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Abstract

Shape information about macromolecules is increasingly available but is difficult to use in modeling efforts.
We demonstrate that shape information alone can often distinguish structural models of biological macro-
molecules. By using a data structure called a surface envelope (SE) to represent the shape of the molecule,
we propose a method that generates a fitness score for the shape of a particular molecular model. This score
correlates well with root mean squared deviation (RMSD) of the model to the known test structures and can
be used to filter models in decoy sets. The scoring method requires both alignment of the model to the SE
in three-dimensional space and assessment of the degree to which atoms in the model fill the SE. Alignment
combines a hybrid algorithm using principal components and a previously published iterated closest point
algorithm. We test our method against models generated from random atom perturbation from crystal
structures, published decoy sets used in structure prediction, and models created from the trajectories of
atoms in molecular modeling runs. We also test our alignment algorithm against experimental electron
microscopic data from rice dwarf virus. The alignment performance is reliable, and we show a high
correlation between model RMSD and score function. This correlation is stronger for molecular models with
greater oblong character (as measured by the ratio of largest to smallest principal component).
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The structures of biological macromolecules provide useful
information in a variety of research efforts. For example,
protein and nucleic acid structures help us understand basic
biological and molecular interactions. Similarly, disease
mechanisms are better understood when an atomic-level de-
scription of their pathologies can be explained. Better drugs
and interventions are possible when the molecular and
atomic structures involved are known. The gold standard
technique for measuring the structure of bimolecules is X-
ray crystallography (Branden and Tooze 1999). Unfortu-
nately, the number of possible structures in nature that are of
interest for biology and medicine vastly surpass the number
of solved structures. Although the rate of experimental

structure determination has increased significantly in recent
years due to both academic and industrial efforts, the gap
between solved and desired structures will remain for many
years. Therefore, molecular modeling of structures based on
incomplete structural information will remain important.

One useful type of structural data is information about the
shape of the molecule. A variety of experimental and com-
putational techniques provides incremental information
about the expected shape of a biological macromolecule,
including electron microscopy (EM; Frank 1996), sedimen-
tation experiments (Urbanke and Ziegler 1980), homology
modeling (Sali and Blundell 1993; Simons et al. 1999), and
small-angle scattering experiments (Kaiushina et al. 1985).
The most common of these methods is EM, which can
directly visualize molecular structures of significant size,
such as protein complexes. However, the data resolution of
EM is currently 7 to 9 Å (Chiu et al. 2002), whereas crys-
tallography and NMR are in the 2 to 4 Å range. Thus,
assignment of individual atom positions is very challenging
using EM alone.
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We propose and test a computational method that applies
shape information as a discrimination metric in the evalua-
tion of structural models. If a model has more shape agree-
ment with measured shape information, that model is more
likely to be correct than are models with less agreement. To
our knowledge, shape information has not been routinely
and automatically used in assessing model fitness. Another
potential use for a general shape scoring system (not dem-
onstrated in this work) would be within the context of build-
ing novel molecular models using shape information.

To take advantage of the data sources that contribute
shape information, we developed a unified, linear data
structure to encode shape information called the surface
envelope (SE). An SE is any three-dimensional data struc-
ture that assigns a number between zero and one to each
point in space corresponding linearly to the amount of elec-
tron density observed at that point. These numbers are
called density values. In practice, assigning density values
to every point in real space is computationally expensive, so
our SE implementation assigns a regular cubic grid over
three-dimensional space, and associates one density value to
each grid point. The region around each grid point is called
a box and has the shape of a cube. We assign all points
within each box to have the same density value as the value
associated with the central grid point. Boxes contiguously
span three-dimensional space in each direction. Figure 1A
shows an example of an SE.

We use the phrase “surface envelope” to avoid confusion
with two closely related concepts: the molecular surface and
surface accessibility. Molecular surfaces are created by
thresholding electron density data and defining the bound-
ary between the inside and outside of a particular molecule.
This is a two-dimensional data structure embedded in three
dimensions, whereas the SE is a three-dimensional data
structure. Surface accessibility relates how close an atom or
residue sits to the molecular surface (Schmidt et al. 1998).
This is a one-dimensional measurement.

