
Exploiting Atomic Broadcast

in Replicated Databases

Fernando Pedone Rachid Guerraoui Andr�e Schiper

D�epartement d'Informatique

Ecole Polytechnique F�ed�erale de Lausanne

1015 Lausanne, Switzerland

Abstract

Database replication protocols have historically been built on top of distributed database

systems, and have consequently been designed and implemented using distributed transac-

tional mechanisms, such as atomic commitment. We argue in this paper that this approach

is not always adequate to e�ciently support database replication and that more suitable al-

ternatives, such as atomic broadcast primitives, should be employed instead. More precisely,

we show in this paper that fully replicated database systems, based on the deferred update

replication model, have better throughput and response time if implemented with an atomic

broadcast termination protocol than if implemented with atomic commitment.

1 Introduction

Replication is considered a cheap software based way to increase data availability when compared

to hardware based specialised techniques [16]. However, designing a replication scheme that

provides reasonable performance and maintains data consistency is still an active area of research

both in the database and in the distributed systems communities.

In the database context, replication techniques based on the deferred update model have

received increasingly attention in the past years [13]. According to the deferred update model,

transactions are processed locally at one server (i.e., one replica manager) and, at commit time,

are forwarded for certi�cation to the other servers (i.e., the other replica managers). Deferred

update replication techniques o�er many advantages over immediate update techniques, which

synchronise every transaction operation across all servers. Among these advantages, one may

1

cite: (a) better performance, by gathering and propagating multiple updates together, and

localising the execution at a single, possibly nearby, server (thus reducing the number of messages

in the network), (b) more exibility, by propagating the updates at a convenient time (e.g.,

during the next dial-up connection), (c) better support for fault tolerance, by simplifying server

recovery (i.e., missing updates may be demanded to other servers), and (d) lower deadlock rate,

by eliminating distributed deadlocks [13].

Nevertheless, deferred update replication techniques have two limitations. Firstly, the termi-

nation protocol used to propagate the transaction to other servers for certi�cation is usually an

atomic commitment protocol (e.g., a 2PC algorithm [12]), whose cost directly impacts transac-

tion response time. Secondly, the certi�cation procedure that is usually performed at transaction

termination time consists in aborting all conicting transactions.1 Such certi�cation procedure

typically leads to a high abort rate if conicts are frequent, and hence impacts transaction

throughput.

In the context of client-server distributed systems, most replication schemes (that guarantee

strong replica consistency) are based on atomic broadcast communication [6, 20]. An atomic

broadcast communication primitive enables to send messages to a set of processes, with the

guarantee that the processes agree on the set of messages delivered, and on the order according

to which the messages are delivered [18]. With this guarantee, consistency is trivially ensured

if every operation on a replicated server is distributed to all replicas using atomic broadcast.

Although several authors have mentioned the possibility of using atomic broadcast to support

replication schemes in a database context (e.g., [6, 24]), little work has been done in that direction

(we will mention some exceptions in Section 6).

In this paper, we show that atomic broadcast can successfully be used to improve the per-

formance of the database deferred update replication technique. In particular, we show that, for

di�erent resilience scenarios, the deferred update replication technique based on atomic broad-

cast provides better transaction throughput and response time than a similar scheme based on

atomic commitment.

The paper is organised as follows. In Section 2, we present the replicated database model, and

we recall the principle of the deferred update replication technique. In Section 3, we describe

a variation of this replicated technique based on atomic broadcast, and we prove it correct.

In Section 4, we compare the transaction throughput of deferred update replication based on

atomic broadcast with the throughput of deferred update replication based on classical atomic

1Note that we do not consider here replication protocols that allow replica divergence and require reconcilia-

tions. We focus on replication schemes that guarantee one-copy serializability [4].

2

commitment. In Section 5, we consider di�erent resilience scenarios, and for each one, we

compare the transaction response time of our solution with that of a classical atomic commit

one. In Section 6 we discuss related work that study alternatives to the traditional two phase

commit for database replication. Section 7 summarises the main contributions of the paper and

discusses some research perspectives.

2 The Deferred Update Technique

In this section we describe our database model, and we recall the principle of the deferred update

replication technique [4].

2.1 Replicated Database Model

We consider a replicated database system composed of a set of processes � = fp1; p2; : : : ; png,

each one executing in a di�erent processor, without shared memory and access to a common

clock. Each process has a replica of the database and plays the role of a replica manager.

Processes may fail by crashing, and can recover after a crash. We assume that processes do not

behave maliciously (i.e., we exclude Byzantine failures). If a process p is able to execute requests

at a certain time � (i.e., p did not fail or p has failed but recovered) we say that the process p

is up at time � . Otherwise the process p is said to be down at time � . We say that a process p

is correct if there is a time after which p is forever up.2

Processes execute transactions, that are sequences of read and write operations followed by

a commit or abort operation. Transactions are submitted by client processes executing in any

processor (with or without a replica of the database). Our correctness criterion for transaction

execution is one-copy serializability (1SR) [4].

Committed transactions are represented as Ti; Tj and Tk. The set �
�
p contains all committed

transactions in process p at time � . Non-committed transactions are represented as tm and tn.

When a transaction tm commits, it is represented as Ti, where i indicates the serial order of tm,

related to the already committed transactions in the database.

2The notion of forever up is a theoretical assumption to guarantee that correct processes do useful computation.

This assumption prevents cases where processes fail and recover successively without being up enough time to

make the system evolve. Forever up means, for example, from the beginning until the end of a termination

protocol.

