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Single-nucleotide polymorphism (SNP) genotypes were recently
examined in an 890-kb region flanking the human gene CYP2D6.
Single-marker and haplotype-based analyses identified, with
genomewide significance (P < 10�7), a 403-kb interval displaying
strong linkage disequilibrium (LD) with predicted poor-metabo-
lizer phenotype. However, the width of this interval makes the
location of causal variants difficult: for example, the interval
contains seven known or predicted genes in addition to CYP2D6.
We have developed the Bayesian fine-mapping software COLDMAP,
which, applied to these genotype data, yields a 95% location
interval covering only 185 kb and establishes genomewide signif-
icance for a causal locus within the region. Strikingly, our interval
correctly excludes four SNPs, which individually display association
with genomewide significance, including the SNP showing stron-
gest LD (P < 10�34). In addition, COLDMAP distinguishes homozygous
cases for the major CYP2D6 mutation from those bearing minor
mutations. We further investigate a selection of SNP subsets and
find that previously reported methods lead to a 38% savings in
SNPs at the cost of an increase of <20% in the width of the location
interval.

L inkage-disequilibrium (LD) mapping using high-density sin-
gle-nucleotide polymorphism (SNP) maps is already useful in

identifying genes involved in complex diseases (1). Its role will
grow substantially, as recent reports of the extent of LD in the
human genome (2–6) make detecting associations more feasible
than predicted (7). Conversely, these findings suggest that in-
tervals displaying association may be relatively wide and hence
contain many genes. The challenge is then to refine techniques
for fine-mapping of the causal polymorphism(s) within regions
of high LD.

Recently, the efficacy of LD mapping has been confirmed for
genes involved in drug response (8). Genotypes of 1,018 indi-
viduals were obtained for 32 SNP markers located in an 890-kb
region flanking the CYP2D6 gene on human chromosome 22q13.
Functional polymorphisms at the CYP2D6 locus were also typed,
and 41 individuals were found to carry two mutant alleles so that
they were predicted to have a ‘‘poor-metabolizer’’ phenotype.
LD mapping identified a 403-kb region, including the CYP2D6
locus, displaying strong LD with this predicted phenotype. LD
was sufficiently strong that genomewide significance (P � 10�7)
was achieved for 10 of the markers, even when analyzed indi-
vidually so that joint information from neighboring markers was
ignored. Inferring haplotypes from the SNP genotypes and then
analyzing five-marker haplotypes led to even higher levels of
significance but not to any narrowing of the 403-kb high-LD
interval.

Here, we use the data of Hosking et al. (8) to demonstrate the
power of multipoint LD mapping to narrow location intervals.
Our Bayesian method explicitly models mutation and recombi-
nation histories using the shattered coalescent model (9) and
allows for allelic heterogeneity at the functional locus. Because
it separates out sporadic case chromosomes and delineates the

contributions to LD of different founding mutation events, it can
identify a 95% location interval much narrower than the interval
displaying high LD.

Methods
Full details of the data are given in ref. 8, but note that distances
reported here are based on updated SNP locations provided by
the authors subsequent to publication and differ slightly from the
values reported in ref. 8. Genotypes for 1,081 individuals were
obtained for 32 SNPs, spanning an 890-kb region encompassing
the CYP2D6 gene on chromosome 22q13. Five SNPs had sample
allele frequencies �10% and were not used in the statistical
analyses contained in ref. 8. Because our multipoint method
simultaneously analyzes all of the data, there is no problem with
sensitivity to allele frequency, and we retain all 32 SNPs for our
analyses.

Our analysis is based on the shattered coalescent model (9) of
the genealogy underlying a sample of case chromosomes in the
vicinity of a putative disease locus, together with a simpler
first-order Markov assumption for the controls. The shattered
coalescent model is more realistic than the star-shaped tree
model implicitly assumed by many existing multipoint methods.
Within our modeling framework, we can allow for missing
marker information and uncertainty about both the true under-
lying genealogy and the makeup of ancestral marker haplotypes.
The model is implemented by means of Markov chain Monte
Carlo within the COLDMAP software (COalescent LD MAP-
ping). The output of COLDMAP leads to approximations of the
posterior distributions of the location of the disease locus and of
the marker allele frequencies. In addition, the output permits
construction of a cladogram that can indicate genetic heteroge-
neity by means of clusters of individuals corresponding to
different genotypes at the disease locus. Simulation studies (9)
demonstrate that inferences about the location of the disease
locus are robust to many of the modeling assumptions.

The COLDMAP analyses presented here feature two substantial
improvements over those described in ref. 9. First, our previous
algorithm was restricted to haplotype data; COLDMAP directly
analyzes genotypes. Initially, the phase of each genotype at each
locus is assigned at random. Periodically, a new phase allocation
is proposed by selecting an individual at random and then
swapping the current phase allocation at all loci either to the
right or to the left of a randomly chosen location. The proposal
is accepted or rejected according to the usual rules for a
Metropolis sampler (10). Because there exist good algorithms
for inferring haplotypes from genotype data (11), this may seem
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a small advantage. However, for the goal of locating causal
variants, the phase of genotype data is not of central interest, and
there are substantial benefits in analyzing genotype data directly,
avoiding this intermediate step. COLDMAP averages over phase
allocations, weighted according to their plausibilities under the
shattered coalescent model. This allows the genotype data to be
fully used, even if there is uncertainty about the correct haplo-
types. Perhaps more importantly, phenotype information can
inform the haplotyping, which in turn makes the gene mapping
more precise.

