
Deferring Trust in Fluid Replication

Brian D. Noble, Ben Fleis, and Landon P. Cox
University of Michigan 1301 Beal Avenue

fbnoble,lbf,lpcoxg@umich.edu Ann Arbor, MI, 48109-2122

Abstract

Mobile nodes rely on external services to provide safety,
sharing, and additional resources. Unfortunately, as mo-
bile nodes move through the networking infrastructure, the
costs of accessing servers change. Fluid replication allows
mobile clients to create replicas where and when they are
needed. Unfortunately, one must trust the nodes holding
these replicas, and establishing trust in autonomously ad-
ministered nodes is a difficult task. Instead, we argue that
trust should bedeferred. In this position paper, we present
the design ofStonewall, a system that defers trust decisions
through the use of two mechanisms:packagesandreceipts.
The former ensure confidentiality and detect breaches of in-
tegrity; the latter detect breaches of non-repudiation.

1 Introduction
Hand-held, mobile nodes are becoming indispensable
members of the computing infrastructure. Unfortunately,
such clients suffer from several intrinsic challenges that
have rendered them second-class citizens. These include
variable networking performance, scarcity of local re-
sources, and increased susceptibility to theft, loss, and de-
struction. Such devices are often too small to retain all use-
ful files, and storing data solely on them increases the risk
of loss; instead, they must rely on server support. How-
ever, as the user moves, the costs of interacting with home
servers change. This gives rise to bouts of poor perfor-
mance and decreases the utility of servers.

One way to solve this is throughfluid replication [13],
the automatic creation of replicas where and when they are
needed. In fluid replication, clients monitor the networking
performance between themselves and their servers. When
network performance to a server becomes poor, clients in-
stantiate a replica of that server on a nearby node called a
WayStation. Thereafter, the client interacts with a WaySta-
tion over a high-quality network path. The WayStation and
server maintain consistency of updates between themselves
through a periodic process calledreconciliation[8, 14]. In
this way, fluid replication can provide the benefits of server
support while deferring or eliminating most traffic across
the bottleneck path.

For fluid replication to be useful, there must be many
WayStations conveniently located throughout the network-
ing infrastructure. Together, they act as a loose confed-
eration of nodes providing service to users as they move
through the network. However, it is important that WaySta-
tions remain under local, autonomous control; their cre-
ation, placement, and administration must be completely
decentralized to preserve administrative scalability.

This gives rise to some interesting trust and security con-
cerns. When a client interacts with a WayStation, it must
be assured of three things. The first isconfidentiality: data
should not observed or exposed by the WayStation while
it is stored there. The second isintegrity: WayStations
or other untrusted parties should not modify stored data.
Third, WayStations must providenon-repudiationof ac-
cepted updates; they must be propagated to the server for
which they are destined. Together, these three properties
form a contractual relationshipbetween WayStations and
clients; the latter must trust that the contract will beper-
formedbefore committing to the relationship.

This is an instance of the trust management problem [2].
There are several ways one might establish trust, but none
of them are ideal. One could require all parties to pre-
establish trust relationships, but this will not scale due to
the number and dynamic nature of administrative interests.
One could depend on schemes such as paths or webs of
trust [3] to establish trust as it is needed. Unfortunately, as
the path of trust establishment lengthens, the overall path
suffers fromtrust dilution; solving this problem often re-
quires interactions with many remote sites [15].

Rather than require that clients trust WayStations before
using them, we argue instead fordeferring the need for
trust. We propose to do so throughStonewall, a system
that renders breaches of confidentiality impossible, and en-
sures that breaches of integrity or non-repudiation are de-
tectable. Together, these properties enable verification of
contract performance, removing the need to establish trust
from the critical path of replica instantiation.