3

2.2 The Deferred Update Principle

In the deferred update replication technique, transactions are locally executed in one process

(e.g., the process at the site where the transaction was issued), and during their execution, no

interaction among other processes is necessary (there is only local synchronisation). When a

transaction requests the commit, its updates (e.g., the redo log records) and its control structures

are propagated to the other processes (Figure 1), so that the transaction can be certi�ed and,

if possible, committed. This procedure, starting with the commit request, is called termination

protocol. The certi�cation test aims at ensuring one-copy serializability. That is, it guarantees

that committed transactions have an e�ect over the database that is equivalent to a serial

execution of these transactions on one copy of the database.

Database
Process 2read/write

requests

commit
request

Processor X

Processor Z

Processor Y

Processor W

Database
Process 3

Client A

Client D

Termination
Protocol

Client B

Client C

1

2
3

Local execution1

Commit request2

Termination protocol3

3

3

Database
Process 1

Figure 1: Deferred Update Technique

The certi�cation test decides to abort a transaction if its commit leads the database to

an inconsistent state. For example, consider two concurrent transactions, tm and tn, that are

executed in di�erent processes, and that update a common data item. On requesting the commit,

if tm arrives before tn in a process but after tn in another process, both might have to be aborted

since one process would see tm's updates after tn's, and the other tn's updates after tm's.

In the deferred update technique, a transaction passes through some well-de�ned states (see

Figure 2). It starts in the executing state, when its read and write operations are locally executed

4

by the process where it initiated. When the transaction requests the commit, it passes to the

committing state and is sent to the other processes. A transaction received by a process is also

in the committing state. A transaction in a process remains in the committing state until its

fate is known by the process (i.e., commit or abort). The executing and committing states are

transitory states, whereas the commit and abort states are �nal states.

executing committing

commit

abort

final state

transitory state

commit request

abort request

transaction
acception

transaction
rejection

Figure 2: Transaction states

2.3 The Deferred Update Algorithm

We summarise here the principle of the deferred update replication technique. To simplify the

presentation, we consider a particular transaction tm executing in some process pi. Hereafter,

the readset (RS) and writeset (WS) are the sets of data items that a transaction reads and

writes, respectively, during its execution.

1. Transaction tm is initiated and executed at process pi. Read and write operations request

the appropriate locks, that are locally granted according to the strict two phase locking

rule. During this phase, transaction tm is in the executing state.

2. When transaction tm requests the commit, tm passes to the committing state. Its read

locks are released (the write locks are maintained by pi until tm reaches a �nal state), and

process pi then triggers the termination protocol for tm: the updates performed by tm, as

well as its readset and writeset, are sent to all the other processes.

3. As part of the termination protocol, tm is certi�ed by every process. The certi�cation test

guarantees one-copy serializability. The outcome of this test is the commit or abort of tm,

5

according to concurrent transactions that executed in other processes. We will come back

to this issue in Sections 3 and 4.

4. If tm passes the certi�cation test, all its write locks are requested and its updates are

applied to the database. Hereafter, transaction tm is represented as Ti. Transactions in

the execution state whose locks conict with Ti's write locks are aborted for Ti's sake.

During the time when a process p is down, p may miss some transactions by not participating

in their termination protocol. However, as soon as process p is up again, p catches up with

another process that has seen all transactions in the system. This recovery procedure depends

on the implementation of the termination protocol (we discuss this issue in Section 5).

As described above, the objective of the termination protocol is twofold: (i) propagating

committing transactions to the other processes and (ii) certifying them. The exact way this is

done is implementation speci�c. In a typical deferred update implementation [4], the transaction

propagation is performed using an atomic commitment protocol, and the certi�cation test is

based on a conicting rule ([22, 26]). The atomic commitment protocol ensures that all processes

receive the transaction, which is committed only if all processes agree to do so, and the conicting

rule leads to abort a transaction if it is involved in any read/write or write/write conict.

In the next section we describe a termination protocol based on (i) an atomic broadcast

primitive to propagate the transactions, and (ii) a certi�cation test speci�cally designed to be

used with this atomic broadcast primitive. In Sections 4 and 5, we show that this termination

protocol provides better throughput and response time than a classical termination protocol

based on atomic commitment.

3 A Replication Scheme based on Atomic Broadcast

In the following subsections, we recall the de�nition of an atomic broadcast primitive, present a

deferred update replication algorithm using this primitive and prove it correct.

3.1 Atomic Broadcast

An atomic broadcast primitive enables to send messages to a set of processes, with the guaran-

tee that all processes agree on the set of messages delivered and the order according to which

the messages are delivered [18]. More precisely, atomic broadcast ensures that (i) if some pro-

cess delivers message m then every correct process delivers m (uniform atomicity); (ii) no two

6

processes deliver any two messages in di�erent orders (order); and (iii) if a process broadcasts

message m and does not fail, then every correct process eventually delivers m (termination).

It is important to notice that the properties of atomic broadcast are de�ned in terms of

message delivery and not in terms of message reception. Typically, a process �rst receives a

message, then performs some computation to guarantee the atomic broadcast properties, and

then delivers the message. The notion of delivery captures the concept of irrevocability (i.e., a

process must not forget that it has delivered a message). In the following, we use the expression

delivering a transaction tm to mean delivering the message that contains transaction tm. We

discuss the implementation of atomic broadcast primitives in Section 5.

3.2 A Termination Protocol based on Atomic Broadcast

We describe now the termination protocol for the deferred update replication technique (Sec-

tion 2) based on atomic broadcast. On delivering a committing transaction, each process certi�es

the transaction and, in case of success, commits it. Once the transaction is delivered and certi�ed

successfully, it passes to the commit state and its writes are processed.

Figure 3 abstractly presents the main components involved in the termination protocol based

on atomic broadcast and the way these components are related to each other.3 The Certi�er

executes the certi�cation test for an incoming transaction. It receives the transactions deliv-

ered by the Atomic Broadcast module and cannot change their relative order. On certifying a

transaction, the Certi�er may ask information to the Data Manager about already committed

transactions. If the transaction is successfully certi�ed, its write operations are transmitted

to the Lock Manager. The Lock Manager treats the requests that come from the Certi�er

sequentially.

