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ABSTRACT A fundamental step in homology
modeling is the comparison of two protein se-
quences: a probe sequence with an unknown struc-
ture and function and a template sequence for
which the structure and function are known. The
detection of protein similarities relies on a substitu-
tion matrix that scores the proximity of the aligned
amino acids. Sequence-to-sequence alignments use
symmetric substitution matrices, whereas the
threading protocols use asymmetric matrices, test-
ing the fitness of the probe sequence into the struc-
ture of the template protein. We propose a linear
combination of threading and sequence-alignment
scoring function, to produce a single (mixed) scor-
ing table. By fitting a single parameter (which is the
relative contribution of the BLOSUM 50 matrix and
the threading energy table of THOM2) we obtain a
significant increase in prediction capacity in the
twilight zone of homology modeling (detecting se-
quences with <25% sequence identity and with very
similar structures). For a difficult test of 176 homolo-
gous pairs, with no signal of sequence similarity, the
mixed model makes it possible to detect between 40
and 100% more protein pairs than the number of
pairs that are detected by pure threading. Surpris-
ingly, the linear combination of the two models is
performing better than threading and than se-
quence alignment when the percentage of sequence
identity is low. We finally suggest that further enrich-
ment of substitution matrices, combing more struc-
tural descriptors such as exposed surface area, or
secondary structure is expected to enhance the
signal as well. Proteins 2004;54:41-48.
© 2003 Wiley-Liss, Inc.
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INTRODUCTION

Annotation and classification of proteins rely on accu-
rate and efficient comparison of pairs of proteins. An
essential ingredient of the comparison algorithm is the
substitution matrix, T. For a pair of amino acid types a and
B in environments x and y the substitution matrix provides
a score for their exchange between the two proteins 7' =
T(a, x|B, ). The score of an alignment (ignoring for the
moment penalties for indels) is a sum over all substitution
scores.

© 2003 WILEY-LISS, INC.

Environment consists of additional features (x,y) to the
direct score of amino acid substitution, which we denote by
T(a|B). For example, it may include (i) multiple sequence
information,! (ii) secondary structure data,? (iii) exposed
surface area,® and (iv) many other structural and func-
tional fingerprints. Here we consider the information
content of only a pair of proteins. Multiple sequence
information [feature (i)] is not discussed here and can be
added (in principle) once the scoring of a pair is optimized.

A class of environment features is the use of structural
information. An alignment of a probe sequence into a
shape of another protein is called threading and is usually
associated with an energy function*; the energy measures
the quality of sequence to structure fitness.* The amino
acids are aligned into a known shape and three-dimen-
sional interactions are scored, measuring protein stability.
The sequence to sequence and sequence to structure
alignments are done separately and have their own corre-
sponding substitution matrices. For sequence alignment
we have T(a|B) and for sequence to structure alignment we
use T"(aly).

It is interesting to note that one type of a substitution
matrix dominates the scoring of sequence-to-sequence
alignments in proteins (BLOSUM 50; Ref. 5), whereas
there is no dominant scoring scheme (energy function) of
matching sequences into structures. The BLOSUM 50
matrix was used as an example, because we have consider-
able experience in using it and comparing its results with
threading approaches.* We anticipate a similar enhance-
ment in recognition for other sequence-substitution matri-
ces; however, we did not do calculations with other matri-
ces. Part of the reason for the larger diversity of threading
energy functions is the higher complexity of three-
dimensional interactions compared with one-dimensional
substitutions, making it more difficult to find the best
choice. Another reason is the significant success of BLO-
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SUM 50 in identifying evolutionary relationships com-
pared with the much weaker sensitivity of stability ener-
gies.

Nevertheless, an interesting complementary relation-
ship was observed in a number of studies.* At the twilight
zone of similarity detection by sequence alignment it is
possible to find remote evolutionary relationships by se-
quence-to-structure matching. Threading detects a signifi-
cantly smaller number of similar protein pairs compared
with sequence alignment; however, the set of hits in
threading is not a subset of the sequence alignment hits.
Therefore, threading alone is a potentially useful tool
when sequence alignment fails to recover a signal.

Merging threading and sequence signals is done after
separate alignments and scoring was performed. The raw
scores or the statistical significance measures (e.g., the
Z-scores®) are combined in an empirical formula” or in a
neural net® to take advantage of the complementarities of
the two techniques.

