
served similarity in fitness effects of interacting
proteins was sufficient to explain the similarity
in their rates of evolution. Path analysis based
on the causal model shown in Fig. 3C indicated
that the correlation between the fitness effects
of interacting proteins contributes only slightly
to the correlation between their evolutionary
rates. Thus, similarity in fitness effects is not
sufficient to explain the observed similarity in
the evolutionary rates of interacting proteins.

We also considered two other alternatives
to the coevolutionary hypothesis. First, inter-
acting proteins might evolve at similar rates
simply because they have similar numbers of
interactors, and, as shown in Fig. 1, the num-
ber of interactors influences the rate of evo-
lution. However, we found that proteins that
interact do not have similar numbers of inter-
actors (rI1I2

5 0.02, P 5 0.26). A second
possibility is that interacting proteins evolve
at similar rates because they exhibit structural
homology and therefore have similar distri-
butions of constrained sites. The most likely
origin of structural homology between inter-
acting proteins is duplication of the gene that
encodes a homodimeric protein, followed by
evolution of one copy of the gene. This pro-
cess would result in homology not only be-
tween the structures, but also between the
sequences, of interacting proteins. Hence, we
have ensured that none of the interactions in
our data set occur between proteins that ex-
hibit detectable sequence similarity. Thus, to
account for the similarity in evolutionary
rates that we observe, structural similarity
would have to be independent of sequence,
which would be difficult to explain evolu-
tionarily. In sum, having considered a num-
ber of alternative hypotheses, we conclude
that the coevolution of interacting proteins
may be largely responsible for the observed
similarity in their rates of evolution.

Beyond describing the relation between a
protein’s interactions and its rate of evolu-
tion, the correlations presented here could
find application in the rapid assessment of
functional genomic data. Much as gene ex-
pression levels have recently been used to
assess protein-protein interaction data sets
(23), the correlation between protein interac-
tion and evolutionary rate may allow one to
use simple genomic sequence comparisons to
statistically assess the quality of large inter-
action data sets. More generally, correlations
between protein interaction, fitness effect,
and evolutionary rate may provide a means
by which multiple bioinformatic data sets can
be quickly cross-referenced to assess the re-
liability of any single method or data set.
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Genetic Dissection of
Transcriptional Regulation in

Budding Yeast
Rachel B. Brem,* Gaël Yvert,* Rebecca Clinton,

Leonid Kruglyak†

To begin to understand the genetic architecture of natural variation in gene
expression, we carried out genetic linkage analysis of genomewide expression
patterns in a cross between a laboratory strain and a wild strain of Saccha-
romyces cerevisiae. Over 1500 genes were differentially expressed between the
parent strains. Expression levels of 570 genes were linked to one or more
different loci, with most expression levels showing complex inheritance pat-
terns. The loci detected by linkage fell largely into two categories: cis-acting
modulators of single genes and trans-acting modulators of many genes. We
found eight such trans-acting loci, each affecting the expression of a group of
7 to 94 genes of related function.

Genetic linkage analysis has traditionally fo-
cused on mapping loci that affect one or a
small number of organism-level phenotypes.
DNA microarray technology (1, 2) makes it
possible to apply such analysis to global pat-
terns of gene expression, with the transcript
abundance of each of thousands of genes

treated as a quantitative phenotype (3). Al-
though it has recently become clear that ge-
netic variation has a strong effect on gene
expression (4–7), little is known about the
genetic basis of natural variation in expres-
sion levels (the number and type of loci
involved, the effect of each locus, and the
interaction between loci).

We carried out linkage analysis of global
expression levels in a cross between two
strains of the budding yeast Saccharomyces
cerevisiae. The parents were haploid deriva-
tives of a standard laboratory strain (BY) and
a wild isolate from a California vineyard

Fred Hutchinson Cancer Research Center (FHCRC),
1100 Fairview Avenue North, D4-100, Seattle, WA
98109, USA and Howard Hughes Medical Institute.