In order for a process to certify a committing transaction tm, it has to know which trans-

actions conict with tm. The notion of conict is de�ned by the precedes relation between

transactions and the operations issued by the transactions. A transaction Tj precedes another

transaction tm, denoted Tj ! tm, if Tj committed before tm started its execution. The relation

Tj 6! tm (not Tj ! tm) means that Tj committed after tm started its execution. Based on these

de�nitions, we say that a transaction Tj conicts with tm if (1) Tj 6! tm and (2) tm and Tj have

conicting operations.4

3In a database implementation, these distinctions may be much less apparent, and the modules more tightly

integrated [14]. However, for presentation clarity, we have chosen to separate the modules.
4Two operations conict if they are issued by di�erent transactions, access the same data item and at least

one of them is a write.

7

Certifier

Data Manager

Lock Manager

Atomic Broadcast

Transaction Manager

Client A Client B

receive
message

send
message

Read, Write, Commit, Abort

Data Manager

Lock Manager

Atomic Broadcast

Transaction Manager

Certifier

Client C

Process p2

transaction
broadcast

Network

transaction
delivery

Process p1

Figure 3: Deterministic execution

More precisely, process pj performs the following steps after delivering tm.

1. Certi�cation test. Process pj aborts tm if there is any committed transaction Tj that

conicts with tm and that updated data items read by tm. This can be formally described

as follows.

Aborted(tm; �
0
; pj); �

0
> � �

2
666664

state(tm; �; pj) = committing

^
9Tj 2 ��

pj
; Tj 6! tm

^
WS(Tj) \RS(tm) 6= ;

3
777775

2. Commitment. If tm is not aborted, it passes to the commit state (hereafter tm will be

expressed as the committed transaction Ti, where i represents the sequential order of

transaction tm, and �� 0

pj
= ��

pj
[fTig); process pj tries to grant all its write locks, and

processes its updates. There are two cases to consider.

(a) There is a transaction tn in execution at pj whose read or write locks conict with

Ti's write locks. In this case tn is aborted by pj and, therefore, all tn's read and write

locks are released.5 More precisely, pj aborts transaction tn if the following predicate

5If the conict is due to a write lock held by tn in pj , tn should be aborted because otherwise a multiversion

8

is evaluated true.

Aborted(tn; �
00
; pj); �

00
> �

0 �

2
66666666664

state(tn; �
0
; pj) = executing

^

9Ti 2 ��
0

pj
; Ti 6! tn

^0
B@

RS(tn) \WS(Ti) 6= ;
_

WS(tn) \WS(Ti) 6= ;

1
CA

3
77777777775

(b) There is a transaction tn, that is executed locally at pj and requested the commit, but

is delivered after Ti. If tn executed locally at pj, it has all write locks on the data

items it updated. If tn commits, its writes will supersede Ti's (i.e., the ones that

overlap) and, in this case, Ti need neither request these write locks nor process the

updates over the database. This is similar to Thomas' Write Rule [26]. If tn is later

aborted (i.e., it does not pass the certi�cation test), the database should be restored

to a state without tn, for instance, by applying Ti's redo log entries to the database.

Given a committing transaction tm, the set of transactions Tj so that Tj 6! tm (see certi-

�cation test above) is determined as follows. Given a process p, let lastp(�) represent the last

delivered and committed transaction in p at local time � . A transaction tm that starts its exe-

cution in process p at time �0 has to be checked at certi�cation time �p against the transactions

fTlastp(�0)+1; : : : ; Tlastp(�p)g. The information lastp(�0) is broadcast together with the writes of

Ti, and lastp(�p) is determined by each process p at certi�cation time.

3.3 Proof of Correctness (Sketch)

Proving the safety of our replication protocol comes down to showing that every history it

generates is one-copy serializable. In the following, we give an intuitive idea of the proof. For

further details see the appendix.

As each process is provided with the same input (i.e., committing transactions) in the same

order, and each process uses the same deterministic certifying algorithm to commit (or abort)

transactions, it su�ces to show that one process generates only one-copy serializable executions

to prove that the overall database system generates only one-copy serializable executions (i.e., to

prove the correctness of our algorithm). For the development of the proof, we model our system

mechanism is necessary to keep track of multiple concurrent writes. If the conict is due to a read lock, the best

to be done is abort tn because with Ti's commit, it is doomed to abort (its reads are too old and it would not

pass the certi�cation test later).

9

as a multiversion database (i.e., transactions executing at a process have their own version of

the data items) and use the Multiversion Graph theorem of Bernstein et al. [4]. This theorem

states that a multiversion history is one-copy serializable if it produces an acyclic multiversion

serialization graph.

Consequently, our proof is composed of two parts. In the �rst part, we de�ne a multiversion

serialization graph MV SGp, that just contains committed transactions in p, as a sequence of

states MV SG
0
p;MV SG

1
p; : : : ;MV SG

n
p and prove, by induction on the states and using the

atomicity and order properties of the atomic broadcast primitive, that every two processes p

and q, p; q 2 �, produce the same MV SG
x

p=q
; x � 0. In the second part, we prove that every

MV SG
x
p is acyclic by showing that, for every edge Ti ! Tj inMV SG

x
p , Ti is delivered before Tj.

We show that transaction Ti is committed (and so included in MV SG
x
p) if Ti does not include

any read-from or version-order relation of the form Ti ! Tj to a previous committed transaction

Tj inMV SGp. Using theMultiversion Graph theorem, we conclude that our replication protocol

guarantees one-copy serializability.

