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Amino acid substitution matrices are central to protein-comparison
methods. In most commonly used matrices, the substitution scores
take a log-odds form, involving the ratio of ‘‘target’’ to ‘‘back-
ground’’ frequencies derived from large, carefully curated sets of
protein alignments. However, such matrices often are used to
compare protein sequences with amino acid compositions that
differ markedly from the background frequencies used for the
construction of the matrices. Of course, the target frequencies
should be adjusted in such cases, but the lack of an appropriate
way to do this has been a long-standing problem. This article
shows that if one demands consistency between target and back-
ground frequencies, then a log-odds substitution matrix implies a
unique set of target and background frequencies as well as a
unique scale. Standard substitution matrices therefore are truly
appropriate only for the comparison of proteins with standard
amino acid composition. Accordingly, we present and evaluate a
rationale for transforming the target frequencies implicit in a
standard matrix to frequencies appropriate for a nonstandard
context. This rationale yields asymmetric matrices for the compar-
ison of proteins with divergent compositions. Earlier approaches
are unable to deal with this case in a fully consistent manner.
Composition-specific substitution matrix adjustment is shown to
be of utility for comparing compositionally biased proteins, includ-
ing those of organisms with nucleotide-biased, and therefore
codon-biased, genomes or isochores.

Amino acid substitution matrices are a key component of
protein-comparison methods, with the quality of sequence

alignments assessed by scores that are the sum of substitution
and gap scores. Such scores also provide a starting point for
evolutionary distance estimates. It is desirable to produce align-
ments that reflect as accurately as possible the physicochemical
correspondences and evolved mutational differences between
amino acid sequences. For this purpose, optimal substitution
scores have been developed, which best distinguish such ‘‘true
alignments’’ of a given class from chance. However, such
substitution scores, developed in a standard context, are widely
used to compare the large proportion of proteins that have
nonstandard compositions. In this article, we address the
long-standing problem of how to restore consistency in such
circumstances.

Although a wide variety of rationales have been used to
construct amino acid substitution matrices, the great majority
implicitly have the same underlying mathematical structure. At
least in the context of ungapped local alignments, this structure
defines the class of alignments for which any given matrix is
optimal. Given a model in which amino acids occur by chance
with ‘‘background frequencies’’ pi, any substitution matrix with
negative expected score and at least one positive entry may be
written in the ‘‘log-odds’’ form

sij �
1
�

ln� qij

pi pj
�,

where the qij are positive ‘‘target frequencies’’ that sum to 1, and
� is a natural scale factor for the matrix. If the target qij reflect

the frequencies with which the various amino acids are aligned
within a given class of true alignments, then the scoring system
is optimal for discriminating this class (1, 2). Notably, different
amino acid substitution matrices are optimal for detecting
different classes of alignment. For example, graded series of
substitution matrices have been developed, with the target
frequencies of each matrix tailored to a particular range of
evolutionary divergence (3–10). Any such series implies a model
of protein evolution, but current evolutionary theory provides no
basis for calculating target frequencies a priori. Accordingly,
methods have been developed to derive these target frequen-
cies from large collections of alignments of homologous
proteins. There is a degree of circularity in this, because these
alignments themselves are generally constructed with the aid
of a substitution matrix. The two most widely used series of
matrices are based on alternative strategies for mitigating this
circularity.

The classic PAM matrices (3, 4) were based on robustly
accurate alignments of closely related sequences from which
target frequencies for any desired evolutionary distance were
estimated by extrapolation using a time-reversible Markov
model. More recently, the data underpinning this model have
been updated (5, 6), and the theoretical basis for deriving the
model has been reworked (7–9). The strategy for the BLOSUM
matrices (10) avoided such extrapolation by estimating target
frequencies directly for different evolutionary distances by using
the ungapped segments of multiple sequence alignments of
protein families. Careful curatorial work has gone into the
construction of the PAM and BLOSUM matrices, and these or
related matrices are used by default in popular database search
programs such as FASTA (11) and BLAST (12, 13).