Stonewall relies on two abstractions:packagesand re-
ceipts. Each package encrypts a file block and a hash of
that block. When given an updated package, a WayStation
responds with a receipt, comprising a signed hash of the
update. Encrypting packages renders breaches of confiden-
tiality impossible. The inclusion of hashes and generation
of receipts gives clients a way to detect breaches of integrity
and non-repudiation.

The simple approach of issuing receipts for every update
raises two concerns. First, the public-key techniques nec-
essary for receipts are computationally expensive. Second,
requiring a receipt for each update would require clients
to store redundant receipts and WayStations to forward re-
dundant updates. We solve the first problem by batching
receipts at the granularity of reconciliation, and the second
through receipt cancellation among clients of a WayStation.



2 Background: Fluid Replication
As mobile devices move through the networking infrastruc-
ture, the costs to access their home services change. One
approach to solving this problem is peer-to-peer replica-
tion [5, 8, 14]. This addresses the problem of variable per-
formance, but introduces its own difficulties. First, since
update propagation is dependent on client mobility and
communication patterns, one cannot offer bounds on the
rate of update convergence. Second, client machines —
particularly mobile clients — are inherently less trustwor-
thy than servers [7]; they are more easily lost, stolen, or
compromised. Third, the smallest mobile devices are not
capable of long periods of autonomous operation. They
cannot cache enough data for long-term use, nor can they
retain all updates. Instead, they must periodically interact
with servers.

Fluid replication, the automatic creation of replicas when
and where they are needed, specifically addresses the per-
formance problems of mobile clients without introducing
the difficulties of peer-to-peer replication. In fluid repli-
cation, clients are supported by a loose confederation of
infrastructure nodes, called WayStations. Each client mon-
itors its performance in accessing a remote server. If per-
formance becomes unacceptable, a replica of that server is
created on a WayStation near the client. WayStations are
administered locally, but can offer file replication services
both to local and visiting clients. These might be offered on
a pay-as-you go basis, or through a cooperative agreement.

The key to good WayStation performance is the care-
ful balancing of consistency with the costs of communicat-
ing over wide-area networks. In order to hide these com-
munication costs, WayStations and servers rely onopti-
misticconsistency control whenever possible. In optimistic
schemes, each replica site logs updates, and periodically
reconciles these updates with those performed at the repli-
cated server. The reconciliation interval is based on update
rate and pattern, network performance, and application ad-
vice.

From the point of view of Stonewall, there are three
facets of fluid replication that are particularly significant:
replica population, reconciliation, and log optimization.
Each of these is described below. Other details of our
fluid replication design — network performance monitor-
ing, distance-based discovery, and replica migration — are
presented elsewhere [13]. The features described here are
similar to those provided by Coda [8, 11], but differ in some
details.

2.1 Replica Population
Once a client decides it can profitably benefit from a replica
on a particular WayStation, the client asks it to instanti-
ate that replica. This involves no data copying; the replica
is populated lazily. Logically, each WayStation forms a
two-way replica with the home server; the server manages
multi-site, dynamic replication.

After establishing a replica on a WayStation, the client
directs all of its read and write requests there. These re-
quests are block-oriented; they name a file, a block within
the file, and (for writes) supply the new contents of the
block. If a read request arrives that cannot be directly sat-
isfied, the WayStation fetches the relevant block from the
remote server on demand.

Writes are sent from the client to the WayStation as
normal, but are not reflected back to the home server im-
mediately. Instead, writes are collected at WayStations
rather than immediately reflected to the home server. These
writes, stamped with logical clock time [9], form a vir-
tual log at the WayStation. Periodically, these logs are ex-
changed in the reconciliation process.

2.2 Reconciliation
When a reconciliation begins, the server first checks to see
which updates in the log areserializablewith updates that
have already been performed at the server. Each block con-
tains a version stamp based on logical clock time; write
operations are checked to make sure they do not conflict.
Updates made only at the WayStation are applied at the
server. Blocks updated only at the server are marked in-
valid at the WayStation. If a block of a file was written
both at the WayStation and the server, the file containing
the block is marked inconflict, preventing further use of
the inconsistent file. Conflicts must be manually resolved
before the file can be used again. This approach provides
session consistency, where a session is defined as the rec-
onciliation interval.