3.4 Liveness Characterisation

The termination property of the atomic broadcast primitive assures that every transaction even-

tually reaches the committing state in all database processes and, depending on its conicts with

other already committed transactions, is either committed or aborted. If a process is down, it

will deliver the transaction as soon as it recovers. This guarantee reects the liveness property

of the algorithm.

In the next section, we discuss the conditions under which a transaction is committed in

our algorithm, and we compare these conditions with those of a traditional deferred update

replication technique based on atomic commitment.

4 Transaction Throughput

In this section, we �rst recall the abort/commit conditions for a termination protocol based on

atomic commitment. Then we compare the throughput of this solution with a deferred update

termination protocol based on atomic broadcast. The throughput measures the transaction

commit rate. It is a liveness parameter.

10

4.1 The Termination Protocol based on Atomic Commit

With an atomic commit implementation of the deferred update termination protocol, no total

order knowledge is available for the processes and a conict has to be resolved by aborting all

conicting transactions. We describe below the termination protocol based on atomic commit.

1. Certi�cation test. A process can make a decision on the commit or abort of a transaction

tm when it knows that all the other processes also know about tm. This requires an inter-

action among processes that ensures that when a transaction is certi�ed, all committing

transaction are taken into account. On certifying transaction tm, process pj decides for its

abort if there is a transaction tn that does not precede tm (tn 6! tm) and with which tm

has conicting operations. This is formally described as follows.

Aborted(tm; �
0
; pj); �

0
> � �

2
666666666666664

state(tm; �; pj) = committing

^
9tn; state(tn; �; pj) = committing ^ tn 6! tm

^0
BBBBB@

RS(tm) \WS(tn) 6= ;
_

WS(tm) \RS(tn) 6= ;
_

WS(tm) \WS(tn) 6= ;

1
CCCCCA

3
777777777777775

2. Commitment. If tm is not aborted, it passes to the commit state and pj tries to grant all

its write locks and processes its updates. Transactions that are being locally executed in

pj and have read or write locks on data items updated by tm are aborted. More formally,

the following transactions in execution in pj are aborted. (Henceforth tm is represented as

the committed transaction Ti.)

Aborted(tn; �
00
; pj); �

00
< �

0 �

2
66666666664

state(tn; �
0
; pj) = executing

^

9Ti 2 ��
0

pj
; Ti 6! tn

^0
B@

RS(tn) \WS(Ti) 6= ;
_

WS(tn) \WS(Ti) 6= ;

1
CA

3
77777777775

In order to certify and commit transactions, the system has to detect transactions that ex-

ecuted concurrently in di�erent processes. For example, in [1] this is done associating vector

clocks timestamps with local events (e.g., execution or commit of a transaction). These times-

11

tamps have the property of being ordered if the events are causally related. Each time a process

communicates to another, it sends its vector clock.

4.2 Atomic Broadcast vs. Atomic Commit: Throughput

The values presented in Figures 4 and 5 were obtained by means of a simulation involving a

database with 10000 data items replicated in 5 database processes. Each transaction has a

readset and a writeset with 10, di�erent, data items. In Figure 4, each data item has the same

probability of being accessed (no hot spots). In Figure 5, 1% of the data items in the database

have 10 times more chance of being accessed than the other 99% (i.e., we assume here that 1% of

the data items are hot spots). These experiments consider concurrent committing transactions

(i.e., transactions that have already requested the commit).

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5 10 15 20 25 30

C
om

m
itt

ed
 tr

an
sa

ct
io

ns
 (

%
)

Transactions/s

Atomic Broadcast
Atomic Commit

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5 10 15 20 25 30

C
om

m
itt

ed
 tr

an
sa

ct
io

ns
 (

%
)

Transactions/s

Atomic Broadcast
Atomic Commit

Figure 4: Equiprobable accesses

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5 10 15 20 25 30

C
om

m
itt

ed
 tr

an
sa

ct
io

ns
 (

%
)

Transactions/s

Atomic Broadcast
Atomic Commit

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5 10 15 20 25 30

C
om

m
itt

ed
 tr

an
sa

ct
io

ns
 (

%
)

Transactions/s

Atomic Broadcast
Atomic Commit

Figure 5: Hot spots

These results report the e�ects of total ordering committing requests. They show that

total order can indeed produce better results. Intuitively, the idea is that without total order,

processes have to resolve conicts by aborting all transactions involved, instead of aborting just

some of them. For example, if transactions tm and tn conict, and the processes know that tm

is delivered everywhere before tn, tn's abort is enough to resolve the conict (there is no need

to abort tm). If this order knowledge is not available, aborting just one transaction could create

inconsistencies. Some processes might abort tm while others tn.
6

6Some systems resolve this problem by requiring that transactions be commutable [13]. In this case, we cannot

really talk about conicting transactions.

12

5 Response Time

In this section we discuss the implementation of the atomic broadcast primitive. We consider

di�erent implementations that correspond to di�erent resilience degrees, and we compare their

cost to atomic commit protocols with the same resilience degrees. When comparing the costs of

the atomic broadcast and atomic commit implementations, we consider failure free runs because

these are the most frequent ones in practice. For the following discussion, we assume that the

communication links are reliable (i.e., messages are neither lost nor corrupted).

5.1 Sequencer-based Atomic Broadcast

The implementation described in this section is based on a sequencer process [5, 20]. It uses a

centralised approach that distinguishes between a coordinator and participant processes. The

coordinator receives messages from any process (step 1 in Figure 6) and broadcasts them to

all processes (step 2). The coordinator includes a sequence number in the messages so that

all processes deliver the messages in the same order (i.e., according to the sequence numbers).7

That is, a message number n is just delivered if message number n�1 has already been delivered.

. . .