Here we propose another combination of sequence and
structure signals at the level of the substitution matrix. A
new substitution matrix, M(a|B,y), is defined as a linear
combination of T(a|B) and T"(aly):

M(a|B,y) = NT(a|B) + (1 = M)T"(aly) (1)

The parameter \ is a constant mixing term between zero
and one that we optimize (see Methods). The new matrix is
used in a dynamic programming algorithm to determine
the optimal alignment.

Mixing the scoring of a structural factor and amino acid
substitution score was done in the past in the context of
secondary structure (and sequence alignment).? Here we
extend that study to consider an alternative threading
score. The hope is that the mixing will create positive
consensus. That is, if the two measures agree that a partial
alignment is good (even if the positive signal is rather
weak for each measure), the combined signal may still be a
match. At the same time when one of the scores strongly
objects, the alignment is in doubt even if the second
measure shows a positive signal. The hope is then to
enhance the signal of true positives by consensus of the
two measures and to reduce false signals by score conflicts.

If one of the signals is extremely strong and considered
significant even alone, then the mixing is not necessarily
beneficial. However, when both signals are not strong,
then the proposed scheme may be helpful. We therefore
propose the use of the mixed model for the twilight zone of
detection for sequences that are (at least) lower than 25%
sequence identity. In fact as is shown in Results, even
sequences with only 25% sequence identity can carry a
significant sequence-to-sequence signal. We therefore made
the threshold for the twilight zone a bit tighter and
consider only pairs of proteins that are structurally related
(as measured by the structural alignment program CE?;
see below) and have no significant sequence-to-sequence
signal (defined as a Z-score < 2 for sequence alignment
with the BLOSUM 50 matrix). Some of these pairs are
found directly by threading alone; however, a considerable

enhancement in detection is obtained when the mixed
model is used.

The CE (Combinatorial Extension) program is a leading
protocol for local structure alignment of two protein chains
that has significant success in detecting remote structural
relationships by overlapping the Ca positions of two
proteins, minimizing the RMS distance between the two
structures. In brief, CE uses a dynamic programming
algorithm with empirically determined gap and extension
penalty (or reward) to determine best matching local
protein segments.® A Z-score determines the significance
of the match.

In this article we compare the mixed model with direct
sequence alignment, with direct threading experiment,
and with PSI-BLAST.'® We show that in the twilight zone
of sequence similarity, the mixed model outperforms the
other algorithms by wide margins.

METHODS

We consider the matching of a probe sequence S; to a
known protein with a sequence S; and structural environ-
ment defined by the vector X,. Similarly to the usual notion
of amino acid sequence in which we describe the protein by
a one-dimensional list of amino acids S; = a4;,a;...a,,;, the
vector X; is a one-dimensional sequence of local structure
descriptors. It is given by X = x,;,%,,...x,,. The a,, is one of
the 20 amino acids, whereas the x,, are finite set of local
structural features that we use to describe the structural
environment of an amino acid. These local features can be
secondary structure, exposed surface area, number of
contacts, etc. Extensions of the model below taking into
account the different features mentioned above are quite
obvious.

Here we rely on our previous experience in designing
energy function for threading as implemented in the
program LOOPP. LOOPP (Learning, Observing, and Out-
putting Protein Patterns) is a fold recognition program
that emphasizes threading for annotation. In addition to
prediction, LOOPP also learns energy parameters from
native and decoy sets with the Mathematical Program-
ming approach.® Source code and databases of LOOPP are
available from http://cbsu.tc.cornell.edu/software/loopp.

One of the potential that we optimized for annotation is
THOM?2. In THOM?2 the energy [e, (n,m)] of a structural
site  is determined by the identity of the amino acid at the
site, a, the number of neighbors to the site, n, and the
number of neighbors to each of the direct neighbors of the
site, m.% The total THOM2 energy, Eqryomes 18 Etmome =
2, 1€ o(n,m). In summary, THOM2 describes the environ-
ment by two layers of contacts to the structural site. It is a
two-dimensional table that provides a numerical value
using two indices: (i) a type of an amino acid « and (ii) a
pair of layers (n,m). The number of structural environ-
ments in THOM2 [16; possible combination of coarse
grained (n,m) pairs] is comparable to the number of amino
acid types, making the size of the THOM2 table compa-
rable to that of BLOSUM 50.