*These authors contributed equally to this work.
†To whom correspondence should be addressed. E-
mail: leonid@fhcrc.org

R E P O R T S

26 APRIL 2002 VOL 296 SCIENCE www.sciencemag.org752



(RM) (8). We first measured expression of
6215 genes in six independent cultures of
each parent undergoing log-phase growth in a
defined medium and found profound differ-
ences in expression (9). A total of 1528 genes
showed differential expression at P ,0.005,
whereas only 23 are expected by chance (10).
At P ,0.15, we observed 3422 differences,
compared to 724 expected by chance, sug-
gesting that nearly half (2698 out of 6215) of
all the genes in the genome are differentially
expressed. Of the 1528 messages that were
different at P ,0.005, 1165 differed by
,twofold, 363 by .twofold, 147 by .four-
fold, and 62 by .eightfold. Expression mea-
surements in 40 haploid segregants from a
cross between the two parents showed that
parental differences in expression were high-
ly heritable; the median proportion of the
observed variation that is genetic was esti-
mated to be 84% (11).

Genetic markers were identified with oli-
gonucleotide microarrays using a method
previously described by Winzeler et al. (12,
13). The resulting genetic map of 3312 mark-
ers covered .99% of the genome. Analysis
of four segregants from one tetrad showed
2:2 marker segregation (Fig. 1), with 73
crossovers observed across the genome,
which is close to the expected number of 86
(14). In the analysis of the cross, we found
that mating type, kanamycin resistance, and
auxotrophies to lysine, uracil, and leucine
were correctly linked with LOD scores .9 to
regions containing the genes MAT, HO,
LYS2, URA3, and LEU2, respectively. We
also carried out linkage analysis of floccula-
tion (agglutination of cells in liquid culture).
Although neither parent is flocculent, tetrad
analysis showed 1 flocculent:3 nonflocculent
segregation in the cross. We found linkage to
a pair of loci, one containing the FLO8 gene
(chr V) and the other containing the FLO1
gene (chr I) (15). FLO1 encodes a cell wall
protein responsible for agglutination of cells,
and FLO8 encodes a transcription factor that
regulates FLO1 expression (16). Sequencing
of the corresponding BY and RM alleles
showed that BY, but not RM, carried the
S288c flo8 null mutation (17) and that RM,
but not BY, carried a short deletion in FLO1.

We next tested for linkage between mark-
ers and the abundance of each message (18).
Expression levels of 570 messages showed
linkage to at least one locus at P ,5 3 1025

(53 are expected by chance). Two examples
of segregation of gene expression with the
genotype of a linked marker are shown in Fig.
2. Two hundred and five of the linkages
remained significant at P ,2 3 1026 (,1 is
expected by chance). Message levels for all
engineered auxotrophies linked to regions
containing the respective genes.

Of the 1528 messages with parental dif-
ferences at P ,0.005, 308 showed linkage to

at least one locus at P ,5 3 1025. An
additional 262 messages were not called dif-
ferent between the parents at P ,0.005, but
showed linkage in the cross. This observation
can be explained in three ways. First, a link-
age may be a false positive; as noted above,
we expect 53 false-positive linkages at P ,5
3 1025. Second, a true difference in expres-
sion levels may exist between the parents,
and be statistically significant in a compari-
son of 40 segregants separated by parental
genotype, but not be statistically significant
in a comparison of six replicates from each
parent. Third, each parent may harbor several
loci with alleles of opposite effect on mes-
sage levels, reducing the parental difference
relative to the range of the segregants. This
phenomenon, called transgressive segrega-

tion, is common (19, 20) and is observed for
a number of messages; an example is shown
in Fig. 2B.

Conversely, levels of 1220 messages dif-
fered between the parents at P ,0.005 but did
not show linkage to any locus; as noted
above, we expect only 22 false-positive dif-
ferences at P ,0.005. Simulations showed
that if each of these differences in expression
were caused by a single locus, we would
expect to detect linkage for 97% of them (21).
Simulations also showed that if multiple loci
were involved and, for each differentially
expressed message, the locus with the stron-
gest effect accounted for more than a third of
the difference, we would expect to detect
linkage for .29% of these messages (21).
Thus, detection of linkage for just 20% of the

Fig. 1. Chromosome XII genotypes of four segregants (a, b, c, and d) isolated from a single tetrad.
Each vertical bar represents one genetic marker, colored red, green, or blue when the genotype of
the segregant at the marker is RM, BY, or ambiguous, respectively. The crosses indicate inferred
positions of crossovers. The centromere position is shown by a black circle. The scale bar represents
100 kb.