1
p

2
p

n
p

sequencer

step 1 step 2

commit/abort
(msg. delivery)

forced write
(msg. logging)

Figure 6: Sequencer-based Atomic Broadcast (failure-free execution)

In the absence of failures, this implementation clearly ful�ls the properties of the atomic

broadcast primitive. It is blocking because when the coordinator is down, no broadcast is

possible. The coordinator has to keep the broadcast messages because if a process fails, and

later recovers, it can be brought up to date by asking the coordinator the messages it missed

when it was down. Stable messages can be discarded by the coordinator. A message m is stable

for a process p when p knows that all the other processes have delivered m.

7Note that the sequence number is not necessary if the communication links are FIFO.

13

The recover of the coordinator is more complicated because, when a failure occurs, some

processes may not have received all messages (i.e., some messages may be unstable in the coor-

dinator). Therefore, correctness is just guaranteed if the coordinator remembers all broadcast

messages (or at least the unstable ones). To solve this problem, before broadcasting a message

the coordinator stores it in stable storage. When recovering, the coordinator checks each process

and sends the messages that it has not received yet.

This implementation satis�es the atomicity property of the atomic broadcast primitive be-

cause a process can just deliver a message if it was sent by the coordinator, and the coordinator

keeps all messages in stable storage until they become stable. Processes that are up eventually

receive the message from the coordinator and deliver them. Processes that are down contact

the coordinator as soon as they recover and receive the missed messages. By logging messages,

the coordinator makes sure it will not lose any of them even if it fails. The order property

is assured by the unique sequence numbers associated with messages. Once the coordinator

receives a message to be broadcast, eventually all correct processes will also receive and deliver

it, guaranteeing the termination property.

In a failure free execution with n processes, this implementation requires n+1 messages and

n forced writes in stable storage (log). Although this implementation o�ers a good performance,

as a disadvantage, it relies on the fact that the sequencer must be a correct process. This

requirement is similar to the two phase commit, where the coordinator must be a correct process.

In the next sections, we present two implementations of the atomic broadcast that looses this

requirement.

5.2 Atomic Broadcast with a Majority Always Up

The atomic broadcast implementation presented in this section was proposed by Chandra and

Toueg [7]. It considers that there is always a majority of processes up during the execution

of an atomic broadcast, and for each atomic broadcast it is always the same majority. The

execution is divided into rounds and one process acts as the coordinator of each round. If

no failure (or suspicion of failure) occurs during the execution, the algorithm terminates in

one round, otherwise, if the coordinator fails or is suspected, another round is initiated and

another predetermined process becomes the coordinator. In an implementation without failures,

a process wanting to broadcast a message m sends it to the coordinator (step 1 in Figure 7),

that forwards it to all processes (step 2). Each process, on receiving m, answers with an ack to

the coordinator (step 3). When the coordinator receives the ack from more than half processes

14

it sends a control message saying that m can be delivered (step 4). If the coordinator fails or

is suspected of having failed, a new coordinator is elected following the rotating coordinator

principle. In an execution without failures, this implementation requires 3n+ 2 messages.

. . .

1
p

2
p

n
p

coord.

commit/abort
(msg. delivery)

step 1 step 2 step 3 step 4

Figure 7: Atomic broadcast with a majority always up (failure-free execution)

5.3 Atomic Broadcast with a Majority Correct

The majority assumption in the implementation of Section 5.2 means that there is at least one

process up that has seen all delivered messages in the system. This assumption, however, may

be considered too restrictive for a crash-recover model. In the following, we describe a variation

of the previous implementation for a system where a majority of processes is correct.

The situation that must be prevented is the one where some processes deliver a message

and, before storing it in stable storage, fail and forget what they have delivered. This problem

is solved if processes log the messages before delivering them (Figure 8). It guarantees that, on

recovering, processes can determine the messages that have already been delivered or are being

delivered. This implementation still needs a majority of processes up to deliver a message, but

contrary to the previous case, the system resumes normal execution as soon as there is such a

majority of processes.8

In a failure-free execution with n processes, this implementation requires 3n + 2 messages

and n forced writes (logs).

5.4 Atomic Broadcast vs. Atomic Commit: Response Time

The cost of an atomic broadcast has a direct e�ect on the system's response time: the more

e�cient the broadcast is implemented, the faster the user receives the result for the request (e.g.,

8A full description of this protocol in case of failures is out of the scope of this paper.

15

. . .

1
p

2
p

n
p

forced write
(msg. logging)

coord.

commit/abort
(msg. delivery)

step 1 step 2 step 3 step 4

Figure 8: Atomic broadcast with a majority correct (failure-free execution)

transaction commit). In the following, we compare the atomic broadcast implementation given

in the previous sections to traditional atomic commit implementations.9

Figure 9 presents a qualitative analysis of termination protocols. The characteristics of

the two-phase commit (2PC) and three-phase commit (3PC) protocols come from [4]. It only

considers forced log writes. The Light 3PC is a variation of the 3PC, that assumes a majority of

processes up. This satis�es the write voting rule and therefore assures consistency in a replicated

database system [11].

Protocol Resilience Number of commu- Cost of the termination

nication steps protocol

Sequencer based ABP blocking 2 (n+ 1) messages +n forced write

Two Phase Commit blocking 3 3n messages +n forced writes

ABP (majority up) non-blocking 4 4n messages

Light 3PC non-blocking 5 5n messages

ABP (majority correct) non-blocking 4 4n messages +n forced writes

Three Phase Commit non-blocking 5 5n messages +n forced writes

Figure 9: Cost of the termination protocol

Figures 10 and 11 depict quantitative results. These measures have been obtained with

Sparc 20 workstations (running Solaris 2.3), an Ethernet network using the TCP protocol, and

transactions (messages and logs) of 1024 bytes. The measures convey an average time to deliver

a transaction message.