In LOOPP we use dynamic programming algorithm®? to
find an optimal alignment of S; against S; and (separately)
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TABLE I. The 176 Sequences of the Test Set"

liaa 1hlm 1hxn 2pil lulo 1djs_A 3trx lquw_A 2tnf A
1fat A levh A Iwww_X leww_A 1dyn_A 1b88_A lirp 1bks_A lggh_ A
3a3h lhou L lcfv_L 1maj 1qtf A la7v_A lcdb 1tvd_A 1bbt_2
1piv_1 1tnn laud_A 1c8p_A Imyt ligm_L Imsp_A 1c3k_A 1tnf A
1ge5_A 2fsp 1hfd 1bab B 3man_A 5mbn 1gcl_ H 1cd9 A 1ppf E
1fsl_ A 1spg A lkac_B Imig L 1b6b_A Itax_A litn Ttim_A 5tim_A
leoe A ladl A 1rhg A 3sdh_A laag L 1pot lhlg A lhav_A 32¢2_B
1fvw_L 1lou A 1rho A 1dc7_A 1fim leda A 1gya 1rvv_A I1stm_ A
lita 1tof 1hmd_A 1lts_D Afof 2gst_A 1qft_A 256b_A 2hft
Lif H 1b77_A legk A lqgs A lgfw_L 1mba Irlw lrdx A liai I
2snv 1bpv 1vea A laly 1cv8 1hib 1tim A 1bfs 1gx A
3erd 1chg 1d7m_A lag4 1b49 A 1kb5_A lex1 A 35¢8_H 1bef A
lirs A Intr 368 H 2phy 11h2 2bpa_2 Lhl H Inbc A 1pdk A
laag H 1d9%k_B lgab_A 1cd8 1wba 2fx2 1tgn 3fyg A 1ryp_B
lrcy 2dif H 1pfc lilr I leqy S ldgw_A 1kig B 1rml 1hlb
1l lgsv_A 1pls 2dhq A lisk A 6ilb 1dbw_A 1gsa laut C
leod A 2hfm H 1le0s_A 2rhe 1vls 1117 le2a A 1bla lauo A
1lxd_ A Inul_A 1tnm 2vhb_A 1svy 2hbg 2gmf A ligs 1b08_A
Ineu lajw 1fxy A lgsm_A 1ga9_ A luky lvre A 1hj7 1di0_A
lece A 1dvj_A 2acq 3hhr B 1fgv_ H

"Each of the sequences has its own set of decoys and homologous structures. The goal is to identify as many as possible homologous

pairs.

against X;. We use both, local and global alignment, and in
the final evaluation of the significance of the match we use
the Z-score. The same alignment algorithm is used in the
model described below.

The mixed model defines a combined alignment of a
probe sequence S; with another protein whose sequence S;
and structure X; are known. A dynamic programming
algorithm is used. At every step of building the dynamic
matrix we consider local matches. The fitness of an amino
acid a, against the pair (b,x;) is measured with a new
(mixed) substitution matrix:

M(ak|blaxl) = AT 'sLosum-50 (ak|bl) + (1 = MTraome (ak|xl)
(2)

The entries a, and b, are the types of the amino acids in
positions £ and [ along the sequence. The entry x, is the
structural environment of position /. The (single) free
parameter A is the mixing parameter and was chosen
empirically to be 0.125. In Results we explain how \ was
computed and demonstrate that the model is not very
sensitive to the choice of the mixing parameter. Ideally we
may imagine \ being a parameter of the actual scores. For
example, if the sequence-to-sequence signal is very high
(e.g., =60% sequence identity), then we anticipate the
mixing parameter to be one. However, in the present study
we did not perform an optimization of A for the complete
range and consider its uses only for difficult-to-annotate
sequences.

The matrix T'g1.0suM 50 18 the BLOSUM 50 substitution
matrix,” and Trgome i the threading energy of the
THOM2 model.® The two matrices that we have used can
be downloaded from the web http://cbsutest.tc.cornell.edu/
var/loopp_testset/.

To evaluate the performances of the model and to
examine different values of the mixing parameter, we have

constructed a test set containing 176 sequences with
lengths between 100 and 500 amino acids. The sequences
are listed in Table I, and the complete test is available
from http:/cbsutest.tc.cornell.edu/var/loopp_testset/.