Using shape information to assess the quality of a struc-
tural model is a complex task for a variety of reasons. There
are two parts to the problem of creating a function capable
of scoring model-envelope matches: (1) aligning the model
structure to the SE and (2) generating a score from the
alignment. An alignment of two objects in three dimensions
consists of translating and rotating one object with respect
to another. Alignment is required because of the orientation
ambiguity intrinsic to shape information, in which indi-
vidual atoms have not been located within the shape, and so,
standard RMS fitting cannot be performed. For example, a
model with an accurate molecular structure that is rotated or
translated out of alignment with respect to the SE looks like
an incorrect structure. Only after the model is translated and
rotated so the model and the SE are aligned can a fair
assessment be obtained of the model shape. Alignment is
confounded by the fact that in most cases, the putative struc-

tural model typically does not have a shape that exactly
matches the available shape in the SE, so there is no single
correct alignment. No simple method exists for exhaustively
searching possible translations and rotations for the best
alignment. Lanzavecchia et al. (2001) have shown previ-
ously the value of using principle components for align-
ment.

Generating the score is simpler. Once a model is aligned
to an SE, there are many ways of assigning a score. When
atoms fall in regions of the SE with high-density values, the
model should receive a higher score. One may also give
models lower scores if they fail to account for all the density
values present in the SE. We evaluated three different score
metrics called S1, S2, and S3, detailed in the Materials and
Methods section. Briefly, the first score, S1, simply counts

Figure 1. (A) Surface envelope of sevarin (PDB identification 1svr). The
different shades in the SE bin the density values into three regions: light
boxes, density values <0.5; medium boxes, 0.5 to 0.9; dark boxes, >0.9. (B)
Principal component vectors are superimposed on a 94-atom molecular C�

model of sevarin protein domain two (1svr). (C) A molecular model rep-
resentation of the same protein drawn with the graphics software Rasmol.
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the overlap between the model and the SE. The second
score, S2, applies a weighted average between S1 and a
global penalty factor that measures the volume of the SE not
filled by atoms in the model. The third score metric, S3,
counts atoms from the model within the SE but penalizes
each term in the summation if there are local regions in the
SE not filled with atoms. S3 does penalize an alignment for
regions of the SE not filled, but only in regions close to
atoms within the model.

The difficulty of alignment is increased when the struc-
tural models are imperfect and do not exactly match the
shape encoded in the SE. When molecular models exactly
match SE shapes, there is less need to provide continuous
scores to differentiate model quality based on shape infor-
mation. However, our goal is to rank order a large number
of models, all of which are wrong by various degrees. Poor
matches between the SE shape and the model mean a vari-
ety of different alignments may all look equally correct,
depending on the scoring method applied. Ideally, we would
expect clear correlation between how well a given model
conforms to a given shape and how close the model is to
being the correct model (RMSD). Furthermore, as the
RMSD increases, one would expect this correlation to
slowly break down, because as models become increasingly
incorrect (higher RMSD) some may match well to the avail-
able shape, whereas others may not. We would expect that
at higher RMSD, a variety of model-shape matches would
be possible, and so, the correlation would break down. Ev-
ery model–SE pair produces a single point on such a graph,
as shown in Figures 5 through 8, 9B, and 12. These figures
plot the RMSD versus the match score (which is high for
poor matches and zero for perfect matches).

