp ← max(gossip-kp,kq) // small de-synchronization
fi

Figure 3: Reducing the log size and the number of replay steps (main)

12

Task gossip: ***** same as before *****
repeat forever multisend gossip(kp,Unorderedp)

Task checkpoint: ***** new task *****
repeat forever // implementation dependent frequency

(b) [Agreedp ← (A-checkpoint(Agreedp), V C(Agreedp))]
log (kp,Agreedp)

(c) // Proposedp[i], i < kp can be discarded from the log

Task sequencer : ***** same as before *****
repeat forever

if Proposedp[kp]=⊥ then
// Process p has to define its initial value for the next Consensus
wait until ((Unorderedp 6= ∅) or (gossip-kp > kp));
Proposedp[kp] ← Unorderedp;
// Ensure that despite crashes p always proposes

the same input to the kth
p Consensus

log(Proposedp[kp]);
propose(kp,Proposedp[kp]);
// Actually, the log is done as the first operation of the Consensus

fi;
wait until decided (kp, result);
// Messages in result and not in Agreedp are moved to the tail of
// the Agreedp queue according to a predetermined determinisitic rule
// Initializes the new round and commits results from previous round
[kp ← kp + 1; Agreedp ← Agreedp⊕ result];
Unorderedp ← Unorderedp � Agreedp

end repeat

upon A-deliver-sequence: // (issued by the upper layer) ***** same as before *****
return Agreedp

Figure 4: Reducing the log size and the number of replay steps (tasks)

13

Unordered

Application

Atomic Broadcast

(k, proposed)
result

Consensus

add−to−tail (m)

multisend (m) receive (m)

Transport

Agreed

A_delivered−sequence()

A−delivered−sequence ()

A−broadcast (m)

A−checkpoint ()

Figure 5: Augmented Protocol Interfaces

In order to exploit this property, one needs to augment the interface with the
application layer with an upcall to obtain the application state, as illustrated in
Figure 5. The upcall, state=A-checkpoint(µp), accepts as an input parameter a
sequence of delivered messages and returns the application state that “contains”
those updates. A-checkpoint(⊥) returns the initial state of the application. In
order to know which messages are associated with a given checkpoint, a check-
point vector clock V C(µp) is associated to each checkpoint. The vector clock
stores the sequence number of the last message delivered from each process
“contained” in the checkpoint. An application-level checkpoint is defined by
the pair (A-checkpoint(µp), V C(µp)). The sequence of messages delivered to a
process is redefined to include an application checkpoint plus the sequence of
messages delivered after the checkpoint. A message m belongs to the delivery
sequence if it appears explicitly in the sequence or if it is logically included in the
application checkpoint that initiates the sequence (this information is preserved
by the checkpoint vector clock).

In our protocol, the application state is periodically checkpointed and the de-
livered messages in the Agreed queue are replaced by the associated application-
level checkpoint. This not only offers a shorter replay phase but also prevents
the number of entries in the logs from growing indefinitely.

5.3 State Transfer

In the basic protocol, a process that has been down becomes aware that it
has missed some Consensus rounds when it detects that some other process is
already in an higher round of Consensus (through the gossip messages). When
this happens, it activates the Consensus instances that it has missed in order to
obtain the correspondent agreed messages. A process that has been down for a
long period may have missed many Consensus and may require a long time to

14

“catch-up”.
An alternative design consists in having the most up-to-date process to send

a state message containing its current round number kp and its Agreedp queue.
When a process p that is late receives a state message from a process q with a
higher round number (kp < kq) it stops its sequencer task (line e), updates its
state such that it catches up with that process, and re-starts its sequencer task
from the updated state (line f), effectively skipping the Consensus instances it
has missed.

Both approaches coexist in the final protocol. A late process can recover by
activating the Consensus instances that it has missed or by receiving a state
message. The amount of de-synchronization that triggers a state transfer can
be tuned through the variable δ (line d).

Note that, for clarity, we have made the state message to carry the com-
plete Agreed queue. Simple optimizations can minimize the amount of state to
be transfered. For instance, since the associated gossip messages carries the
current round number of the late process, the state message can be made to
carry only those messages that are not known by the recipient (see [12, 19]).

5.4 Sending Message Batches

For better throughput, it may be interesting to let the application propose
batches of messages to the Atomic Broadcast protocol, which are then proposed
in batch to a single instance of Consensus. Unfortunately, the definition of
Atomic Broadcast implies that every message that has been proposed by a good
process be eventually delivered. When there are crashes, a way to ensure this
property is not to return from A-broadcast(m) before m is logged. In the basic
protocol we wait until the message is ordered (and internally logged by the
Consensus). In order to return earlier, the A-broadcast interface needs to log
the Unorderedp set.