The test was constructed as follows. We started with the
library of sequences and structures that we use in LOOPP.
This library contains about 3900 proteins and provides a
dense representation of the protein databank. We call it
the prediction set. When we prepared the prediction set we
removed closely related proteins but kept many homolo-
gous sequences and structures to increase the chance that
a probe sequence will hit at least one of them.® It is the set
that is used in all of the predictions made by the LOOPP
server http://ser-loopp.tc.cornell.edu/loopp.html. To pre-
pare the test set for this article, we select at random
proteins from the prediction set. For each of the random
selections we prepared an independent database using the
same LOOPP set. The single-sequence search-database
includes proteins with small length difference with the
probe sequence. The search database has at least one
homologue protein with low sequence identity (<25%) and
three such pairs on the average. The CE program for
structural alignment (see Introduction),’ requiring a Z-
score for structural comparison of at least 4.5, determines
the homologue pairs. Typically, the set for a single se-
quence has 1000 decoy proteins (with CE Z-scores < 3.5).
We selected only remote homologue pairs so that the local
sequence alignments using the BLOSUM 50 matrix does
not display a Z-score > 2.0 for any of them. Consequently,
all the sequence alignment searches produced with the
above-mentioned algorithm failed to place any pair in the
list of top 10 ranking comparisons based on the Z-score.

As presented in the general description of our model, we
base our ranking on the Z-score. The Z-score is a statistical
measure of the quality of a fit of a sequence or a structure
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into another sequence or a structure. We briefly described
it and the algorithm used for its computation below. We
consider the Z-score for sequence-to-sequence alignment.
The same algorithm holds for other alignments as se-
quence-to-structure etc.

Let S; and S; be the extended aligned sequences (includ-
ing deletions and insertions) found with dynamic program-
ming.'* For example, S; = @y,...,a, = @; — — y0305...0,,
when a “—” denotes an insertion or a deletion, a” is an
extended amino acid that may be a gap, and % is the length
of the alignment. Note that a™; can be any of the characters
{—,a;,...,a,}. We denote the score of aligning S, to S; by @,;
and it is given by @; = E T(all| ;7). The Z-score for the ij

pair is a dimensionless quantlty defined by

Q@ @

V@) — (@)

The average (...) is defined over random sequences
sampled with the same amino acid composition as the
probe sequence. The random sequences are obtained by
shuffling the amino acids of S, to obtain a random sequence
S; that is aligned to S;. The average score of S; against
the random sequences is given by (@) = (1/R) Y Q.

Hence, the Z-score is a measure of the average distance of
the matched pair from random pairs. For the matching to
be significant, this distance must be as large as possible.
This means that the calculated Z-score must be signifi-
cantly larger than the Z-score of a false positive.

Note that the absolute value of the Z-score is model
dependent and it is therefore important to understand (at
the least) the distribution of the Z-scores for false posi-
tives. This distribution can be computed numerically by
calculating the values of Z-scores for wrong matches. Our
test set contains a large number of wrong matches (decoy
structures) and we used them to compute the correspond-
ing Z-score distribution. If the model at hand is successful,
the distribution of Z-scores for true positives will have
little overlap with the distribution of false positives. We
therefore consider both, the distribution of true and false
positives.

To perform the alignment we need to assign a value for
the gaps; i.e., the deletions or insertions. We use structural
dependent gap penalties. For sequence alignment and
threading the gap penalty depends on the number of
neighbors. The values of the gap penalties are, however,
different in the two cases. The LOOPP article® discusses
both types of gap penalties assigned and their advantages
versus a constant gap penalty. The gaps for the mixed
model are mixed in a similar way to the energy values. The
actual values for each of the substitution matrices (thread-
ing or sequence) are taken from Ref. 6.

The calculations used the LOOPP V2 program available
at http://cbsu.tc.cornell.edu/software/loopp/index.htm. Be-
sides the mixed model described here, LOOPP also in-
cludes modules for potential training by Mathematical
Programming,'**® numerous scoring functions, and thread-
ing and sequence alignment algorithms.® The calculations
described below were done on the Cornell Theory Center
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Fig. 1. The number of successful sequences assigned to their
corresponding homologue proteins as function of the mixing parameter \.
The total number of potential hits is 176, so the success ratio is always
<50% making the present test an intriguing case for future studies. Note
that pure sequence alignment (mixing parameter equal 1) is not shown
since the detection is negligible. The left hand side of the graph (A = 0)
corresponds to the pure THOM2 model.