2.3 Log Optimization
A central issue in providing optimistic replication is growth
of update logs. Each node must retain all log entries that
mention updates that another replica has not yet seen. How-
ever, there are two classes of optimizations that can be
made; they both depend on the notion of a replica interval.

The first class of log optimizations is the elimination
of redundant or self-canceling sets of operations within a
replica interval. Redundant operations include updates to
the same object; only the last update need be maintained.
Self-canceling operations are those that, when composed,
do not change persistent state.

The second class of optimization is the truncation of a
log’s stable prefix — the log entries that are known to be
unnecessary from now on. For a WayStation, the stable
prefix of the log is the portion before the last interaction
with the remote server. For the server, the stable prefix is
defined as the portion of the log known to all replicas.

3 Design Considerations
There are two considerations that have driven our design of
Stonewall. The first is our assumed trust and threat model.
The second arises from the interaction between concerns of
scalability and security.



3.1 Trust and Threat Model
Fluid replication is a mechanism augmenting existing file
services. Therefore, we assume that servers have a pre-
existing way of identifying clients and authorizing their
reads or writes to individual files. Further, we assume
that clients have some way of determining the identity of
servers and imbuing those servers with the trust to accept
updates made by clients. Thus, Stonewall does not concern
itself with these mechanisms.

In contrast, WayStations can be administered and adver-
tised by arbitrary authorities. They need not validate the
identities of clients requesting replica services, and might
attempt to observe, divulge, or change any replica contents
that they store. Further, they may choose not to retain up-
date logs or file contents when space becomes scarce. We
also do not assume that the network provides any security
services to higher layers.

However, Stonewall does assume that principals —
clients, servers, and WayStations — hold a public/private
key pair, and that all principals can obtain the public key of
any other principal in the system. Given our trust model
this is easy to require of the set of clients and servers.
For WayStations, we depend on the presence of a public
key infrastructure [4, 6] or alternate key management sys-
tem [10]. Note that merely knowing the public key of a
WayStation does not automatically convey a trust relation-
ship; it merely establishes the identity of that WayStation.

3.2 Scalability and Security
One of the central premises of Stonewall is the possibil-
ity of removing WayStations from the path of trust estab-
lishment. This means that the responsibility for providing
trust mechanisms must reside with either the server or its
clients. Because servers are likely to be the bottleneck to
scalability [7], we have chosen to place computational bur-
dens with the clients. While this is likely to increase the
scalability of the overall system, it is unclear whether mo-
bile clients — which are resource-poor — can support this
demand. There is a tradeoff between the collective com-
putational power of clients, and the demands on central
servers. If the burden on clients is unreasonable, one can
instead imagine using proof-carrying code [12] or similar
techniques to install code safely on the WayStation to per-
form some of these operations.

4 Stonewall Design
Fluid replication depends on the presence of WayStations
throughout the infrastructure. These WayStations must
be administered autonomously; to scale, one cannot re-
quire a priori establishment of trust relationships. Instead,
Stonewall defers trust establishment, placing the burden on
clients and servers to provideconfidentiality, integrity and
non-repudiation.

Confidentiality and integrity are provided by the fun-
damental unit of transfer, thepackage, described in Sec-

x+ y � concatenatex; y
H(x) � hash ofx
Kc

� public key for clientc
Ki;j � session key for filei on WayStationj

eK(x) � encryptx using keyK
dK(x) � decryptx using keyK
sK(x) � signx using keyK

Figure 1:Stonewall Notation

tion 4.1. Receiptsare counterpart to packages. They pro-
vide a way to detect breaches of non-repudiation, and are
presented in Section 4.2. Implementing receipts in the
naive way incurs unreasonable computational and data stor-
age/transfer overheads. These are addressed in Sections 4.3
and 4.4.