Our second innovation is that, in addition to a standard
analysis, we ran COLDMAP with some controls mislabeled as
cases. Such mislabeling would be seriously detrimental to some
alternative methods of analysis, but because COLDMAP can
identify and exclude sporadic cases, it suffers little from the
misclassification. The purpose of this deliberate misclassification
was to allow us to test the null hypothesis of no causal locus
within the interval, because under this hypothesis the mislabeled
controls should not be distinguishable from cases. To test this
hypothesis, we identify a major cluster of individuals labeled as
cases and count the number of true cases within this cluster. This
number has a hypergeometric null distribution, for which P
values are readily computed. For example, if there are 100
individuals labeled as cases in the analysis, 50 true cases and 50
mislabeled controls, and the largest cluster size is 40 and includes
35 true cases, then the P value is the probability of observing �35
white balls in a sample size of 40 drawn from an urn containing
50 white balls and 50 red balls, which is 3.6 � 10�10. In the
analyses below, we chose the number of mislabeled controls to
equal the number of cases, giving good statistical efficiency
relative to computational cost.

Results and Discussion
The curve in Fig. 1 shows the posterior density of the location
of a functional polymorphism underlying the poor-metabolizer
phenotype, for the COLDMAP analysis of the 41 cases only. The

95% equal-tailed posterior probability interval runs from 415 to
600 kb (distances measured from the first SNP), less than half the
length of the high-LD interval (8). Four of the ten SNPs
displaying genomewide significance (8) are correctly excluded
from our interval, including that at 668 kb, which displays the
strongest single-marker association (P � 10�34), and that at 389
kb, which is the third strongest (P � 10�24). Three of the seven
known or predicted genes within the high-LD region, other than
CYP2D6, are excluded from our interval.

Fig. 2 shows a cladogram of the 82 case chromosomes at the
putative functional locus. The cladogram was formed by average-
link hierarchical cluster analysis (12) implemented in S-plus, with
the distance between any two chromosomes defined to be the
proportion of COLDMAP outputs for which they were not assigned
to the same subtree of the shattered coalescent. The figure shows
a strong separation between the chromosomes from the 32
individuals homozygous for the major CYP2D6 mutation
(G1846A) and those from the individual carrying two minor
mutations.

The chromosomes from the eight individuals carrying one
major and one minor mutation are less easy to interpret in Fig.
2, because the data consist of unphased genotypes. If LD is
sufficiently strong in the region of CYP2D that phase is
correctly resolved, we would expect one chromosome from
each of these individuals to cluster with the G1846A chromo-
somes and one with the minor chromosomes (although the
latter clustering may be weaker). This is indeed broadly the
case (Fig. 2).

Because of the problem of interpretation for unphased geno-
types, we also clustered individuals, rather than chromosomes.
At each iteration of the algorithm, the distance between two
individuals was taken to be 1 if no pair of chromosomes, one
from each individual, was in the same subtree of the shattered
coalescent. If this held for one pair of chromosomes, the distance
was 0.5, and if two nonoverlapping pairs could be found satis-
fying this condition, the distance was 0. Fig. 3 shows the

Fig. 1. Location of a functional polymorphism underlying the predicted poor-metabolizer phenotype within the 890-kb candidate region studied by Hosking
et al. (8). The curve shows the posterior probability distribution estimated by using COLDMAP, applied to the 41 cases only. Beneath the x axis, horizontal bars
indicate the locations of the known and predicted genes in the high-LD interval (based on NCBI34 build), 185-kb 95% posterior interval, and the 403-kb high-LD
interval (8). The circles indicate �log10(P value) for the 27 SNPs tested in ref. 8 (data from table 2 in ref. 8). The vertical dashed lines indicate the location of CYP2D6.
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cladogram based on these distances. It shows a clear separation
of the G1846A homozygotes from those carrying, respectively,
one and two minor CYP2D6 mutations. This ability to charac-
terize the allelic heterogeneity at the causal locus is the source
of COLDMAP’s ability to narrow the interval of plausible locations
within the LD interval.

The above analysis assumes that there is a causal locus within
the candidate region and hence always finds a location for it. To
provide an assessment of the weight of evidence for or against
the presence of a causal locus within the region, we ran COLDMAP
again with 41 controls, chosen at random from the 977 available,
mislabeled as cases. Eight of the controls selected were het-

Fig. 2. Cladogram of the 82 chromosomes from the 41 predicted poor-metabolizer individuals (cases). The pairwise distance measure (y axis) is the proportion
of COLDMAP outputs in which the chromosomes are allocated to different subtrees. Chromosomes from individuals carrying one minor CYP2D6 mutant allele are
marked with *, whereas those from the individual carrying two minor mutant alleles are marked with **.