Dell Edge Cluster running Windows 2000. A single com-
parison of two proteins within the mixed model took from
1.5 to 30 s, depending on the sequence length. This
includes the Z-score calculation with 100 randomly shuffled
sequences. One annotation of a probe sequence (sweeping
through the entire database) requires from 30 min to about
8 h for the longest sequence.

RESULTS

The new substitution scheme involves just one indepen-
dent parameter, the mixing value. We concentrate first on
determining an optimal value for the mixing parameter
using the new test set. We will address issues related to
the model calibration using the Z-score later in this
section.

We measure the performance of the substitution matrix
in two ways. The first measure is how many of the probe
sequences were identified? That is, how many probe
sequences have at least one homologous protein found. In
the second measure we count the number of homologous
proteins that were detected (regardless of the fact that
some of them may identify the same probe). It is important
to use both measures because it is possible that a specific
family is easy to detect and many homologous proteins are
found for it, whereas other families remain undetected. On
the other hand the second approach is potentially stricter,
examining if we identify all homologues or only a fraction
of them. The first test can be 100% successful, whereas
some homologous proteins remain undetected.

Three levels of success are defined based on the Z-score
ranking of the pair: the homologous protein is in the top 5,
top 10, or top 20. For instance, a homologue pair is in the
top 5 if there are four or less decoy structures found with a
greater Z-score than the homologue-query pair.
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Fig. 2. The number of homologue pairs detected as function of the
mixing parameter. The total number of homologues present is 740. The
left-hand side corresponds to the THOM2 model and A = 1 to the
BLOSUM 50 matrix.

Figure 1 shows the performance of our model for differ-
ent mixing parameters counting the number of query
sequences that were identified.

We see an improvement of 40-100% over threading
using the THOM2 scoring function, depending on the
definition of the level of success. The added value of
sequence similarity at the dynamic programming level is
surprising because sequence alignment has no matches in
the top 10. We have also used PSI-BLAST'® (with BLO-
SUM 50 for a substitution matrix) to check the contribu-
tion of multiple sequence alignment on this test set.
PSI-BLAST, which uses sequence information only, cor-
rectly identifies 14/15/16 sequences with homologues in
the top 5/10/20. This is far below the performance of the
threading model presented here. The threshold parameter
for PSI-BLAST was 0.001, which is the default. We tried
the threshold parameter 0.01 as well, and the results were
similar. The number of iterations was set to the maximum
of 3.

In Figure 2 we show the total number of homologues
detected; the second measure of success in our study.

In this test we count for each sequence all the homologue
proteins detected in the Top x (x = 5, 10, 20). Similar
improvement to that presented in Figure 1 is seen again in
Figure 2. In all plots a peak of performance is observed
that is around values of a mixing parameter 0.05 < A 0.15.
For the second ranking measure PSI-BLAST successfully
identifies 15/17/18 homologue pairs in the Top 5/10/20,
respectively. This is again well below the performance of
the threading model (and of course, also of the mixed
model).

Note that the properties of the BLOSUM 50 and the
THOM?2 matrices are very different, not only in absolute
values but also in their variance.>* BLOSUM 50 is strongly
diagonal (prefer native amino acids, no change), whereas
the THOM2 energy is not (THOM2 preference for native

Y

[

L 30 I/ \I—l —
3 1
2 28

g’ 26 1 —&—TOP 20
] —e—TOP 10
s o—o—o ~—&—TOP 5
£ 20 o A-—A\ o
3 q
a 18 /

3

2 18

[

2 14 A—A A 4
[0

G 12 /

-

(=]

s 10

z T

% m—a —m—TOP 20
ke
[
g x ./ \. —8—TOP 10
g ® ~—A—TOP 5
T,,’ 30 °
b4 |
e 28 u n—
S 2 — o/ \
o
g = S
< 22 o/. ®
£ T
5 /
0w 1 —A/\
[0
2 16 A A/ \
L] 4
S 14
©
w12
>
° 10
[=3
z s+
0.00 0.05 0.10 0.15 0.20 0.25 0.30

A

Fig. 3. The number of probe sequences that were identified, (the first
measure of success; similar to Fig. 1), but for the two subsets of the test
each containing only 88 sequences.

sequence is not so strong). The choice of the mixing
parameter is therefore not trivial and requires the above
experimentation. Moreover, the small value of the mixing
parameter does not imply that the BLOSUM 50 contribu-
tion is small because the entries to the BLOSUM 50 matrix
tend to have higher absolute values.