Results

Alignment comparison

We applied our alignment methods to a large set of protein
segments presented by Hodor et al. (1999), the “Hodor set.”
This set of protein structures consisted of 639 distinct
CATH domains selected to represent distinct structural el-
ements. (CATH [Orengo et al. 1997] is a novel hierarchical
classification of protein domain structures, which clusters
proteins at four levels, class [C], architecture [A], topology
[T], and homologous superfamily [H]. The original data set
included 701 structures, and 62 were removed because of
errors in the Protein Data Bank [PDB] files.) In each test,
each protein in the Hodor set was aligned against an SE
derived from the known structure. The runs assigned start-
ing positions for each model as a random translation and
orientation relative to the SE orientation. This model start-
ing position assignment included the following four steps,
performed twice in series: (1) select random direction D1,
(2) translate model 10 to 25 Å in direction D1, (3) select

random direction D2, and (4) rotate model 30° to 330°
around direction D2. We evaluated each alignment by cal-
culating the maximum angle observed between correspond-
ing principal components (PCs) in the model and the SE.
These tests evaluated the robustness and accuracy for each
method.

PC alignment

Figure 2 shows a histogram of the maximum angle between
corresponding principal components for each structural
model in the Hodor set after alignment by PC alignment
(PCA) only. Even for correct (0 RMSD) structures, a few
models incorrectly align near 90° and 180° for their maxi-
mal angle mismatch. This error occurs for models in which
the PC lengths are approximately equal and the correspond-
ing PC calculation in the SE does not have proper corre-
spondence between the components.

These mismatches increase for models that are further
from the crystal structure. In the next experiment, each
structure in the Hodor set was perturbed randomly. The
perturbation moved each atom three times 1 Å in each di-
rection, resulting in structures ∼ 1 to 2 Å RMSD from the
crystal structure. Figure 2 also shows the results after align-
ment by PCA with several more models appearing ∼ 90° and
180° mismatch.

Iterated closest point alignment

We evaluated a second method, as discussed in the Mate-
rials and Methods section, to align all models in the Hodor
set with their associated SE. Figure 3 shows a histogram

Figure 2. Each of the 639 models in the Hodor set was aligned to the
crystal-derived SE using principal component alignment. Two separate sets
of data are presented: one representing alignment results of original crystal
structures, and the other representing results of randomly perturbed struc-
tures. Both histograms show the frequency of observed maximum angles
between the principal components in the aligned model and the corre-
sponding components in the initial orientation of the model used to gen-
erate the SE. Note that the points at 90° and 180° are misaligned, and more
misalignment occurs with the perturbed structures.

Surface envelopes for molecular models
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with the resulting angular error distribution. In this case
each structure was aligned from its random starting position.

Figure 3 also shows the results of using iterated closest
point (ICP) alignment on the Hodor set, but in the second
experiment, the best (lowest angle) result was saved from
three different random starting positions. The shift of the
distribution to the left was expected, as only the smallest of
three trials were included in the histogram. The choice of
three trials was made empirically by examination of results
using many different trial runs.

Hybrid alignment

The final alignment method uses a combination of both
ICP alignment and PCA. Figure 4 shows the histogram of

maximal component angles for the Hodor set structures af-
ter hybrid alignment. Here we observe the elimination of
structures at 180° and a significant reduction of structures at
90°. Note that this result depends on using three initial
random starting orientations for each alignment result. At
times we observed structures at 180°, but they were suffi-
ciently rare that the data presented in Figure 4 represent our
best expectation of alignment performance after many ob-
servations.

Score function validation

We created and scored a set of molecular models from
protein fragment 1ctf, the C-terminal domain of a globular
protein attached to the large subunit of the Escherichia coli

ribosome. Each model has 487 atoms in 68 residues, making
it a small protein fragment. The set was divided into 27
different groups: Each group started with the crystal struc-
ture, and successive models in the group were generated by
randomly perturbing every atom 0.6 Å in each direction.
Each group has 250 models, producing a total of 6750 mod-
els. Every model was scored against SE data derived from
the crystal. Figure 5 presents the match scores for each
alignment between a model and an SE by using score func-
tion S3 described in the Materials and Methods section.

Figure 3. Each of the 639 models in the Hodor set was aligned to the
crystal-derived SE using iterated closest point (ICP) alignment. Two sets of
data are presented: one with a single alignment and one with the best of
three alignments. Both histograms show the frequency of observed maxi-
mum angles between principal components in the aligned model and the
original crystal structure orientation. By comparison to principal compo-
nent alignment, both alignments are poor; however, there are fewer mis-
alignments at 90° and 180° using the triple ICP alignment.