The results in Figures 10 and 11 show that atomic broadcast protocols have a better perfor-

mance than atomic commit, when compared under the same degree of resilience.

9Many optimisations have been proposed for atomic commit protocols [17]. In this section, we use the most

representative implementations of atomic commit protocols. Optimisations for these implementations can also be

done for atomic broadcast primitives.

16

5

10

15

20

25

30

35

40

45

50

55

60

3 4 5 6 7 8 9 10

T
im

e
(m

s)

Number of Nodes

Three Phase Commit
Atomic Broadcast (Fig.7)

5

10

15

20

25

30

35

40

45

50

55

60

3 4 5 6 7 8 9 10

T
im

e
(m

s)

Number of Nodes

Three Phase Commit
Atomic Broadcast (Fig.7)

Figure 10: Termination without logging

105

110

115

120

125

130

135

140

145

150

155

160

3 4 5 6 7 8 9 10

T
im

e
(m

s)

Number of Nodes

Three Phase Commit
Atomic Broadcast (Fig.8)

Two Phase Commit
Atomic Broadcast (Fig.6)

105

110

115

120

125

130

135

140

145

150

155

160

3 4 5 6 7 8 9 10

T
im

e
(m

s)

Number of Nodes

Three Phase Commit
Atomic Broadcast (Fig.8)

Two Phase Commit
Atomic Broadcast (Fig.6)

Figure 11: Termination with logging

6 Related Work

The limitations of traditional atomic commitment protocols in replicated contexts have been

recognised by several authors. We summarise some alternative propositions below.

In [15], the authors point out the fact that atomic commitment leads to abort transactions in

situations where a single replica manager crashes. They propose a variation of the three phase

commit protocol [25] that commits transactions as long as a majority of replica managers are

up.

In [10], a class of epidemic replication protocols is proposed as an alternative to traditional

replication protocols. However, solutions based on epidemic replication end up being either

a case of lazy propagation where consistency is relaxed, or solved with semantic knowledge

about the application [19]. In [2], a replication protocol based on the deferred update model is

presented. Transactions that execute at the same process share the same data items, using locks

to solve local conicts. The protocol is based on a variation of the three phase commit protocol

to certi�cate and terminate transactions.

It is only recently that atomic broadcast has been considered as a possible candidate to

support replication, as termination protocols. Schiper and Raynal [24] pointed out some simi-

larities between the properties of atomic broadcast and static transactions (transactions whose

operations are known in advance). Atomic broadcasting static transactions was also addressed

in [21]. In [23], we present a reordering technique, based on atomic broadcast, that allows for a

greater transaction throughput in replicated databases.

In [1], a family of protocols for the management of replicated database based on the imme-

diate and the deferred models are proposed. These protocols use an atomic broadcast primitive

that has the same characteristics as the primitive described in this paper but its behaviour in

17

case of failures is not discussed. The immediate update replication consists in atomic broadcast-

ing every write operation. The authors describe two possible implementations for the deferred

update replication. In the �rst alternative, two atomic broadcasts are necessary to commit a

transaction. In the second alternative, transactions execute locally, deferring all their writes to

commit time. At commit time, transactions are broadcast and all write locks are requested.

This approach has two drawbacks: (a) it requires a sort of multiversion mechanism to deal with

the writes during transaction execution (if a transaction writes a data item, a later read should

reect this write) and (b) transactions in execution may be aborted by other transactions that

executed locally with them, as conicts are all dealt with at commit time (even the ones that

happen locally).

Amir et al. [3] also utilise atomic broadcast to implement replicated databases. However,

the scheme proposed considers that clients submit individual object operations rather than

transactions.

7 Concluding Remarks

In a recent paper, Cheriton and Skeen expressed their scepticism about the adequateness

of atomic broadcast to support replicated databases [8]. The reasons that were raised were

(1) atomic broadcast replication schemes consider individual operations, whereas in databases,

operations are gathered inside transactions, (2) atomic broadcast does not guarantee uniform

atomicity (e.g., a server could deliver a message and crash, with the other servers not even

receiving it), whereas uniform atomicity is fundamental in distributed databases (all processes,

even those that have later crashed, must agree to commit or not a transaction), and (3) atomic

broadcast is usually considered in a crash-stop process model (i.e., a process that crashes never

recovers), whereas in databases processes are supposed to recover after a crash. In this paper,

we have considered an atomic broadcast primitive in a crash-recovery model that guarantees

uniformity, i.e., if one process delivers a transaction, all the others also deliver it. We have

shown how that primitive can e�ciently be used to propagate transaction control information

in a deferred update model of replication. The choice for that replication model was not casual,

as some recent research has shown that immediate update models are inviable due to the nature

of the applications or the side e�ects of synchronisation [13].

Indirectly, this paper points out the fact that existing database replication protocols are

built on top of distributed database systems, using mechanisms that were developed to deal

with distributed information, but not necessarily designed with replication in mind. A agrant

18

example of this is the atomic commitment mechanism, which we have shown can be favourably

replaced by an atomic broadcast primitive, providing better throughput and response time. Our

performance �gures help dis-mystify a common (mis)belief that total order atomic broadcast

primitives are too expensive, when compared to traditional transactional primitives, and so

inappropriate for high performance systems. As already stated in [27], we also believe that

replication can be successfully applied for performance, and this can be achieved without sacri-

�cing consistency (e.g., as in [9]) or making semantic assumptions about the transactions (e.g.,

as in [13, 19]).