However, the important problem of compositional adjustment
remains. The need for adjustment arises when the amino acid
frequencies of the sequences being compared are significantly
different from the standard background frequencies used to
construct the matrices. Such nonstandard amino acid frequen-
cies are not unusual, as with the large sets of ‘‘compositionally
drifted’’ proteins encoded by AT- or GC-rich genomes or
isochores (14–16) or numerous physicochemically specialized
(e.g., hydrophobic or cysteine-rich) proteins. In these cases,
naive use of standard substitution matrices may be inappro-
priate because, as shown below, an inherent inconsistency
between target and background frequencies arises. Restoring
consistency requires a rationale for the compositional adjust-
ment of target frequencies and therefore of amino acid
substitution scores.

The crux of this article is our demonstration, with a proof
presented in the Appendix, that any log-odds substitution matrix
implies a unique or canonical set of target and background
frequencies. We then develop and evaluate a rationale for using
the information implicit in any standard substitution matrix to
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derive variant matrices suitable for altered background frequen-
cies, thus taking advantage of the extensive data analysis em-
bodied in the PAM or BLOSUM series. Neither the PAM nor
the BLOSUM approach to matrix construction is directly ap-
plicable to the comparison of sequences with differing compo-
sitions, whereas our method yields consistent, asymmetric ma-
trices for such comparisons.

Valid Substitution Matrices Imply Canonical Background
Frequencies
Although it is possible to specify any arbitrary substitution
matrix, let us assume for the moment that we have constructed
such a matrix explicitly as a log-odds matrix from a set of
alignment data. Specifically, we start with a set of target fre-
quency data qij for the amino acid pairs, consisting of positive
numbers that sum to 1; we do not require these qij to be
symmetric. For consistency, we define two sets of background
frequencies pi and pj� as the marginal sums of the qij:

pi � �
j

qij; p�j � �
i

qij. [1]

The substitution matrix scores are then defined as

sij �
1
�

ln� qij

pi p�j
�, [2]

where � is an arbitrary positive scale factor. Such a matrix we will
call valid in the context of the pi and pj�. Note that up to rounding
errors, both the PAM and BLOSUM series of substitution matrices
are valid by this definition in the context of their implicit back-
ground frequencies. Because the PAM and BLOSUM target
frequencies qij are symmetric by construction, they imply a single set
of background frequencies pi � pi� as well as symmetric scores sij �
sji, but we will require no such symmetry. In practice, this more
general case is readily accommodated by BLAST (12, 13) and various
other database search implementations.

Although a substitution matrix is valid in the context of the
background frequencies pi and pj� used for its derivation, it is
often used to compare sequences characterized by different
background frequencies Pi and Pj�. As long as the expected score
�ijPi Pj�sij remains negative, the matrix sij still can always be
written in the log-odds form sij � (1��)ln[Zij�(Pi Pj�)]. In other
words, in the new background-frequency context, sij is still a
log-odds matrix, with a new set of target frequencies Zij and a
new scale factor �. However, it is no longer necessarily the case
that Pi � �jZij and Pj� � �iZij. Thus, although sij remains a
log-odds matrix, it may no longer be valid in the new context.

In the Appendix we show that, in fact, sij can be a valid log-odds
matrix only in the unique context of the qij used for its construc-
tion with their implied background frequencies. Furthermore,
given only a matrix that is valid in some context, its implicit scale
factor �, as well as its implicit target frequencies qij, with their
implied background frequencies, may all be retrieved effectively
and efficiently.

Given a matrix valid in some context, the procedure described
in the Appendix allows one to express it in the form of Eqs. 1 and
2. Further, we have developed an efficient numerical approach,
to be described elsewhere, for determining whether an arbitrary
matrix can be valid. Of course, any matrix that is constructed
explicitly as a log-odds matrix with consistent target and back-
ground frequencies is valid in the context of these frequencies.

A Strategy to Adapt Substitution Matrices to Noncanonical
Background Frequencies
As shown above, there is an underlying inconsistency to using
standard amino acid substitution matrices such as the PAM or

BLOSUM series to compare proteins with substantially diver-
gent background frequencies. Moreover, it is not feasible to
develop new substitution matrices de novo for every new com-
positional context by reworking the original PAM or BLOSUM
strategies based on many carefully curated alignments. There-
fore, we have developed the following rationale for adapting any
existing log-odds matrix to nonstandard contexts.