Figure 5. A set of 6750 different models of the ribosome fragment 1ctf
was scored by using S3 against an SE derived from the crystal structure.
Models were generated in 27 different groups (with 250 models each) by
randomly perturbing the atoms starting in the crystal structure for each
successive model in the group.

Figure 4. Each of the 639 models in the Hodor set was aligned to the
crystal-derived SE by using hybrid alignment described in the text in
Materials and Methods. This histogram shows the frequency of observed
maximum angles between principal components in the aligned model and
the original crystal structure orientation.
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Model scoring

The tests of matching models against SEs consist of align-
ing and scoring a series of different SE-model pairs and
comparing those scores to the RMSD of the model to the
correct structure. The correct structure in these cases are
either the crystallographic or NMR solved structure from
the PDB. The SE in each case is derived directly from the
correct structure in a way that simulates experimental mea-
surement of the SE using EM.

Three different sets of results are presented in the follow-
ing three subsections, using structures derived from (1) de-
coy sets, (2) random perturbations, and (3) modeling trajec-
tories. In all these cases, we apply the score functions S1, S2,
or S3, described later in Materials and Methods. Unless
otherwise noted, the widths of the boxes in the SE are 3.7 Å.
Following these three results, we present a direct compari-
son of the different score functions.

Decoy set scoring

We tested 24 different decoy sets generated for the purpose
of structure prediction. Table 1 presents the PDB identifi-

cation of the different structures tested. A decoy set is a
large number of different molecular models, each represent-
ing a different guess about the correct structure. An online
resource at Stanford University called “Decoys ’R Us” pro-
vided the decoy sets (http://dd.stanford.edu). The first decoy
set includes 602 different models of 1ctf as described above.
Figure 6 presents a graph showing the match score using S1

on the Y-axis and the RMSD of the model in Ångstroms (Å)
on the X-axis. Figure 7 presents the same decoy set aligned
and scored using S2.

The next two decoy sets come from larger immunoglob-
ulin proteins, also derived from the Decoys ’R Us database.
The first structure is a monoclonal antibody Fab fragment,
1baf in the PDB. It has 1736 atoms in 222 residues. Figure
8 presents the resulting scores of each model aligned and
scored against the SE.

The second immunoglobin is also a monoclonal antibody
Fab fragment with 1730 atoms in 223 residues. The PDB
identification is 1dvf. These results are also in Figure 8.

The final decoy set contains structures of yellow tuna
myoglobin with PDB identification 1myt. This is an �-he-
lical structure with 1092 atoms and 146 residues. These
results are also in Figure 8.

Random perturbation

Another way to generate a set of models is to take the
correct structure and randomly perturb atoms. Each atom is
randomly moved 1.0 Å in each direction from its current

Table 1. Protein Data Bank identification for the decoy sets
used to evaluate the surface envelope alignment and
scoring methods

Decoy sets [Park 1996 #161]
12 (of 24) globins: 1ash, 1emy, 1hbh-B, 1hsy, 1myg-A, 2lhb, 1bab-B,

1flp, 1hda-A, 1ith-A, 1myt, 2pgh-A
12 (of 60) immunoglobulins; 1baf, 1dbb, 1dvf, 1fai, 1fgv, 1flr, 1bbj,

1dfb, 1eap, 1fbi, 1fig, 1for

These decoys came from the Decoys ‘R Us data set available online at http:
//dd.stanford.edu.

Figure 6. A set of 602 different decoy models of the ribosome fragment
1ctf was scored against an SE derived from the crystal structure. These
alignments applied score function S1 and principle component alignment.