4.1 Packages
The package is the Stonewall abstraction of a data block. It
is defined as:

Pb = P (K; b; id) = eK

�
b+ id+H(b+ id)

�
:

whereb is the data block,id is a versioning identifier, and
H is a hash of these. Identifiers include the name of the
host that generated the block and a logical timestamp that
serves as both a version number and a nonce. The hash
provides a means to verify integrity; encrypting the con-
tents provides confidentiality. The notation used in this and
other definitions is shown in Figure 1.

The symmetric key used in encrypting packages is as-
signed on a per-file, per-WayStation basis, and is short-
lived. This session key is shared strictly between the home
server and the clients authorized to access the file, and thus
acts as a capability. Assigning keys in a fine-grained way
reduces the impact of compromised keys, and enables re-
keying of files by clients when necessary.

These keys are distributed from servers to clients in re-
sponse to replica population at a WayStation. Each session
key is sealed with the public key of the requesting client,
providing assurance that only authorized clients can make
use of them.

Once a client has a package and the associated key con-
tainer, the file key is extracted from its container and re-
tained. The session key is used for all accesses to the
fetched object. The package is decrypted with the session
key, and the hash value is checked. If the hash matches the
stored value, the client has verified integrity of the package
contents. The exchange of file contents and session keys is
illustrated in Figure 2. There are several opportunities to
take advantage of prefetching to reduce or eliminate client-
perceived latency in obtaining session keys. For example,
servers can pre-encode session keys and packages based on
known access patterns. The session keys can be batched to
amortize their costs, and packages can be forwarded asyn-
chronously.



1

2 4

3 5

C

W

S

6

(1) W requestsPb, andK from S, (2) S generates a ran-
domK, and createsPb, (3)S sendsPb toW , (4)S creates
eKC (K; id) whereeKC is decryptable byC, (5) S sends
eKC (K; id) toW , and (6)C can now use blockb .

Figure 2:Fetch Action Sequence: obtainingPb

Logically, keys are selected by the server, and there-
fore the server is responsible for re-keying files when old
keys expire. There are two unfortunate implications of this.
First, the slow path between WayStation and server con-
tributes to the time needed for re-keying, and likely dom-
inates. Second, it reduces the scalability of the system by
increasing server CPU load. Instead, we take advantage
of the key distribution mechanism to divide the re-keying
work amongst the clients of a WayStation. How best to bal-
ance the costs of re-keying at resource-poor mobile clients
against the gains in scalability and network performance is
an open question.

4.2 Receipts
Packages prevent breaches of confidentiality, and render
breaches of integrity detectable. However, they do not pro-
vide non-repudiation of accepted updates. Packages sent to
the WayStation may be transparently dropped there. Since
clients only affect each others’ logical clocks through inter-
actions with the WayStation, they could not be used to de-
tect dropped updates. Clients could log updates and check
whether they were propagated, but would not be able to
prove that the WayStation had taken responsibility for those
not delivered.

There are many reasons why a WayStation might drop
updates. For example, it may be short of storage space, and
decide to flush any updates from foreign clients. Stonewall
can not prevent loss of data, because WayStations act with
complete autonomy. Instead Stonewall focuses on prov-
ably detecting these failures. It does so through the use of
receipts. When sending a package via overnight courier,
the courier gives the sender a receipt. This acts as proof
that the courier has accepted responsibility for the pack-
age. Combined with the absence of a delivered package,
it can be used to demonstrate that a courier failed to de-
liver as promised. Likewise, WayStations issue receipts for
updated packages that they accept.

A receiptR is a digitally signed copy of a hash ofPb and
a currentid; it is signed with the WayStation’s private key.

