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We searched for genes that could be important for

hyperthermophily using a flexible approach to phyletic

pattern analysis. We identified 290 clusters of ortholo-

gous groups of proteins (COGs) that are preferentially

present in archaeal and bacterial hyperthermophiles. Of

these, 58 COGs include proteins from at least one bac-

terium and two archaea, and these were considered to

be the best candidates for a specific association with

the hyperthermophilic phenotype. Detailed sequence

and genome-context analysis of these COGs led to func-

tional predictions for several previously uncharacterized

protein families, including a novel group of putative

molecular chaperones and a unique transcriptional

regulator.

The molecular basis of the hyperthermophilic phenotype of
numerous prokaryotes remains unclear, although
comparisons of orthologous proteins from hyperthermo-
philes and mesophiles pointed to potential adaptations to
the hyperthermophilic environments; in particular, excess
of electrostatic interactions [1,2]. Complete genome
sequences of 11 hyperthermophiles were available as of
August 1, 2002, including eight archaea from six distinct
lineages, and three bacteria from diverse phyla.

(Hyperthermophiles are defined as organisms with opti-
mal growth temperature .758C; thermophiles are those
with optimal growth temperature of 55–758C.) With this
amount of data at hand, it is tempting to pursue a different
avenue of search for potential determinants of this unique
phenotype, namely comparative-genomic analysis aimed
at the identification of genes that occur exclusively or
primarily in hyperthemophiles.

Recent analysis of phyletic patterns (Box 1) in the
database of clusters of orthologous groups of proteins
(COGs) [3] showed that the only protein encoded in the
genomes of all hyperthermophiles, and not in any other
genomes, is reverse gyrase [4]. Reverse gyrase consists of a
helicase and a Type I topoisomerase, and it introduces
positive supercoiling into circular DNA, thus preventing
excess local unwinding of the double helix at high
temperatures [5]. Although reverse gyrase is, in all
likelihood, necessary for hyperthermophily, it is hard to
imagine that it alone could account for this phenotype [4].
The absence of other strictly hyperthermophile-specific
COGs is not particularly unexpected in view of the
substantial horizontal gene flow between thermophiles
and mesophiles [6,7] and numerous non-orthologous gene
displacements [8], which result in scattered phyletic
patterns for most orthologous sets ([3,9]; Box 1). Here,
we describe an attempt to search for potential genomicCorresponding author: Eugene V. Koonin (koonin@ncbi.nlm.nih.gov).
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determinants of hyperthermophily using a flexible strat-
egy of phyletic pattern analysis.

Recently, using a combination of detailed sequence
analysis, structure prediction and gene order comparison,
we predicted a previously undetected DNA-repair system,
which consists of .20 COGs and appears to be largely
specific for hyperthermophilic archaea and bacteria [10].
Although markedly enriched in hyperthermophiles, the
COGs comprising this system showed considerable varia-
bility of phyletic patterns, which probably reflects major
effects of lineage-specific gene loss and horizontal gene
transfer. We used these COGs as a template to formulate
criteria for phyletic pattern search and identify other
COGs with a similar preference for hyperthermophiles,
which could be considered potential genomic determinants
of hyperthermophily. Specifically, the following criteria
were employed: (1) a COG should include proteins from at
least three hyperthermophiles, out of 11 sequenced
genomes; (2) the number of hyperthermophiles in a COG
should be greater than the number of other species; and (3)
thermophiles (14 sequenced genomes altogether) should
comprise more than half of the COG members.

Phyletic patterns that met the above criteria were
recorded for 290 COGs (see Supplementary Material at
http://archive.bmn.com/supp/tig/April2003-Makarova_etal.
pdf), including 15 COGs (7% of the total), which
represented the majority of the components of the
predicted thermophile-specific repair system described

earlier [10]. Given that among the 11 available genomes of
hyperthermophiles eight were from archaea, it was not
unexpected that a substantial fraction of the selected
COGs were archaea-specific (Fig. 1). The 107 archaea-
specific COGs included three components of the predicted
DNA repair system (COG2254, COG2462, COG4343) and
probably other proteins that are specifically important for
hyperthermophily. However, this group of COGs is likely
also to include archaeal proteins that are not directly

Box 1. Some important definitions and concepts of evolutionary genomics

Phyletic pattern: Also called phylogenetic pattern. Pattern of

representation of a set of orthologous genes in genomes of

different species [24–26]. Table I shows the phyletic patterns for

two COGs discussed in this article, COG2250 and COG2361.

Examination of these patterns immediately shows that COG2250

is specific for hyperthermophiles (and missing in only one genome

of a hyperthermophile), whereas COG2361 is scattered among

thermophiles and mesophiles alike. Establishing a connection

between a gene and a phenotype is the application of phyletic

patterns that is central to this article. Another important application

is identification of cases of non-orthologous gene displacement

(see below).