Figure 7. A set of 602 different models of the ribosome fragment 1ctf was
scored against an SE derived from the crystal structure. This set of scores
was calculated by using S2 from equation 3. A comparison of this graph
with the one from Figure 7 reveals the improvements in model discrimi-
nation between the score functions.
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position to determine its position in the next model in the
set. Van der Waals interactions are ignored. Clearly, these
models are not indicative of the structural properties ob-
served in nature, nor do they represent reasonable guesses
about correct structures. Models generated by small random
perturbations provide a smooth and continuous series of
models at RMSD ranges very close to the correct structure.
The decoys tested in the first two experiments described
above do not come closer than a few Ångstroms RMSD to
the correct structure.

The results of two randomly generated model sets are
presented in this section. The correct structure in both cases
is the ribosomal protein 1ctf. Results of the both random
model sets are presented in Figure 9.

Trajectory analysis

A final source of molecular models for alignment tests in-
cludes models created during structural optimization com-
putations (Williams et al. 2001). The set of models used for
this test were created from each cycle of a distance-based
calculation of the sevarin domain 1svr, a 94-atom structure.
Figure 10 presents these results in three graphs; the top
shows the progression of the modeling run as model moves
toward the correct structure, the middle graph presents the
score for each model from the set against the SE, and the
bottom presents the RMSD of each model versus the match
score.

EM data

To ensure that our results on synthetic data sets translated
into good performance on experimental data sets of the type
we targeted, we applied hybrid alignment to EM density
data shared with us by Dr. Hong Zhou et al. from a pub-
lished study (2001) on the structure of the P8 trimer in the
rice dwarf virus. These data were transformed into an SE by
linearizing the data and thresholding it to a range of (0,1).
Figure 11 shows the results of 300 sequential tests of the
hybrid alignment. As no published molecular structure ex-
ists for P8, we made a surrogate model by using the points
in the experimental SE with values >0.25 to act as the
molecular model. Thus, the most dense locations in the
experimental density map were assigned unlabeled atoms,
and we used these as a surrogate structural model, lacking a

Figure 9. (A) Match scoring for two sets of structural models derived
sequentially by random atom perturbations from the crystal structure of
ribosomal protein 1ctf. Symbol x and + are the full atom RMSD of each
model, and the match score for each model are boxes each model compared
with the SE derived from the crystal structure. (B) The bottom graph
compares the two data series from the top graph against each other for each
run.

Figure 8. Three different decoy sets were aligned and scored against an
SE derived from the respective crystal structure. The first was monoclonal
antibody Fab fragment (PDB code 1baf, 60 models), the second was Yel-
low Tuna myoglobin protein (PDB code 1myt, 58 models), and the third
was monoclonal antibody Fab fragment (PDB code 1dvf, 61 models). Note
the points at the top of the graph for 1dvf (which result from principal
component alignment [PCA]) are discussed in Results. They result from an
improper model orientation when PCA is used.
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high-resolution model. In each test, this model for the P8
protein was randomly rotated and translated away from its
initial position, and we applied the hybrid alignment algo-
rithm to determine how accurately we could realign the
model to the initial orientation using our alignment algo-
rithm.

Score function comparison

We perform a direct comparison of score functions for a
subset of structures to determine the best method to apply
for modeling. The structure used for this comparison has
PDB identification 1fig, a 1721-atom structure. 1fab is a
Fab fragment from immunoglobulin G1. A set of 63 differ-
ent decoys were aligned by using the hybrid alignment
method and all three score functions, the results of which

are shown in Figure 12. The data are normalized to a single
(arbitrary) structure assigned a Y-axis value of one. All
other scores in each set are scaled for comparison. From
these data we calculate the correlation coefficient for each
score function as 0.614, 0.681, and 0.677, respectively, for
score functions 1, 2, and 3. In addition, there are significant
differences in running times between the different score
functions. A sample of the run times (in seconds) for scoring
runs of 1ctf were 2195, 5515, and 3202, applying score
functions 1, 2, and 3, respectively. This means that S2 ex-
hibits a time ratio of ∼ 2.5 times the run time of S1 and S3 has
a ratio of ∼ 1.45. Times come from runs on an Intel PII-450
computer (Intel Corp.).