Fig. 3. Cladogram of the 41 cases; see Results and Discussion for definition of distance. * denotes individuals with one minor mutant allele, and ** denotes
the individual with two minor mutant alleles.
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erozygous carriers of the G1846A mutant, and one carried a
minor CYP2D6 mutation.

The 95% location interval given by COLDMAP in this analysis
has a width 196 kb, slightly wider than that obtained for the
cases-only analysis (186 kb). The algorithm recognizes that the
majority of the control chromosomes do not bear the major
mutation and excludes them from the genealogy. Thus, the
location estimate is only slightly affected by the misclassified
controls. For this analysis, we chose to define the major cluster
of the cladogram by the longest internal branch separating the
cluster from the rest of the cladogram, subject to a minimum
cluster size of 10. An alternative approach is to optimize the
product of internal branch length and number of leaf nodes.
Using our definition, the cladogram of the 82 individuals (Fig.
4) has a single large cluster of size 44, which includes 38 of the
41 cases. Five of the six controls in the cluster are G1846A
carriers, whereas the three cases not included in the cluster carry
between them only two G1846A alleles. Thus, the figure illus-
trates again that COLDMAP is highly specific, as well as sensitive,
in discriminating individuals carrying one or two copies of the
major CYP2D6 mutant allele from those bearing only the normal
or minor mutant alleles. This discrimination is crucial because
one of the key doubts about the efficiency of LD-based methods
concerns their ability to cope with genetic heterogeneity (13).

The major cluster of Fig. 4 can be used to obtain a P value for
the null hypothesis that no causal locus is present in the region.
Under this hypothesis, cases and controls are equally likely to be
represented in the cluster, and the probability of observing 38 or
more cases within a cluster size of 44 is 1 � 10�13 (hypergeo-
metric distribution). We replicated this analysis with two other
random choices of 41 misclassified controls and in each case
achieved genomewide significance: a major cluster size of 45
including all but five of the cases (P � 9 � 10�10) and a major
cluster size of 42 including all but three of the cases (P � 3 �
10�15). The 95% location intervals from these analyses were 189
kb and 192 kb.

Finally, we applied the spectral decomposition and diversity
selection procedures (14) to obtain two different 20-SNP subsets
of the original 32 markers. We also investigated a strategy of
removing one of any pair of SNPs found to have correlation
coefficient r2 � 0.8, which led to a 22-SNP subset. Fig. 5
illustrates the 95% intervals generated by COLDMAP using each
of these three SNP subsets. We see that the 22-SNP subset leads
to substantial loss of accuracy for fine mapping, with an increase
in interval width of �50% compared with the full 32-SNP
analysis. However, for the two 20-SNP subsets, the increase in
interval width is more modest, averaging 18%. Analysis of
cladograms (results not shown) shows that there is also some loss
of accuracy in identifying clusters of chromosomes or individuals
sharing the same CYP2D6 mutations.

Fig. 4. Cladogram of 41 cases and 41 controls, the latter selected at random and analyzed as cases. The cases are labeled as for Fig. 3. Controls homozygous
for the normal CYP2D6 allele are indicated with ∧ ; those carrying one G1846A mutant allele are denoted with *∧ , and **∧ denotes the control carrying a minor
CYP2D6 mutation.

Fig. 5. The horizontal bars indicate (top to bottom) the high-LD interval (8)
and 95% intervals from the analysis of all 32 SNPs, a 22-SNP subset, and two
20-SNP subsets. SPD, spectral decomposition; DIV, diversity. Each row of circles
shows the locations of the SNPs used to calculate the 95% interval immediately
below it.
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Conclusion
We have shown that appropriate genealogical modeling can
identify chromosomes bearing the major mutation and hence
locate this mutation within an interval much narrower than the
interval displaying LD. We thus disagree with the suggestion that
the apparent block structure of LD will ‘‘. . . reduce the need for
sophisticated population-genetic inference in gene mapping’’
(15). The block structure of LD creates the need for population-
genetic inference to refine location within the LD blocks (16).
Note also that our results are consistent with recombination
occurring occasionally throughout this region, so the punctate
nature of recombination reported in the MHC region (17) is not
absolute here.

We have also shown that the SNP selection procedures
described in ref. 14 work well, in that they have reduced
genotyping costs by almost 40% while increasing the width of the
location intervals by �20%. These procedures are based on

attempting to choose subsets of SNPs that capture as much of the
genetic variation as possible. In contrast, choosing a SNP subset
based on pairwise LD gives a much greater loss of information
(50% increase in interval width), despite including more SNPs.

The major limitation of our COLDMAP software is computa-
tional expense. In particular, exploring the possible haplotype
assignments of genotype data implies a substantial computa-
tional cost. Thus, COLDMAP cannot be applied directly to large
numbers of cases or to many SNPs. However, it can be used to
investigate regions of interest highlighted by simpler analyses.
We have shown here that significance levels can be achieved
that compensate for the multiple testing involved in such an
approach.
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