Non-orthologous gene displacement: The situation when the same

essential function is performed by unrelated or at least not orthologous

proteins [8]. Non-orthologous gene displacement tends to result in

phyletic patterns that are partially complementary; the complementar-

ity is rarely perfect because some organisms often have both proteins,

resulting in functional redundancy [27].

Lineage-specific expansion of a paralogous gene family: An increase

in the number of paralogs as a result of one or more duplications that

have occurred after the separation of a given lineage from other

compared lineages. Lineage-specific expansions often reflect adap-

tations to a specific ecological niche [27,28].

Genome-context analysis: An approach in computational geno-

mics whereby functional inferences are made on the basis of

various associations between functionally characterized proteins

or domains and uncharacterized ones. These associations include

fusion of domains within the same protein, juxtaposition of

genes in a (predicted) operon, co-expression and phyletic

profiles. The context information is particularly reliable when

supported by evolutionary conservation of the associations in

question [29].

For a recent discussion of these and other aspects of evolutionary

genomics, see [30].

Table I. Phyletic patterns for COG2250 and COG2361a

COG2250 COG2361

Archaea
Archaeoglobus fulgidus þ 2

Methanocaldococcus jannaschii þ þ
Methanopyrus kandleri þ 2

Methanothermobacter thermoautotrophicus 2 2

Methanosarcina acetivorum þ þ
Pyrococcus abyssi þ 2

Pyrococcus horikoshii þ 2

Thermoplasma acidophilum 2 2

Thermoplasma volcanii 2 2

Aeropyrum pernix þ 2

Pyrobaculum aerophilum þ 2

Sulfolobus solfataricus þ 2

Bacteria
Aquifex aeolicus 2 2

Thermotoga maritima þ 2

Thermoanaerobacter tengcongensis þ 2

Bacillus subtilis 2 2

Clostridium acetobutilicum 2 2

Escherichia coli 2 2

Ralstonia solanaraceum 2 2

Helicobacter pylori 2 2

Caulobacter crescentus 2 þ
Synechocystis sp. 2 þ
Nostocsp. 2 2

Deinococcus radiodurans 2 þ
Corynebacterium glutamicum 2 2

Mycobacterium tuberculosis 2 2

Fusobacterium nucleatum 2 2

Treponema pallidum 2 2

Chlamydia trachomatis 2 2

aPlus (þ) shows presence and minus (2 ) shows absence of a member of a

COG in the given genome. Hyperthermophiles are shown in purple and

thermophiles are shown in red. Only a sampling of sequenced bacterial

genomes was included.

Fig. 1. Phylogenetic classification of COGs enriched in hyperthermophiles (the 290

COG set).
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relevant for the hyperthermophilic phenotype, and there is
no obvious way, in this case, to differentiate between these
two categories of proteins.

Therefore, we concentrated on the 58 COGs, which
included, along with archaea, at least one of the three
available genomes of hyperthermophilic bacteria, reason-
ing that, for proteins shared by the phylogenetically
disjointed archaeal and bacterial hyperthermophiles, a
direct functional link to hyperthermophily was
particularly likely. Notably, of the 58 COGs in this set,
12 (21%) belong to the predicted DNA repair system
(Table 1), which is compatible with the notion that this
group of COGs might be enriched in proteins functionally
linked to hyperthermophilicity. For the majority of the
COGs in the ‘58 COG’ set, no functional prediction or only a
general prediction was available (Fig. 2 and Table 1). We
investigated these COGs in detail using analysis of
genome context combined with extensive, in-depth data-
base searches [11–13], which resulted in a variety of new
functional predictions.

The ‘58 COG’ set included only a few COGs related to
general metabolism (Fig. 2). Some of these are essential
enzymes of pyruvate metabolism (COG1144), glycolysis
(COG1980, COG3635) and amino acid biosynthesis

(COG1350), which apparently substitute for analogous
enzymes present in other organisms. In addition, there are
still several gaps in central metabolic pathways of
hyperthermophiles, for which candidate enzymes so far
could not be predicted confidently [14–16]. Several COGs

Table 1. COGs enriched in hyperthermophiles and shared by at least two hyperthermophilic bacteria

COG numbera Name and comments HTP (TP)b Non-hTP (MP)c

1110 Reverse gyrase 11 (11) 0 (0)

2250d Homologous to COG1895, putative chaperones 10 (10) 0 (0)

1980d Fructose 1,6-bisphosphatase 10 (13) 3 (0)

1688d RAMP superfamily protein 10 (11) 4 (3)

1618d Predicted nucleotide kinase 10 (13) 4 (1)