Discussion

We have presented a set of methods to align and score
molecular models to SEs. Two different alignment methods
and three different scoring functions were evaluated and
confirmed on shape data measured by EM reconstruction.
The current data show the best results differentiating models
based on shapes using the scores S3 defined in equation 4 in
the Materials and Methods section below and the hybrid
alignment method.

We observed the expected behavior of match scores in
almost all of the envelope matching results. As RMSD in-
creases, the value of the SE would decrease in its ability to
discriminate model shapes. Above some RMSD value (we
call this the “fall-over point”), the minimum match scores
became basically flat. However, depending on the scale on
the Y-axis, the actual RMSD value above which shapes
become irrelevant varies depending on the structure in ques-

Figure 11. This histogram shows the frequency of observed maximum
angles between principal components from 300 hybrid alignment runs of
shape data measured by electron microscopy for a single trimer of protein
P8 of the rice dwarf virus outer capsid. For each test, the initial model was
rotated and translated to a random position, and the hybrid alignment
algorithm was applied to reposition the data set against the initial, reference
orientation.

Figure 10. (A) RMSD for each model in the set. The ordering of the set
is the same as that observed during the modeling run, from left to right. (B)
Score for each model in the set. (C) Combines the data presented in the top
two and plots score versus RMSD for each model in the set.
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tion. It was surprising to note that the shape of the graphs
differed somewhat between the decoy set matching and the
envelope matching done on random perturbation models.
Most notably, the random perturbation (Fig. 5) exhibits a
fall-over point at ∼ 10 Å. Models with RMSD above this
value show lower correlation with envelope score. Said an-
other way, we observed that models in the random set that
were >10 Å RMSD showed high correlation with envelope
score. The surprise was that for decoy set scoring, this value
was much lower, ∼ 2.5 to 3.5 Å. This can be seen in Figure
8. One possible explanation for this difference is the clear
difference in methods used to generate models in the two
different sets. The decoy set models are more tightly
packed, resulting in better matches to the correct shape at
lower RMSD values.

Comparing the alignment methods highlights the prob-
lems with both PCA and ICP used alone. PCA alone occa-
sionally fails even in the alignment of crystal structure mod-
els with SE shapes derived from the same models due to
incorrect correspondences between PCs in the model and
the SE. The frequency of these incorrect correspondences
increases for models further from the correct structure. Ex-
amples of this effect appear at the top of Figure 9, showing
scores for structure 1dvf. The PCA algorithm fails because
incorrect PC matching occurs. This happens because in
some models, the rank ordering of PC vectors may change
causing a 90 or 180 flip of the model with respect to the SE.
This problem gets worse when the ratio of longest to short-
est principle component approaches one, and we found ra-
tios generally <1.2 to 1.3 problematic. An abrupt orientation
shift of this magnitude would cause critical failures during

modeling. The main failure of ICP comes from its inability
to move models all the way to an accurate alignment: an
optimization local minimum. The degree of failure in ICP is
highly dependent on the starting position of the model, and
taking multiple ICP trials mitigates much of the issue. The
clear winner in alignment is the hybrid model, applying
strengths from both techniques. With the hybrid technique,
the several successive ICP trials identify a close starting
points for assigning accurate PC correspondences.

Our results demonstrate the power of shape information
to differentiate correct structures from incorrect ones. Al-
though the results from the 1ctf decoy set in Figure 6 are
mediocre, slightly better results are seen by using a more
complex score function in Figure 7. With the exception of a
few models in the lowest RMSD, the models are effectively
not differentiable using our scoring methods. This is partly
because PC with similar magnitudes in the 1ctf structure
confounds the PCA. It is also notable that the 1ctf structure
is highly globular, and regardless of the accuracy of the
alignment, the shape information from the SE does not add
significantly to our understanding of the 1ctf structure.
Other structures with more elongated shapes have more in-
formation about their structure encoded in their shape.