The improvement over both parent scoring schemes is
significant up to about A = 0.35. Beyond this value, the
performance of the mixed model drops below the perfor-
mance of threading. We select the value of 0.125, a value
that was used in forthcoming studies.

To test the sensitivity of the parameter choice to the
training set we split the test set in two and plotted the first
measure (see Fig. 1), for both sets.

We see that the same feature is present for the two
subsets independently and the 0.125 is still the preferred
value if the training is done on these two independent sets
(Fig. 3). We note that a Z-score of 4.0 in the mixed model
corresponds to 10~ chance that such a fit is for a decoy
structure.
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Typically, in our database we have <1000 structures
with similar lengths (<20% difference) for each query
sequence. Therefore, if we run with this length restriction,
it is unlikely that a prediction with a Z-score of 4 and
higher will be a false positive. If we combine the local and
global threading as shown in Ref. 6, we can use Z-scores <
4 and still maintain high confidence level. In fact, global
and local Z-scores for THOM2 that are above 3 (for global)
and above 2 (for local) have false-positive probability of
10~ *. We also note that the mixing model has a slightly
higher Z-score threshold for a given confidence compared
with the pure threading model by roughly 0.3—-0.4 in the
region of interest of Z-scores of 2—4.° This is not surprising
because scoring with sequence alignment (which is a part
of the mixed model) typically has higher Z-scores for false
positives.

It is useful to study also the distribution of true positive
(in addition to false positives) to appreciate the degree of
separation between the false and true predictions. In a
good model we hope to have a very clear separation
between the distributions, maximizing sensitivity and
selectivity. In reality the separation is never perfect.

To obtain more comprehensive and independent statis-
tics for false-positive Z-scores and true-positive predictions
(correct high ranking by Z-score), we consider a larger set.
We extend the earlier test set by relaxing the condition on
sequence similarity (as defined by the threshold of 2 in the
Z-score of the sequence alignment). Instead we include all
the sequences and homologue structures having <25%
sequence similarity.

Consequently, our test set expanded to 306 individual
sequences, having on average eight structurally homolo-
gous proteins for each of the query sequences. In Figure 4,
we show the distribution of the Z-scores of true positives
for the three models: sequence alignment, threading by
using the THOM2 potential, and the mixed model. The
Z-scores are computed for local alignments. The probabil-
ity density of the Z-scores is computed by binning. It is the
probability of finding a Z-score between Z — dZ/2 and Z +
dZ/2, divided by the box of size dZ. The size of the window
used in the present calculation is 0.14.

We emphasize that 25% sequence identity still includes
many related sequences that can be detected using se-
quence similarity measures (i.e., the raw score obtained
with dynamic programming algorithm using the BLOSUM
50 matrix). Hence (perhaps surprisingly), the measure of
sequence identity is too crude and is not a good indicator
for the threshold of applicability for sequence alignment
methods. This measure should be replaced (for example)
with the more complex measure of the Z-score.

The high contribution of similar sequences in this study
results in a comparable performance of the mixed and the
sequence alignment models. The mixed model and the
sequence alignment have a rather asymmetric distribu-
tion, with a long tail biased toward high Z-score values. We
observe that the true positives are shifted toward larger
Z-score values for the mixed model compared with thread-
ing using the THOMZ2 potential. However, the sets are
nonoverlapping. Many of the sequences left undetected by
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Fig. 4. The distribution of true and false positives for the three models
using local alignments.

sequence-to-sequence alignments are detected by the mixed
model (and vice versa). To quantify the complementarities
of the three models, we note that sequence alignment
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identifies 235 sequences with homologues in TOP 5 of the
present test, whereas the mixed model and THOM?2 iden-
tify 220 and 105 pairs, respectively. Ninety-four sequences
are not detected by the mixed model or by THOM2. The
mixed model detects 67 sequences that carry no signal
from pure sequence or threading alignments. Twelve
sequences are detected only by THOM2.