1313d Homologs of pyruvate formate lyase activating protein PflX 10 (11) 3 (2)

1468d RecB family exonuclease 10 (11) 5 (4)

3635d Predicted phosphoglycerate mutase 10 (13) 5 (2)

1318d Transcriptional regulator, often encoded next to RecA-

superfamily ATPases implicated in signal transduction

(COG0467)

9 (9) 0 (0)

1350d Predicted alternative tryptophan synthase b-subunit 9 (12) 4 (1)

1353d Predicted DNA polymerase 9 (11) 5 (3)

1144d Pyruvate:ferredoxin oxidoreductase, d subunit 9 (12) 5 (2)

1578 Predicted acyl-binding protein 8 (9) 2 (1)

1149 P-loop ATPase of the MinD superfamily, contains an inserted

ferredoxin domain

7 (8) 2 (0)

1237 Metal-dependent hydrolase of the b-lactamase superfamily 7 (8) 4 (3)

1583 RAMP superfamily protein 7 (9) 3 (1)

1568 Predicted methyltransferases 6 (6) 0 (0)

1906 Predicted membrane transporter 6 (6) 0 (0)

2152 Predicted glycosylase 6 (6) 2 (2)

1336 RAMP superfamily protein 6 (7) 2 (1)

1148 Heterodisulfide reductase subunit A and related

polyferredoxins

6 (7) 2 (1)

2516 Biotin synthase-related enzyme 5 (5) 0 (0)

1856 Biotin synthase-related enzyme 5 (5) 0 (0)

1604 RAMP superfamily protein 5 (5) 1 (1)

2406 Predicted hemoprotein distantly related to bacterioferritin 5 (6) 2 (1)

1059 Thermostable 8-oxoguanine DNA glycosylase 5 (7) 3 (1)

1769 RAMP superfamily protein 4 (4) 0 (0)

1542 Conserved protein, contains coiled-coil domains 4 (4) 0 (0)

1367 RAMP superfamily protein 4 (4) 1 (1)

2000 Predicted Fe–S proteins, hydrogenase component 4 (5) 1 (0)

aClusters of orthologous groups (COGs) including components of the predicted thermophile-specific DNA repair system [10] are shown by bold type.
bNumber of genomes of hyperthermophiles (hTP) and of thermophiles (TP, in parentheses) in the given COG; the COGs in the table are sorted in the descending order of the

number of hyperthermophiles represented.
cNumber of genomes of non-hyperthermophiles (non-hTP; moderate thermophiles and mesophiles) and of mesophiles (MP, in parentheses).
dBecause these COGs are represented in a significant majority of hyperthermophiles, the remaining genomes of hyperthermophiles were searched using the TBLASTN

program to detect potential unannotated COG members; however, such new COG members were not found.

Fig. 2. Functional classification of COGs enriched in hyperthermophiles and rep-

resented in at least one hyperthermophilic bacterium (the 58 COG set).
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in the ‘58 COG’ list consist of predicted redox enzymes of a
recently described superfamily, which utilize iron–sulfur
clusters and S-adenosylmethionine for radical catalysis
(SAM-radical enzymes) [17] and might be involved in
diverse metabolic pathways. These enzymes include
distant homologs of biotin synthase (COG2516,
COG1856) and homologs of pyruvate formate-lyase acti-
vating enzyme (COG1313), which are present exclusively
in thermophiles. In addition, in two other, larger COGs
that consist of SAM-radical enzymes, namely COG0502
(biotin synthase) and COG1180 (pyruvate formate-lyase
activating enzyme), most of the thermophiles are rep-
resented by several paralogs. We hypothesize that the
unique catalytic mechanism of these enzymes is advan-
tageous under low oxygen and high temperature con-
ditions and could be employed in numerous redox
reactions in the central metabolism of thermophiles.

COG1318 – a hyperthermophile-specific transcriptional

regulator?

The only transcriptional regulator in the ‘58 COG’ set
(COG1318) is remarkable in that it nearly fits the
definition of a ‘genomic signature’ of hyperthermophily
(i.e. this COG is present exclusively in hypertermophiles
and, among these, is missing only from Sulfolobus and
Thermoanaerobacter tengcongensis). In the genomes of the
pyrococci, Thermotoga maritima, Pyrobaculum aerophi-
lum and Archaeoglobus fulgidus, the genes of COG1318
are associated with genes for KaiC-like RecA-superfamily
ATPase (COG0467). KaiC is one of the three gene products
(kaiABC) that are responsible for circadian oscillation
regulation in cyanobacteria [18]. Recently, it was shown
that this cassette is amplified in cyanobacteria under
environmental stress [19]. Furthermore, an archaea-
specific expansion (Box 1) is notable among COG0467
members, and all genomes of hyperthermophiles encode at
least one member of this COG. Because archaea do not
have homologs of kaiA and kaiB genes, which regulate the
kai operon expression in cyanobacteria, transcriptional
regulators of COG1318 probably regulate the expression of
the kaiC homologs in hyperthermophiles; together, these
two genes might have an important role in signal
transduction in these organisms.