The alignment and scoring of other decoy sets shows
clear ability of our methods to distinguish low RMSD mod-
els from higher ones. Results in Figure 8 for structures 1baf,
1dvf, and 1myt show expected behavior in the RMSD ver-
sus match score curves. These results are best with the more
accurate score function S3 and hybrid alignment and indi-
cate that using shape information for discrimination may be
very valuable for prospective modeling. These promising
results lead directly to the application of shape information
in creating novel biomolecular models.

Materials and methods

Surface envelopes

The implementation of SEs and the algorithms for aligning and
scoring were coded by using C++. The SE data used in these tests
were generated from solved crystal structures to approximate data
that could be measured experimentally. Density values for each
box in the SE correspond to the amount of atom volume that
overlaps the box. A Monte Carlo method was used to determine
the contributions of each atom to the different density values in the
SE. For each atom, 100,000 points were selected at random within
the Van der Waals radius from the atom center. The proportion of
the points falling in each box was added to the corresponding
density value. After this process, all boxes with density values
greater than 1 were set to 1.

Scoring

Matching a model to an SE involves two steps. First, the model
and SE must be registered in three-dimensional space. We present
two different methods below and a hybrid method that uses parts

Figure 12. This graph compares the SE match scores for decoy set models
of Fab fragment 1fig using score functions S1, S2, and S3. These score data
have been normalized to a single structure model, arbitrarily assigned to
have a normalized score of one. Note that S3 has the greatest spread of
score values.
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of both alignment methods. The second step occurs once the reg-
istration is complete: A scoring function is applied to determine
how well the shape of the model and the SE agrees. We call the
resulting score the “match score.” The section Scoring Envelope
Matches below presents three different scoring functions and the
relative merits of each for different purposes.

PC alignment

PCs of a set of points are a set of three orthogonal vectors. The
direction of the longest and shortest PC vectors corresponds to the
direction with the greatest and smallest variance of point positions
from the center of mass (Mortenson 1995). Given the first two
components, the direction of the middle component is determined
by the right hand rule. The magnitude (length) of each of the three
vectors corresponds to the amount of deviation from the center of
mass by the complete collection of points in the vector direction.
The calculation of PC is performed by eigenvector decomposition
on the square symmetric matrix of deviations, M,

M = �
�

x, y, z

�dx � dx� �
x, y, z

�dx � dy� �
x, y, z

�dy � dz�

�
x, y, z

�dy � dx� �
x, y, z

�dy � dy� �
x, y, z

�dy � dz�

�
x, y, z

�dz � dy� �
x, y, z

�dz � dy� �
x, y, z

�dz � dz�
� ( 1)

where dx is the deviation of a given point from the center of mass
in the x direction, with similar definitions for dy and dz. The three
eigenvectors of this matrix define the direction of the PCs, and the
eigenvalues are the PC lengths. For a set of atoms, the PCs are
calculated by assuming each atom is a single point. For SE, each
box in the three-dimensional grid is treated as a point, and dx, dy,
and dz in equation 1 are weighted by the density number in each
box. Figure 1 shows an example of PC vectors superimposed on a
molecular model. The model is a C� representation of sevarin
protein domain two (PDB ID 1svr). The alignment uses PC vectors
from both the model and the SE. The two structures are superim-
posed at their center of mass. The atoms in the model are all
rotated to bring the first and third (longest and shortest) PC vectors
into collinear alignment.

For PCA to work, the lengths of the three vectors must be
distinct. A situation in which the components are all the same, such
as a sphere, or two of the components are equal, such as a cylinder,
introduces rotational symmetry. More precisely, the greater the
ratio of magnitude between the longest and shortest component in
the correct structure and the SE, the easier it is to ensure that the
correct components are aligned in any particular model.

ICP alignment

This alignment method applies an adaptation of the ICP algorithm
(Besl and McKay 1992). ICP is a general-purpose method for
accurate registration of three-dimensional shapes. The algorithm
has three basic steps: (1) compute closest points in the SE for every
atom in the model, (2) compute the closed-form translation and
rotation that aligns the corresponding model–SE point pairs as well
as possible to minimize a distance-based score metric, and (3)
apply the translation and rotation to the model.