It is important however to notice that the replication scheme based on atomic broadcast

presented in this paper is based on two important assumptions: (1) processes certify and commit

transactions sequentially, and (2) the database is fully replicated. The �rst assumption can be

bypassed since concurrency between transactions that come from the Certi�er is allowed if the

transactions have disjoint write sets. The second assumption about a fully replicated database

is reasonable in traditional closed information systems, but is inappropriate for an open system

with a large number of nodes or a large database. In such systems, replication can only be partial

(i.e., processes store only subsets of the database), and the extend to which atomic broadcast

can be useful in this context is an open issue.

References

[1] D. Agrawal, A. El Abbadi, and R. Steinke. Epidemic algorithms in replicated databases. In

Proceedings of the Sixteenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles

of Database Systems, Tucson, Arizona, 12{15 May 1997.

[2] D. Agrawal, G. Alonso, A. El Abbadi, and I. Stanoi. Exploiting atomic broadcast in

replicated databases. Technical report, University of California at Santa Barbara and Swiss

Federal Institute of Technology, 1996.

[3] Y. Amir, D. Dolev, P. M. Melliar-Smith, and L. E. Moser. Robust and e�cient replication

using group communication. Technical Report CS94-20, Hebrew University of Jerusalem,

1994.

[4] P. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery in

Database Systems. Addison-Wesley, 1987.

19

[5] K. P. Birman, A. Schiper, and P. Stephenson. Lightweight Causal and Atomic Group

Multicast. ACM Transactions on Computer Systems, 9(3), August 1991.

[6] K. P. Birman and R. van Renesse. Reliable Distributed Computing with the ISIS Toolkit.

IEEE Press, 1994.

[7] T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed systems.

Journal of the ACM, 43(2):225{267, March 1996.

[8] D. Cheriton and D. Skeen. Understanding the Limitations of Causally and Totally Or-

dered Communication. In Proceedings of the 14th ACM Symposium on Operating Systems

Principles, Asheville, North Carolina, December 1993.

[9] D. J. Delmolino. Strategies and techniques for using Oracle 7 replication. Technical report,

Oracle Corporation, 1995.

[10] A. Demers et al. Epidemic algorithms for replicated database maintenance. In Fred B.

Schneider, editor, Proceedings of the 6th Annual ACM Symposium on Principles of Dis-

tributed Computing, pages 1{12, Vancouver, BC, Canada, August 1987. ACM Press.

[11] D. K. Gi�ord. Weighted voting for replicated data. In ACM SOSP 7, Paci�c Grove CA,

December 1979.

[12] J. N. Gray. Notes on data base operating systems. In Springer Verlag (Heidelberg, FRG

and NewYork NY, USA) LNCS, 'Operating Systems, an Advanced Course', Bayer,Graham,

Seegmuller(eds), volume 60. 1978.

[13] J. N. Gray, P. Helland, P. O'Neil, and D. Shasha. The dangers of replication and a solution.

In Proceedings of the 1996 ACM SIGMOD International Conference on Management of

Data, Montreal, Canada, June 1996.

[14] J. N. Gray and A. Reuter. Transaction Processing: Concepts and Techniques. Morgan

Kaufmann, 1993.

[15] R. Guerraoui, R. Oliveira, and A. Schiper. Atomic updates of replicated data. In EDCC,

European Dependable Computing Conference, Taormina, Italy, 1996. LNCS 1050.

[16] R. Guerraoui and A. Schiper. Software based replication for fault tolerance. IEEE Com-

puter, 30(4), April 1997.

20

[17] R. Gupta, J. Haritsa, and K. Ramamritham. Revisiting commit processing in distributed

database systems. In Proceedings of the 1997 ACM SIGMOD International Conference on

Management of Data, Tucson, Arizona,, May 1997.

[18] V. Hadzilacos and S. Toueg. Distributed Systems, 2ed, chapter 3, Fault-Tolerant Broadcasts

and Related Problems. Addison Wesley, 1993.

[19] H. V. Jagadish, I. S. Mumick, and M. Rabinovich. Scalable versioning in distributed

databases with commuting updates. In Proceedings of the Thirteenth International Con-

ference on Data Engineering, April 7-11, 1997 Birmingham U.K., pages 520{531. IEEE

Computer Society Press, April 1997.

[20] M. F. Kaashoek and A. S. Tanenbaum. Group communication in the amoeba distributed

operating system. In 11th International Conference on Distributed Computing Systems,

pages 222{230, Washington, D.C., USA, May 1991. IEEE Computer Society Press.

[21] I. Keidar. A highly available paradigm for consistent object replication. Master's thesis,

Institute of Computer Science, The Hebrew University of Jerusalem, Jerusalem, Israel,

1994.

[22] H. T. Kung and John T. Robinson. On optimistic methods for concurrency control. ACM

Transactions on Database Systems, 6(2):213{226, June 1981.

[23] F. Pedone, R. Guerraoui, and A. Schiper. Transaction reordering in replicated databases.

In 16th IEEE Symposium on Reliable Distributed Systems, Durham, USA, October 1997.

IEEE Computer Society Press.

[24] A. Schiper and M. Raynal. From group communication to transaction in distributed sys-

tems. Communications of the ACM, 39(4):84{87, April 1996.

[25] D. Skeen. Nonblocking commit protocols. In Y. Edmund Lien, editor, Proceedings of the

1981 ACM SIGMOD International Conference on Management of Data, pages 133{142,

Ann Arbor, Michigan, April 1981. ACM, New York.

[26] R. H. Thomas. A majority consensus approach to concurrency control for multiple copy

databases. ACM Trans. on Database Systems, 4(2):180{209, June 1979.

[27] P. Trianta�llou. High availability is not enough. In J.-F. Paris and H. G. Molina, editors,

Proceedings of the Second Workshop on the Management of Replicated Data, pages 40{43,

Monterey, California, November 1992. IEEE Computer Society Press.