To appreciate the effect of variations in the mixing
parameter we consider also a value of 0.3 instead of 0.125
for the mixing parameter, and we test the results on the
larger test that includes many similar sequences. We have
236 pairs detected by the mixed model (71 of them detected
only by the mixed model). With this mixing parameter, 58
sequences are detected only by sequence alignment and 15
sequences only by THOMZ2. We see little difference in the
actual number of sequences detected when we shift the
parameter from 0.125 to 0.3 (from 220 to 236, ~7%
difference). What is of considerable interest is the signifi-
cant number of sequences (67 and 71 sequences, respec-
tively) undetected by both THOM2 and BLOSUM 50 and
detected by the mixed model for both values of the mixing
parameter.

It has been shown that a combination of local and global
alignments brings added value to fold recognition.® Hav-
ing determined a good performance value for the mixing
parameter, we are ready to evaluate the behavior of the
mixed model for global alignments. In Figure 5 we show
the mixed model versus threading using THOM2 potential
for both, number of sequences with homologues detected
and the total number of homologues. We plot these values
from top 5 to top 30. We see an important enhancement
regardless of the definition of success. The same value of
the mixing parameter and the same algorithm of combin-
ing the gap penalties as in the local alignment case have
been used.

The global model shows a similar spectrum for the
probability to detect a false positive above a given Z-score.
We see in Figure 6 that the probability to have a false
positive drops below 10~ * for Z-scores > 4. Generally
speaking, the Z-scores of the global alignments are lower
by ~0.5 than the Z-scores of local alignments for the same
confidence level. The difference between the global THOM2
and the global mixed model is even lower than in the local
alignment case for the Z-scores in the range of 2—4.

We also studied the Z-score probability densities for
false and true positives in global alignments using thread-
ing and the mixed model. These densities behave similarly
to local alignments and therefore not considered in details.

We have also checked two successful alignments of the
mixed model and compared them to pure threading. We
consider in detail the following two alignments: 1fgv_H
(sequence) — 1kjc (structure), and 1lcd8 (sequence) —
1mig_H (structure). The Z-scores for threading and for the
mixed model have similar values (hence, the threading
score is actually more significant). The first alignment was
of length of 104 amino acids of which the mixed model
correctly identified 73 pairs and the pure threading ap-
proach only 29 pairs. The second structural alignment was
of 107 amino acids of which the mixed model identified
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Fig. 5. A comparison of the mixed model and THOM2 for global

alignments using the two difinitions of success: (i) the number of probes
identified; (ii) the number of homologue proteins detected.

correctly 49 amino acids and the threading approach only
37 pairs. It is known that alignments by threading (in
general) are considerably worse than sequence alignment,
and perhaps the mixed model is also a way of producing
better alignments, maintaining (and enhancing) the abil-
ity to detect remote homologs.

DISCUSSION

Algorithms for fold recognition rely on a wide range of
scoring functions that test the similarity of two proteins.
Measures for whole protein matches using sequence align-
ment, secondary structure prediction, and threading are
combined together to a single score of significance. We call
this approach: Combination of Global Scores (CGS). An
alternative procedure of combining different measures of
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Fig. 6. Distribution of false positives for the global alignments of
THOM2 and the mixed model.

similarity is at the scoring matrix level. Hence, we match
an amino acid against another amino acid and its struc-
tural and functional properties. A single dynamic program-
ming matrix is generated based on multiple scores. Be-
cause considerably more information is built into the
alignment itself, and a single alignment is the end product,
this annotation is more likely to be accurate compared
with the (potentially) diverse alignments that were used in
the generation of individual global scores. We call the
approach that uses a single dynamic programming matrix:
Combination of Local Scores (CLS).

From conceptual viewpoint we find the present approach
more appealing than the CGS because a single alignment
is used. From the perspective of performance, we have
shown a case study in which CLS outperforms the indi-
vidual scores.

For the measures used (sequence alignment based on
BLOSUM 50° and threading based the THOM2 energy®)

the CLS outperforms a CGS that we use in LOOPP. This is
because the proteins examined have only negligible global
signals from sequence alignment, leaving little to contrib-
ute to a CGS. At the same time the CLS increases the
performance by up to a factor of 2. Nevertheless, this is one
test and more tests will have to be done to establish the
significance of the result.

For the future we expect to expand the CLS to include
(at the least) also secondary structure prediction, and
other measures that we worked on in the context of the
LOOPP algorithm.
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