Fig. 2. Expression levels of parents and
segregants for two genes that show
linkage. In each panel, the first column
shows expression levels for all 40 seg-
regants, and the second and third col-
umns show expression levels for six rep-
licates of each parent. The fourth and
fifth columns show expression levels for
segregants that inherited the linked
marker from BY and RM, respectively.
(A) The gene is YLL007C, and the mark-
er lies in YLL009C. (B) The gene is XBP1
(YIL101C), and the marker lies in
YIL060W. Note that, in this example,
the effect of the locus is in the opposite
direction from the difference between
the parents, illustrating transgressive
segregation.
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differences in the real data (308 out of 1528)
indicates that most messages are affected by
multiple loci and that most loci account for
less than a third of the total parental expres-
sion differences. We also used simulations to
estimate the number of loci involved under a
model in which each difference is caused by
n loci of equal effect (21). The results showed
that we would expect to detect linkage for
82% of the differences if n 5 2, 59% if n 5
3, 49% if n 5 4, and 39% if n 5 5. The fact
that in the real data set we detected linkage
for only 20% of the differentially expressed
messages implies that, under this model, .5
loci affect each message. In reality, both the
number of loci contributing to expression
differences and the distribution of their ef-
fects undoubtedly vary among genes, but our
data are inconsistent with one or two major
loci explaining the observed differences in
expression for more than a small fraction of
genes. Because the estimates above assume
that all loci from one parent act in the same
direction, existence of transgressive segrega-
tion implies even greater complexity.

To determine whether the loci found by
linkage act in cis or in trans, we looked for
messages whose levels were linked to mark-
ers within 10 kb of their own gene. Such
“self-linkages” suggest that a polymorphism
affecting a gene’s expression lies within the

gene itself or its regulatory region, rather than
elsewhere in the genome. We found that 185
(32%) of the 570 messages that show linkage
at P ,5 3 1025 fell into this category.
Because no message is expected to link to its
own gene by chance (18), a more accurate
estimate of 36% for the fraction of cis-acting
loci is obtained by dividing the number of
self-linkages by the expected number of true
positives (517).

We next considered whether there are
many trans-acting regulatory polymorphisms,
each affecting one or a few messages, or a
small number of such polymorphisms with
effects on many messages. We divided the
genome into 20-kb bins and counted the num-
ber of linkages to markers within each bin
(Fig. 3). With a random distribution of link-
ages across the genome, no bin is expected to
contain .5 linkages (22). In our data, 10 bins
contained .5 linkages, ranging from 7 to 87.
In two cases, two nearby bins contained .5
linkages and were combined into one group
for future analyses. Over 40% of all linkages
(231) fell into one of the eight groups (Table
1).

Groups 2 through 4 contain known mem-
bers of the leucine biosynthesis, mating, and
uracil biosynthesis pathways and link to
LEU2, MAT, and URA3, respectively. Be-
cause Leu2 and Ura3 are biosynthetic en-

zymes rather than transcription factors, these
linkages illustrate indirect transcriptional ef-
fects on other genes in the perturbed path-
ways. The other five loci represent natural
polymorphisms between the parent strains
with large transcriptional effects. The genes
within each group appear to be functionally
related based on annotated group members.

Group 5 contains 28 genes, 13 of whose
products contain heme, regulate heme syn-
thesis, or are involved in fatty acid or sterol
metabolism. Five of them are known to be
regulated by the heme-dependent transcrip-
tional activator Hap1 (essential for anaerobic
growth, which requires ergosterol metabo-
lism), and the gene encoding Hap1 is in the
linkage region for this group. The S288c
HAP1 allele was previously shown to carry a
Ty1 insertion that reduces transcriptional ac-
tivation of iso-1 cytochrome c (CYC1) by
Hap1 (23). We amplified and sequenced the
BY and RM HAP1 alleles and found that BY,
but not RM, carries this Ty1 insertion, con-
sistent with our observation that CYC1 and
CYC7 are underexpressed in all segregants
inheriting the BY allele. These results strong-
ly suggest that the other genes in group 5 are
also regulated by Hap1. We searched for the
known Hap1 binding site consensus sequence
in the upstream regions of these genes and
found sites containing at most one mismatch
for 11 genes.

Group 1 contains 18 genes, 10 of which
were found to be co-regulated in previous
array experiments, with six expressed specif-
ically in daughter cells during budding (24).
The gene controlling this group may be
CST13, which is in the region of linkage,
shares the group’s expression pattern, and is
also expressed specifically in daughter cells
during budding (24). Group 6 consists of 16
genes, all putative subtelomerically encoded
helicases; these closely related genes may
cross-hybridize on arrays. SIR3, a known
transcriptional silencer active at telomeres, is
within the linked region. Group 7 contains 94
genes, with 50 known to function in mito-
chondria of which 34 function as mitochon-
drial ribosomal proteins. This group shares
52 genes with a previously defined mitochon-
drial expression cluster (25). Several genes in
the region of linkage function in mitochon-
dria. Group 8 consists of 19 genes, 11 of
which were previously shown to be expressed
under acidic conditions in the presence of the
transcription factors Msn2 and -4 (26), and 17
have at least one Msn2 and -4 binding site in
their upstream region.