C

W

S

t

2

1

(a) Unbatched Receipts

2

t

3

1

(b) Batched Receipts

In Figure 3(a), (1)W generates a receipt each time it re-
ceives a client update. (2) At timet, C submits all of its
receipts directly toS for confirmation.

In Figure 3(b), (1)W accepts updates without immediately
generating a receipt. (2) During reconciliation,W gives a
batch receipt toC for all unreconciled updates. (3) At time
t, C submits all of its receipts directly toS for confirma-
tion.

Figure 3:Receipt Generation

More formally a receipt is

R = sK

�
H(Pb) + id

�
:

R acts as a signed acknowledgement. The currentid is in-
cluded so that package submission and acceptance become
distinct logical events; theid also acts as a nonce which
prevents the WayStation from having to give out blind sig-
natures. A hash value is calculated for the submitted pack-
age, and recorded in the receipt. This hash provides a com-
pact handle for referencing the received package.

After submitting an update to a WayStation, the client
must retain the updated package until it receives a receipt
for it. Only then can the client be assured that any failure to
propagate the update can be detected. As clients submit up-
dates, they must retain receipts until they can be confirmed
at the server. Typically, confirmation is deferred until the
client and server are strongly connected. This process is
illustrated in Figure 3(a).

When the client asks the server to confirm receipts, the
server performs three steps. First it must verify the signa-



ture on the receipt. Second it examines its own logs to find
the next reconciliation occurring after theid found in the
receipt. Once the reconciliation is found, the third step is
a comparison of the signed hash value with the hash of the
package received during this reconciliation. If the signa-
ture or hash comparison fail, the receipt is considered bo-
gus, and the WayStation has failed to uphold its contract. If
all steps succeed, the server knows that the update named
in the receipt was propagated.

4.3 Managing Computational Overheads
Although this simple system is functionally correct, its per-
formance is likely to be unacceptable. Generating an asym-
metric key signature at every client update would be nearly
impossible for even a moderately busy WayStation. How-
ever, client-server receipt confirmations are likely to be
infrequent. They are typically performed only when the
client and server are well-connected, at which point the
client would no longer make use of WayStation services.
Furthermore, receipt confirmation cannot possibly happen
before the reconciliation during which the corresponding
update was to have propagated.

In light of this, one can easilybatchreceipts, and issue
them in bulk at reconciliation time. This amortizes the ex-
pense of computing the signature across potentially many
updates. We chose to issue receipts at reconciliation time
for a number of reasons. We do not wait any longer because
the WayStation is already perusing and clearing its update
logs; delaying receipts only forces the WayStation to retain
state longer than necessary. We do not issue receipts more
quickly because there is no way to confirm until the rec-
onciliation interval has passed. Therefore, Stonewall uses
receipt bundling to offer identical safety to that provided
by immediate issuance, while amortizing expensive signa-
tures.

The main drawback to bundling is the increased pressure
on client resources. Mobile clients — which by their very
nature are resource-poor — must retain copies of packages
until they are issued receipts. Therefore, the client must
be able to request receipts on demand. While they cannot
be confirmed until the next reconciliation, they do allow the
client to reclaim potentially scarce resources. The ability to
generate receipts on demand does not place additional bur-
dens on the design of fluid replication; WayStations must
already provide reconciliation on demand in order to sup-
port session semantics [16] to clients that migrate to an-
other location.

Clients typically confirm receipts only when the con-
nections between themselves and their servers are strong.
However, there are two reasons why a client might choose
to confirm receipts before it is well connected. First, the
client may need to reclaim space. While receipts are much
smaller than packages, the former tend to be longer-lived.
Mobile clients that are far away from servers for some time
can find this overly burdensome. Second, a client may wish
to discover lost updates within a time bound; such clients

may not have the luxury of waiting for strong network con-
nectivity. We plan to investigate this tradeoff between per-
formance and bounded safety.