5.5 Incremental logging

As described, the protocol emphasizes the control locations where values have to
be logged. The actual size of these values can be easily reduced. When logging
a queue or a set (such as the Unordered set) only its new part (with respect to
the previous logging) has to be logged. This means that a log operation can be
saved each time the current value of a variable that has to be logged does not
differ from its previously logged value.

5.6 Correctness of the Alternative Protocol

As previously, when crashes are definitive, the protocol reduces to the Chandra-
Toueg’s Atomic Broadcast protocol [3]. When processes crash and recover, the
properties defining the Atomic Broadcast problem (defined in Section 2.2) can
be proved by taking into account the following properties3 (Due to space limi-
tation, the development of the full proof is omitted).

- (P1) The sequence of consecutive round numbers logged by a process p is
3These properties actually constitute lemmas of a complete proof. This complete proof

bears some ressemblance to the proof described in [11].

15

not decreasing.
- (P2) If a process p has logged kp whose value is k, then its variable kp will
always be ≥ k.
- (P3) If a good process joins round k, then all good processes will join a round
≥ k.
- (P4) For any k, independently of the number of times p participates in Con-
sensus numbered k, the value it proposes to this Consensus is always the same
(despite crashes and despite total/partial Consensus re-executions).
- (P5) For any k, independently of the number of times p participates in Con-
sensus numbered k, the result value is the same each time the invocation of
decided(k, .) terminates at p (4). (This property follows from the Consensus
specification.)
- (P6) Any message m that has been A-broadcast by a good process will even-
tually be deposited in Unorderedp or Agreedp by any good process p.
- (P7) Any message m that has been A-delivered by a process will eventually
be deposited in Agreedp by any good process p.

The Termination property follows from these properties and from the fact
Consensus executions terminate. (So, the Atomic Broadcast protocol is live
when the underlying Consensus is live.) The Integrity property follows from
The ⊕ operation on the Agreedp queue that adds any message m at most once
into this queue. The Validity property directly follows from the fact the protocol
does not create messages. The Total Order property follows from the use of the
underlying Consensus and from the appropriate management of the Agreedp

queue.

6 Related Problems

6.1 Consensus vs Atomic Broadcast

In this paper we have shown how to transform a Consensus protocol for the
asynchronous crash-recovery model into an atomic broadcast protocol. It is
easy to show that the reduction in the other direction also holds [3]. To propose
a value a process atomically broadcasts it; the first value to be delivered can be
chosen as the decided value. Thus, both problems are equivalent in asynchronous
crash-recovery systems.

6.2 Atomic Broadcast and Transactional Systems

It has been shown that a deferred update replication model for fully replica-
tion databases can exhibit a better throughput if implemented with an Atomic
Broadcast-based termination protocol than if implemented with Atomic Com-
mitment [15]. The idea of the deferred update model is to process the transaction
locally and then, at commit time, execute a global certification procedure. The
certification phase uses the transaction’s read and write sets to detect conflicts
with already committed transactions. The use of an Atomic Broadcast primitive
ensure that all managers certify transactions in the same order and maintain a

4Using the terminology used in [3], this means that, after the first Consensus execution
numbered k, the result value associated with round k is “locked”.

16

consistent state. [15] also proposes designs for Atomic Broadcast protocols in
the crash-recovery model but these solutions are not Consensus-based.

6.3 Atomic Broadcast and Quorum-Based Systems

In a recent report [18] we show how to extend the Atomic Broadcast primitive
to support the implementation of Quorum-based replica management in crash-
recovery systems. The proposed technique makes a bridge between established
results on Weighted Voting and recent results on the Consensus problem.

6.4 Total Order Multicast to Distinct Groups

In this paper we have focused on the Atomic Broadcast problem for a single
group of processes. Often, one is required to send messages to more than on
group. The problem of efficiently implementing atomic multicast across different
groups in crash (no-recovery) asynchronous systems has been solved in several
papers [6, 17]. Since these solutions are based on a Consensus primitive, it is
possible to extend them to crash-recovery systems using an approach similar to
the one that has been followed here.

7 Conclusion

This paper has proposed an Atomic Broadcast primitive for asynchronous crash-
recovery distributed systems. Its concept has been based on a building block
implementing Consensus. This building block is used as a black box, so our
solution is not bound to any particular implementation of Consensus. The pro-
tocol is non-blocking in the following sense: as long as the underlying Consensus
is live, the Atomic Broadcast protocol does not block good processes despite the
behavior of bad processes. Moreover, our solution does not require the explicit
use of failure detectors (even though are required to solve the underlying Con-
sensus). Thus, it is not bound to any particular failure detection mechanism.
Also, we have shown that Atomic Broadcast can be solved without requiring any
additional log operation in excess of those required by the Consensus. Finally,
we have discussed how additional log operations can improve the protocol.