One way to formulate this problem is to suppose one is given
a substitution matrix of the form of Eq. 2 and satisfying the
consistency conditions of Eq. 1. A nonstandard context can be
understood as the specification of new background amino acid
frequencies Pi and Pj�. We then seek a new set of target
frequencies Qij that is as ‘‘close’’ to the original target frequen-
cies qij as possible but that satisfies the consistency conditions

Pi � �
j

Qij; P�j � �
i

Qij. [3]

To measure the idea of close, it is natural to use the relative
entropy, or Kullback–Liebler distance, of the frequency distri-
bution Qij from qij:

D(Q, q) � �
ij

Qij ln�Qij

qij
�. [4]

The requirement that the Qij sum to 1 makes the space of possible
target frequencies 399-dimensional. The consistency conditions
(Eq. 3) impose 38 additional, independent conditions on the Qij,
reducing the space to 361 dimensions. In the context of nucleic
acid comparison, the space of consistent Qij is nine-dimensional.
Using Lagrange multipliers, we have developed an efficient
Newtonian procedure for finding the Qij that minimize D(Q, q)
of Eq. 4. This procedure will be described in detail elsewhere.

If one chooses, one may place additional constraints on the Qij.
For example, a major factor influencing the effectiveness of a
substitution matrix is its relative entropy (2, 10). Therefore, it
may be useful to control the implicit relative entropy H of the
substitution matrix sought, thereby imposing the additional
constraint

�
ij

Qij ln� Qij

PiP�j
� � H. [5]

One may wish H to equal the relative entropy of the original
matrix in the context of the original background frequencies pi

and pj� or, as below, in the context of the new background
frequencies Pi and Pj�. By adding one more Lagrange multiplier
to the optimization procedure, it is a simple matter to impose this
extra constraint. Further study may suggest other ways to
constrain the Qij or more biologically appropriate measures to
optimize than that of Eq. 4.

Comparison of Standard and Composition-Adjusted
Substitution Matrices
To study the effects of adjusting substitution matrices for amino
acid composition, we consider proteins from organisms with very
biased AT- or GC-rich genomes. Many such organisms, includ-
ing several important pathogens and parasites, show widespread
biases in codon and amino acid usage, reflecting genome-wide
or isochore-specific directional mutation pressures (14–16). The
proteins of AT-rich organisms tend to have a greater background
content of phenylalanine, leucine, isoleucine, asparagine, lysine,
tyrosine, and methionine (FLINKYM), encoded by AU-rich
codon sets, and a lesser content of proline, arginine, alanine,
tryptophan, and glycine (PRAWG), encoded by GC-rich codon
sets. The proteins of GC-rich organisms show the reverse bias.

Yu et al. PNAS � December 23, 2003 � vol. 100 � no. 26 � 15689

EV
O

LU
TI

O
N



For this study, we constructed three test sets of sequence pairs
for which ‘‘orthology’’ provided extrinsic evidence for alignment
quality and a fourth test set supported by three-dimensional
structural evidence (Tables 2–5, which are published as support-
ing information on the PNAS web site, www.pnas.org). The COG
(clusters of orthologous groups) relation of three-lineage recip-
rocal best match (17) was used to define the ‘‘ortholog-pair’’ sets,
which were from: (i) Clostridium tetani (AT-rich) and Mycobac-
terium tuberculosis (GC-rich), with contrasting strong biases; (ii)
Bacillus subtilis and Lactococcus lactis, both with relatively
unbiased genomes and average amino acid frequencies close to
those underpinning BLOSUM-62; and (iii) M. tuberculosis and
Streptomyces coelicolor with strong biases in the same, GC-rich
direction. We included only sequence pairs that had a BLO-
SUM-62 alignment score �100 bits and only one pair among
mutually homologous orthologs. As a negative control, for each
pair of test organisms, we compared all test sequences from one
organism with those from the other, excluding the orthologous
pairs.