4.4 Managing Data Overheads
Ordinarily, locality in update access patterns [1] leads to
several optimizations. WayStations make use of this lo-
cality to provide the log optimizations described in Sec-
tion 2.3. These optimizations manage the growth of stor-
age required at WayStations and, more importantly, reduce
the amount of traffic required between a WayStation and a
server.

Unfortunately, issuing a receipt for each update renders
the benefits of log cancellation useless. In order for a client
to confirm each receipt with a server, each individual up-
date must be propagated. The server and client cannot trust
the WayStation to properly account for log cancellation,
since that would imply that the WayStation was trusted.
For example, consider two clients using a WayStation to
share files with good performance. The first client creates a
temporary file, and the second consumes and deletes it, all
within a single reconciliation interval. The deletion should
lead to cancellation of the transient file, but the first client
will expect to be issued a confirmable receipt.

However, while clients cannot trust the WayStation, they
can form trust associations with each other based on the
rights each one has to a file. The server performs this trust
judgment, since these rights are encapsulated by the grant-
ing of a session key to the client. This is as it would be
without fluid replication. We leverage this within a recon-
ciliation interval in the following way. When a client ob-
tains a file block from the server, it must be informed of any
pending receipts to be generated for that block. If it updates
the block, it also generates a cancellation token for that re-
ceipt, signed by the session key for that file. The client
expecting the first receipt will instead receive the cancel-
lation token, which must have been generated by a client
authorized to perform the canceling action.

If a client must specify all cancellations and log reduc-
tions, a WayStation can easily guess most of the operations
that occur over the canceled event set. This optimization
then implies that file operations may lose their opacity to
WayStations. When a client accepts a cancellation, it re-
veals information about its usage patterns, which contrasts
directly with the goal of operation confidentiality. Unfor-
tunately, we believe this is unavoidable without resorting
to token generation for every update sent to a WayStation;
doing so seems to be a large cost for such a small benefit.

Cancellation tokens are only generated by clients within
a reconciliation interval. Across such intervals, cancella-
tion tokens are not generated or passed between servers
and WayStations. This means that clients may have to store
some extra receipts, but does not lead to any extra traffic.
On the contrary, passing such cancellation tokens across
reconciliations only increases the traffic along the expen-
sive WayStation/server path. The server need not actually



store the redundant data blocks; retaining receipt informa-
tion is enough to later confirm client receipts. We believe
this tradeoff is acceptable, since receipts are small com-
pared to the blocks they cover.

5 Conclusion
Mobile clients experience wide variations in performance
when accessing their home services from different loca-
tions. Fluid replication promises to address the sources of
these performance problems by creating replicas on nearby
WayStations — nodes in the infrastructure that provide
replication services. For scalability, WayStations must be
managed by their local administrative authorities, raising
significant questions of security and trust.

Forcing clients to establish this trust before using a
WayStation is an expensive proposition. Instead we pro-
pose to defer judgments of trust until they are actually
needed. Our architecture for providing this, Stonewall, re-
lies on two abstractions: packages and receipts. Together,
these render breaches of confidentiality impossible, and
make breaches of integrity and non-repudiation detectable.
However, implementing these abstractions requires some
thought and care to minimize the storage, processing, and
networking costs. This work, when completed, will result
in a global, distributed system that provides for vastly im-
proved performance for mobile clients without a concomi-
tant reduction in safety or security.

Acknowledgements
This research was supported in part by Novell, Inc.; the
National Science Foundation under grantCCR-9984078;
and the Defense Advanced Research Projects Agency
(DARPA) and Air Force Research Laboratory, Air Force
Materiel Command, USAF, under agreement number
F30602-00-2-0508. The U.S. Government is authorized
to reproduce and distribute reprints for Governmental pur-
poses notwithstanding any copyright annotation thereon.

The views and conclusions contained herein are those
of the authors and should not be interpreted as necessar-
ily representing the official policies or endorsements, ei-
ther expressed or implied, of Novell, Inc., the Defense Ad-
vanced Research Projects Agency (DARPA), the Air Force
Research Laboratory, the National Science Foundation, or
the U.S. Government.