Unlike experiments that measure the cor-
relations among transcript levels under differ-
ent conditions, our approach allows causal
connections to be made between modulator
loci and the genes whose expression they
directly or indirectly affect. In addition,
studying naturally occurring alleles in the

Fig. 3. The number of linkages
plotted against genome location.
The genome is divided into 611
bins of 20 kb each, shown in
chromosomal order from the
start of chromosome I to the end
of chromosome XVI. The dashed
line is drawn at 5 linkages; no bin
is expected to contain 5 linkages
by chance (22). The regions with
an unusually large number of
linkages are marked 1 through 8
and correspond to the groups in
Table 1.

Table 1. Groups of messages linking to loci with widespread transcriptional effects. The location of the
center of the linked bin is shown as chromosome:base pair. Lists of genes in each group are available as
supplementary information (32).

Group
Number of
messages

Common function
Linkage

bin
Putative
regulator

1 18 Budding, daughter
cell separation

II:550000 CST13

2 21 Leucine biosynthesis III:90000 LEU2
3 28 Mating III:190000 MAT
4 7 Uracil biosynthesis V:110000 URA3
5 28 Heme, fatty acid

metabolism
XII:670000 HAP1

6 16 Subtelomerically
encoded helicases

XII:1030000 SIR3

7 94 Mitochondrial XIV:490000 Unknown
8 19 Msn2/4-dependent

induction in acid
XV:170000 Unknown
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context of segregating variation allows the
discovery of subtle effects obscured in strains
with engineered knockouts.

We have found that regulatory genetic
variation is characterized by a high rate of
cis-acting alleles and a small number of trans-
acting alleles with widespread transcriptional
effects. Finally, genetic variation in physio-
logical and behavioral quantitative pheno-
types is known to be highly complex. Our
results indicate that even in a single-cell or-
ganism grown in a controlled environment,
variation in gene expression typically also
has a polygenic basis.
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Transcription Control by E1A
and MAP Kinase Pathway via

Sur2 Mediator Subunit
Jennitte L. Stevens,1 Greg T. Cantin,1 Gang Wang,1 Andrej

Shevchenko,2 Anna Shevchenko,2 Arnold J. Berk1,3*

Sur2 is a metazoan Mediator subunit that interacts with the adenovirus E1A
protein and functions in a mitogen-activated protein kinase pathway required
for vulva development in Caenorhabditis elegans. We generated sur22/2 em-
bryonic stem cells to analyze its function as a mammalian Mediator component.
Our results show that Sur2 forms a subcomplex of the Mediator with two other
subunits, TRAP/Med100 and 95. Knock-out of Sur2 prevents activation by
E1A-CR3 and the mitogen-activated protein kinase–regulated ETS transcription
factor Elk-1, but not by multiple other transcription factors. These results imply
that specific activation domains stimulate transcription by binding to distinct
Mediator subunits. Activation by E1A and Elk-1 requires recruitment of Medi-
ator to a promoter by binding to its Sur2 subunit.

Regulation of transcription by RNA polymer-
ase II (Pol II) is controlled by specific com-
binations of sequence-specific, DNA binding
regulatory transcription factors (TFs) bound
to a gene’s promoter and enhancer regions.
These TFs interact with several multiprotein
complexes that remodel the chromatin con-
text of the promoter, integrate signals from
multiple TFs to control the frequency of tran-
scription initiation, and regulate the efficien-
cy of transcription elongation (1). One such

complex is the Mediator, an ;2-megadalton
complex of 20 to 30 subunits that is believed
to function as a molecular bridge by simulta-
neously interacting with both DNA-bound
TFs and Pol II (1–4). The human Mediator
subunit Sur2 was identified through its inter-
action with adenovirus E1A conserved region
3 (E1A-CR3), a potent activation domain that
regulates early adenovirus genes (5). In C.
elegans, mutations in sur2 suppress an acti-
vated-ras multivulva phenotype and produce
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