21

Appendix: Correctness Proof

For the following proofs, C(H)p is a history derived from the system history H, just containing

operations of committed transactions involving data items stored at p. C(H)p is a multiversion

history: transactions that execute at p use one version of the data items and transactions that

execute at other processes use di�erent versions of them. We denote wi[xi] a write by Ti (as

writes generate new data versions, the subscript in x for data writes is always the same as the

one in T) and ri[xj] a read by Ti of data item xj.

As shown in [4], normal serialization graphs (SG) alone are not powerful enough to prove

multiversion histories correct (i.e., one copy serializable). For this reason, we will use the mul-

tiversion formalism of [4] to prove that all the histories produced by our algorithm are correct.

This formalism employs a multiversion serialization graph (MV SG(C(H)p) or MV SGp for

short) and consists in showing that such a graph is acyclic. We denote MV SG
x
p a particular

state of the multiversion serialization graph for process p. Whenever a transaction is committed,

the multiversion serialization graph passes from one state MV SG
x
p into another MV SG

x+1
p .

Our proof is divided into two parts. Lemma 1 shows that, by the properties of the atomic

broadcast primitive and the determinism of the certi�cation test, all processes p 2 � eventually

construct the same MV SG
x
p , x � 0. Lemmas 2 and 3 show that every MV SG

x
p is acyclic.

Lemma 1 If one process p 2 � constructs a multiversion serialization graph MV SG
x
p; x � 0,

then every process p eventually constructs the same multiversion serialization graph MV SG
x
p.

Proof: The proof is by induction. Basic step: when the database is initialised, every process

pi has the same empty multiversion serialization graph MV SG
0
pi
. Inductive step (assumption):

assume that every process pi that has constructed a multiversion serialization graph MV SG
x
pi

has constructed the same MV SG
x
pi
. Inductive step (conclusion). Consider Ti the transaction

whose processing generates, from MV SG
x
pi
, a new multiversion serialization graph MV SG

x+1
pi

in one process pi. In order to do so, process pi must deliver the message m containing Ti, certify

it and commit it. By the order property of the atomic broadcast primitive, every process pi that

delivers a message after installingMV SG
x
pi
, delivers message m, and, by the atomicity property,

if one process delivers message m, then every process delivers m. To certify Ti, every process pi

takes into account the transactions that it has already locally committed (i.e., the transactions

inMV SG
x
pi
). Thus, based on the same local state (MV SG

x
pi
), the same input (message m), and

the same (deterministic) certi�cation algorithm, if one process constructs a new multiversion

serialization graph MV SG
x+1
p , then every process eventually constructs the same MV SG

x+1
p .2

22

We show next that every history C(H)p produced by a process p has an acyclicMV SGp and,

therefore, is 1SR. Given a multiversion history C(H)p and a version order �, the multiversion

serialization graph for C(H)p and �, MV SGp, is a serialization graph with read-from and

version order edges. A read-from relation Ti ! Tj is de�ned by an operation rj[xi]. There are

two cases where a version-order relation Ti ! Tj is in MV SGp: (a) for each rk[xj], wj[xj] and

wi[xi] in C(H)p (i, j, and k are distinct) and xi � xj , and (b) for each ri[xk], wk[xk] and wj [xj]

in C(H)p and xk � xj. The version order is de�ned by the delivery order of the transactions.

Formally, a version order can be expressed as follows: xi � xj i� delivery(Ti) < delivery(Tj)

and Ti, Tj 2MV SGp.

To prove that C(H)p has an acyclic multiversion serialization graph (MV SGp) we show that

the read-from and version-order relations in MV SGp follow the order of delivery of the com-

mitted transactions in C(H)p. That is, if Ti ! Tj 2MV SGp then delivery(Ti) < delivery(Tj).

Lemma 2 If there is a read-from relation Ti ! Tj 2MV SGp then delivery(Ti) < delivery(Tj).

Proof: A read-from relation Ti ! Tj is inMV SGp if rj [xi] 2 C(H)p; i 6= j. For a contradiction,

assume that delivery(Tj) < delivery(Ti). This can only happen if Tj reads uncommitted data

from Ti. Since transactions just read committed data (assured by the strict two phase locking

rule) this situation is not possible. 2

Lemma 3 If there is a version-order relation Ti ! Tj 2MV SGp then delivery(Ti) < delivery(Tj).

Proof: According to the de�nition of version-order edges, there are two cases to consider.

(a) Let rk[xj], wj[xj] and wi[xi] be in C(H)p and xi � xj: we include Ti ! Tj in MV SGp

and have to show that delivery(Ti) < delivery(Tj). If xi � xj then x was updated by Ti

and after updated by Tj. Since updates follow the order of delivery (steps 2a and 2b), the

only way this can happen is by having delivery(Ti) < delivery(Tj).

(b) Let ri[xk], wk[xk] and wj [xj] be in C(H)p and xk � xj: we include Ti ! Tj in MV SGp

and have to show that delivery(Ti) < delivery(Tj). For a contradiction, assume that

delivery(Tj) < delivery(Ti). On certifying Ti, process p takes Tj into account, since Tj

is in the commit state and Ti and Tj are concurrent. This would lead p to abort Ti

(WS(Tj) \RS(Ti) 6= ;), contradicting the hypotheses that Ti is in C(H)p. 2

Theorem 1 Every history H produced by our algorithm is 1SR.

23

Proof: By Lemmas 2 and 3, every process p produces a serialization graph MV SG
x
p such

that every edge Ti ! Tj 2 MV SG
x
p satis�es the relation delivery(Ti) < delivery(Tj). Hence,

every process produces an acyclic multiversion serialization graph MV SG
x
p . By Lemma 1, all

processes construct the same MV SG
x
p. By the Multiversion Graph theorem of [4], every history

produced by our replication algorithm is 1SR. 2

24