References
[1] M. G. Baker, J. H. Hartman, M. D. Kupfer, K. W. Shirriff,

and J. K. Ousterhout. Measurements of a distributed file
system. InProceedings of the Thirteenth ACM Symposium
on Operating Systems Principles, pages 198–212, Pacific
Grove, CA, USA, October 1991.

[2] M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized trust
management. InProceedings 1996 IEEE Symposium on Se-
curity and Privacy., pages 164–73, May 1996.

[3] D. W. Chadwick, A. J. Young, and N. K. Cicovic. Merging
and extending the PGP and PEM trust models — the ICE-
TEL trust model. IEEE Network, 11(3):16–24, May–June
1997.

[4] W. Ford. Advances in public-key certificate standards.
SIGSAC Review, 13(3):9–15, July 1995.

[5] J. S. Heidemann, T. W. Page, R. G. Guy, G. J. Popek, J.-F.
Paris, and H. Garcia-Molina. Primarily disconnected oper-
ation: experience with Ficus. InProceedings of the Second
Workshop on the Management of Replicated Data, pages 2–
5, November 1992.

[6] R. Housley, W. Ford, W. Polk, and D. Solo. Internet X.509
public key infrastructure certificate and CRL profile. Inter-
net RFC 2459, 1999 January.

[7] J. H. Howard, M. L. Kazar, S. G. Menees, D. A. Nichols,
M. Satyanarayanan, R. N. Sidebotham, and M. J. West.
Scale and performance in a distributed file system.ACM
Transactions on Computer Systems, 6(1):51–81, February
1988.

[8] J. J. Kistler and M. Satyanarayanan. Disconnected operation
in the Coda File System.ACM Transactions on Computer
Systems, 10(1):3–25, February 1992.

[9] L. Lamport. Time, clocks, and the ordering of events
in a distributed system. Communications of the ACM,
21(7):558–65, July 1978.

[10] D. Mazières, M. Kaminsky, M. F. Kaashoek, and E. Witchel.
Separating key management from file system security. In
Proceedings of the Seventeenth ACM Symposium on Oper-
ating Systems Principles, pages 124–39, Kiawah Island, SC,
USA, December 1999.

[11] L. B. Mummert, M. R. Ebling, and M. Satyanarayanan. Ex-
ploiting weak connectivity for mobile file access. InFif-
teenth ACM Symposium on Operating Systems Principles,
pages 143–55, Copper Mountain Resort, CO, USA, Decem-
ber 1995.

[12] G. C. Necula and P. Lee. Safe kernel extensions without run-
time checking. InSecond USENIX Symposium on Operating
Systems Design and Implementation (OSDI), pages 229–43,
Seattle, WA, USA, October 1996.

[13] B. Noble, B. Fleis, and M. Kim. A case for fluid replication.
In Network Storage Symposium, Seattle, WA, USA, October
1999.

[14] K. Petersen, M. J. Spreitzer, D. B. Terry, M. M. Theimer,
and A. J. Demers. Flexible update propagation for weakly
consistent replication. InProceedings of the Sixteenth ACM
Symposium on Operating Systems Principles, pages 288–
301, Saint Malo, France, October 1997.

[15] J. I. Schiller and D. Atkins. Scaling the web of trust: com-
bining Kerberos and PGP to provide large scale authen-
tication. In Proceedings USENIX Winter 1995 Technical
Conference, pages 93–94, New Orleans, LA, USA, January
1995.

[16] D. B. Terry, A. J. Demers, K. Petersen, M. J. Spreitzer,
M. M. Theimer, and B. B. Welch. Session guarantees for
weakly consistent replicated data. InProceedings of 3rd
International Conference on Parallel and Distributed Infor-
mation Systems, pages 140–9, Austin, TX, USA, September
1994.