Acknowledgments

We are grateful to Rachid Guerraoui for his constructive comments on an earlier
version of the paper.

References

[1] M. Aguilera , W. Chen and S. Toueg, Failure Detection and Consen-
sus in the Crash-Recovery Model. Proc. 12th Int. Symposium on DIS-
tributed Computing (formerly WDAG)), Andros, Greece, Sringer-Verlar
LNCS 1499, pp. 231-245, September 1998.

17

[2] Ö. Babaog̃lu and S. Toueg, Understanding Non-Blocking Atomic Com-
mitement. Chapter 6, Distributed Systems (2nd edition), acm Press (S.
Mullender Ed.), New-York, pp. 147-168, 1993.

[3] T. Chandra and S. Toueg, Unreliable Failure Detectors for Reliable Dis-
tributed Systems. Journal of the ACM, 43(2): 225-267, 1996.

[4] D. Dolev , R. Friedman., I. Keidar and D. Malkhi, Failure Detectors in
Omission Failure Environments. Proc. 16th Annual ACM Symposium on
Principles of Distributed Computing, Santa Barbara, California, page 286,
1997.

[5] M. Fischer, N. Lynch and M. Paterson, Impossibility of Distributed Con-
sensus with One Faulty Process. Journal of ACM, 32(2):374-382, 1985.

[6] U. Fritzke Jr., Ph. Ingels, A. Moustefaoui and M. Raynal, Fault-Tolerant
Total Order Multicast To Asynchronous Groups. Proc. 17th IEEE Sympo-
sium on Reliable Distributed Systems, West Lafayette (IN), pp. 228-234,
October 1998.

[7] J. Gray and A. Reuter, Transaction Processing: Concepts and Techniques.
Morgan Kaufmann Pub., 1070 pages, 1993.

[8] R. Guerraoui and A. Schiper, Software-Based Replication for Fault Tol-
erance. IEEE Computer, 30(4):68-74, 1997.

[9] R. Guerraoui, M. Hurfin, A. Mostefaoui, R. Oliveira, M. Raynal and
A. Schiper, Consensus in Asynchronous Distributed Systems: a Concise
Guided Tour. Chapter 1: Recent Advances in Large Scale Distributed Sys-
tems, Springer-Verlag, LNCS Series (W.G. Broadcast Ed.), To appear
1999.

[10] V. Hadzilacos and S. Toueg, Reliable Broadcast and Related Problems.
Chapter 4, Distributed Systems (2nd Edition), acm Press (S. Mullender
Ed.), New-York, pp. 97-145, 1993.

[11] M. Hurfin, A. Mostéfaoui and M. Raynal, Consensus in Asynchronous
Systems Where Processes Can Crash and Recover. Proc. 17th IEEE Sym-
posium on Reliable Distributed Systems, West Lafayette (IN), pp. 280-287,
October 1998.

[12] R. Ladin, B. Liskov, B. Shrira and S. Ghemawat, Providing Availabil-
ity Using Lazy Replication. ACM Transactions on Computer Systems,
10(4):360-391, 1992.

[13] N. Lynch, Data Link Protocols. Chapter 16, Distributed Algorithms,
Morgan-Kaufmann Pub., pp. 691-732, 1996.

[14] R. Oliveira, R. Guerraoui and A. Schiper, Consensus in the Crash-
Recovery Model, Research report 97-239, EPFL, Lausanne, Switzerland,
1997.

[15] F. Pedone, R. Guerraoui and A. Schiper, Exploiting Atomic Broadcast in
Replicated Databases, Proc. Europar Conference, Springer-Verlag LNCS
1470, pp.513-520, 1998.

18

[16] D. Powell (Guest Ed.), Special Issue on Group Communication. Commu-
nications of the ACM, 39(4)50-97, 1996.

[17] L. Rodrigues, R. Guerraoui and A. Schiper, Scalable Atomic Multi-
cast. Proc. 7th Int. Conf. on Computer Communications and Networks
(IC3N’98), Lafayette (Louisiana), pp. 840-847, October 1998.

[18] L. Rodrigues and M. Raynal, Atomic Broadcast and Quorum-based Repli-
cation in Asynchronous Crash-Recovery Distributed Systems. FCUL/DI
Technical Report 99-1.

[19] G. Wuu and A. Bernstein, Efficient Solutions to the Replicated Log and
Dictionary Problems. Proc. 3rd Int. ACM Symposium on Principles of
Distributed Computing (PODC’84), pp. 233-242, 1984.

19