COG2250 and COG1895 – putative molecular

chaperones important for hyperthermophily

COG2250 comes even closer to being a true ‘hyperthermo-
philic signature’ because it is represented in all hyperther-
mophiles, with the single exception of Aquifex aeolicus.
Moreover, most genomes of hyperthermophiles, particularly
crenarchaea, encode several paralogous members of this
COG. Extensive PSI-BLAST searches using different
queries [13,20] showed that COG2250 proteins were
homologous to those in COG1895, another member of
the ‘58 COG’ set. Furthermore, a weaker but statistically
significant sequence similarity was detected between
these proteins and the uncharacterized C-terminal domain
of the mammalian protein sacsin, the product of the gene
mutated in a distinct form of spastic ataxia [21]. Sacsin also
containsa Jdomainshared withDnaJ-familyproteinandan

HSP90-like ATPase domain, which suggests a molecular
chaperone function for this protein [22].

Most members of COG2250 are either encoded adjacent
to or are fused within the same polypeptide with ‘minimal’
nucleotidyltransfereases (MNTs), another protein family
expanded in archaea [23]. MNTs are often associated
(within the same protein or within an operon) with another
small protein (COG2361), which has been proposed to
function as a substrate recognition domain or as a
molecular chaperone aiding the folding of the MNT [23].
It appears most likely that small proteins from COG2250,
COG1895 and COG2361 have similar functions and
probably the same structure (secondary structure predic-
tion indicates that they are all-a-helical proteins [22]),
although only the former two COGs are linked to
hyperthermophily. The biological functions of MNTs and
the associated small a-helical proteins (domains) are not
known. However, the observations that these a-helical
domains are linked with MNTs, which are thought to be
incapable of independent, stable folding [13], as well as the
predicted molecular chaperone sacsin and some other
chromatin-associated domains [22], all suggest a chaper-
one-like function for these domains. More specifically, we
hypothesize that these proteins belong to a previously
undetected class of molecular chaperones, which could be
involved in chromatin remodeling, particularly in
hyperthermophiles.

Conclusions

We believe that the examples discussed above, along
with other predictions included in Table 1 and the
Supplementary Material (http://archive.bmn.com/supp/
tig/April2003-Makarova_etal.pdf), are sufficient to
demonstrate the utility of flexible phyletic pattern
search for producing experimentally testable predic-
tions of protein functions that correlate with a
particular phenotype. Furthermore, even those 11
COGs proteins in the ‘58 COG’ set, for which there
was no specific prediction, have an increased likelihood
of contributing to the hyperthermophilic phenotype and
could therefore be interesting experimental targets.
Because of the wide spread of lineage-specific gene loss
and horizontal gene transfer in the evolution of
prokaryotes, phyletic pattern search for genomic
signatures of unique phenotypes cannot be expected
to produce many unequivocal results. Nevertheless,
with the parallel increase in the number of available
genome sequences and the functionally characterized
genes linked to a particular biological feature, this
approach is expected to become progressively more
accurate.
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The comparative analysis of three strains of the endo-

symbiotic bacterium Buchnera aphidicola has revealed

high genome stability associated with an almost com-

plete absence of chromosomal rearrangements and

horizontal gene transfer events during the past 150

million years. The loss of genes involved in DNA uptake

and recombination in the initial stages of endosymbio-

sis probably underlies this stability. Gene loss, which

was extensive during the initial steps of Buchnera evol-

ution, has continued in the different Buchnera lineages

since their divergence.

Bacterial genomes are continuously being modified by the
gain and loss of genes, and movement of genes within or

between the different DNA molecules that compose the
genome. Inversions, translocations and other chromo-
somal rearrangements are frequently fixed in the genomes
of free-living bacteria, and the incorporation of foreign
genes through horizontal gene transfer (HGT) is one of
the most important aspects of bacterial evolution. Species
with the highest HGT rates have a higher probability
of incorporating genes that will help them to adapt to
their environments or to conquer new niches. Thus, a
significant proportion of genetic diversity is obtained
through the acquisition of sequences from distantly
related organisms [1,2].

Recently however, Tamas and colleagues [3] reported
an extreme case of genome stability. They sequenced
the genome of Buchnera aphidicola BSg, an endosymbiotic
g-proteobacteria that lives in vesicles present in theCorresponding author: Francisco J. Silva (Francisco.Silva@uv.es).
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