The algorithm iterates the previous three steps until either the
error from the score metric decreases below a threshold, or the
same correspondence points are regenerated, leading to a null

transformation of the model. The choice of scoring function for
determining the transform affects both the speed and the accuracy
of convergence. We apply least-squares minimization of distances
to minimize the RMSD between all current correspondences.

Another variation to the ICP algorithm includes the addition of
a maximum distance cutoff for which no correspondence is as-
signed. This helps the algorithm to determine the best fit for mod-
els that do not fit the SE shape exactly, by leaving out points that
fit poorly. We restrict the point correspondences between the
model and the SE to unique points in each data set. Thus, each
point in the model and the SE is assigned a maximum of one
correspondence to a point in the other data structure. The number
of points in the SE is much greater than that of the molecular
model, so this results in picking unique SE points for each atom
point in the model. The algorithm has an observed dependence on
the relative starting position of the model with respect to the SE.
The method typically does not make significant rotations and
translations after the first or second alignment iteration. Each step
after the first few is an incremental step to align the two structures.

Hybrid alignment

The early results of both PC and ICP prompted the investigation of
a hybrid method of model–SE alignment that took some of the
positive features of both methods. The PC–ICP hybrid alignment
method applies the following steps:

1. Perform ICP alignment three times, randomizing the position
and orientation of the model wrt: SE after each alignment.
Select final position from ICP with lowest distance metric.

2. Translate the model to align the center of mass of the model and
the SE.

3. Align using the PC method, but assign component correspon-
dence based on the closest component defined by the current
model position. (In this case, closest is defined by the smallest
angle between components.)

4. Iteratively adjust the resulting alignment to minimize the score
by applying small translations and rotations based on the posi-
tion of atoms outside the SE. These adjustments move atoms
distances on the order of box widths in the SE.

Scoring envelope matches

We present three different methods for assigning a score to a
model aligned against an SE. The first method defines the total
score, S1, with

S1 = �
atom i = 1

n

Di ( 2)

where Di is the density value from SE at the location of atom i.
This score method is fast and atom-centric because all parts of the
score function can be attributed to specific atoms. We report a final
match score as the difference between the maximum possible score
and the calculated value S1, providing a zero score for a perfect
match and increasing values for imperfect matches.

The second scoring method includes a penalty to the total score
for regions of the SE not filed with atoms. We define S2 with

Surface envelopes for molecular models
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S2 = �1 �
atom i= 1

n

Di − �2 �
SE box j= 1

m

Pj ( 3)

where penalty factor Pj equals zero for each box j in the SE that
contains an atom, and equals the density value in the box (a value
from zero to one) if no nearby atom can account for the atom
density expected in box j. The variables �1 and �2 are adjustable
scaling factors. Two factors make this match scoring function
significantly more computationally intensive to calculate than S1.
First, the magnitude of m, the number of boxes in the SE, is
significantly greater than n, typically by an order of magnitude.
The second difficulty is that the implementation of atoms within
the model tracks their positions as points. The SE data structure
uses boxes on the three-dimensional grid to store the sum of atom
densities. To accurately calculate the value of Pj, all adjacent
boxes in the SE (the 26 neighbors of Pj) must be checked for atoms
close to box j, because atoms with positions near a box edge
attribute density to the SE in both boxes adjacent to that edge. S2

is not an atom-centric scoring method. The elements included in
the second summation can no longer be attributed to any particular
atom thus making it potentially less useful as part of an atom-based
modeling method.

The third scoring function includes a penalty factor similar to S2

but also maintains all parts of the score function as attributable to
particular atoms. We define S3 with

S3 = �
atom i = 1

n

�Di − �Pi� ( 4 )

where Pi is now a penalty term calculated for each atom. Similar
to the above penalty, S3 reduces the score for regions of the SE not
filled with atoms. In this case, Pi is the sum of penalty term Pj

defined above, but calculated over SE boxes adjacent to the box
containing atom i. This does not completely account for large
sections of the SE not covered by atoms, but it does more accu-
rately represent the shape matching compared with S1.
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