Comparing sequences from biased organisms presents a
choice: One may adjust a substitution matrix for amino acid
frequencies calculated from the entire proteome of each organ-
ism, or one may rely on the frequencies manifest in the actual
sequence pair being aligned. This latter approach is attractive,
because it requires no data extrinsic to the two sequences
themselves, and because it accommodates any isochore or
protein family-specific biases implicit in these sequences. One
can mitigate potential inaccuracies caused by small sample size
by adding ‘‘pseudocounts’’ to the amino acid counts from the
actual proteins, as in the examples below.

We compared the ortholog pairs and their negative controls by
using a scaled version of the standard BLOSUM-62 matrix (a)
and composition-adjusted BLOSUM-62 matrices based on back-
ground frequencies from the whole organisms (b) and the actual
pair of sequences compared (c). For both b and c, the adjusted
matrix was constrained to have relative entropy, in the context
of the new background frequencies, equal to that of BLO-
SUM-62 in this context (Eq. 5). This controls for the possibility

that improved performance may be ascribable merely to more
appropriate relative entropy.

The results showed enhanced performance of the composi-
tion-adjusted matrices vis a vis BLOSUM-62, manifest both as
increases in bit score and statistical significance (Table 1) and as
improved alignment length and quality (Fig. 1 and Table 5).
Adjusting background frequencies for organism proteome fre-
quencies (the rows denoted ‘‘Organism’’ in Table 1, column 5)
yielded improvements in most cases, and adjusting to conform to
the actual sequence pairs gave even better results (rows denoted
‘‘Sequence’’ highlighted in bold, Table 1). For all three ortholog-
pair test sets, the median increase in bit score was �2 bits,
corresponding to a �4-fold increase in statistical significance,
with 85–100% of the cases showing improvement. Of the 74
alignments from organisms with skewed compositions, the sta-
tistical significance improved by a factor of �10 for 26 while
worsening by a similar factor for only a single alignment (Table
1, right-hand column). Moreover, for the organisms with near-
standard compositions, substantial improvements were seen
often enough that our method may prove to be of use for
general-purpose database searches.

To assess alignment length and quality, we used the test set of
protein pairs for which three-dimensional structural data pro-
vided an objective standard. At least one of each such ‘‘structural
pair’’ of sequences was chosen from a strongly biased organism,
and many of these pairs represent the ‘‘twilight zone’’ of
borderline alignment statistical significance. As for the ortholog
pairs, the composition-adjusted matrices gave improvements in
bit score and statistical significance (Table 1, bottom row).
Moreover, 13 of the 32 cases (41%) showed substantial align-
ment extensions compared with the standard BLOSUM-62
alignments and in 6 cases (19%) by �50 amino acids (Table 5).
These extensions were judged by inspection to be generally
compatible with the three-dimensional structural superpositions
inferred for the protein pairs. Fig. 1 shows an example of such
an extended alignment and its consistency with the structural
evidence for the AT-biased Plasmodium falciparum asparagine
synthase sequence aligned with the GC-biased M. tuberculosis
PurF protein. The normalized scores (18, 19) of the alignments

Table 1. Performance of composition-adjusted substitution matrices

Sequence pairs
Organisms
compared

No. of
sequence

pairs

Mean
BLOSUM-62
bit score*

Background
frequencies

specified

Median change in bit
score* with respect to

BLOSUM-62
Cases

improved
(%)

Cases (%) with statistical
significance

improved�worsened by
a factor �10†Absolute Relative (%)

Related C. tetani and 40 68.3 Organism �1.6 �2.7 58 20�8
M. tuberculosis Sequence‡ �2.3 �3.3 85 38�3

B. subtilis and 37 59.8 Organism �1.1 �1.8 84 16�3
L. lactis Sequence‡ �2.1 �3.6 95 11�3

M. tuberculosis 34 58.6 Organism �1.4 �2.6 76 24�3
and S. coelicolor Sequence‡ �2.7 �4.1 100 32�0

Unrelated C. tetani and 1,560 16.7 Organism �0.02 �0.1 49 0.4�0.1
(negative control) M. tuberculosis Sequence‡ �0.05 �0.3 47 0.6�0.4

B. subtilis and 1,332 15.7 Organism �0.00 �0.0 50 0.0�0.0
L. lactis Sequence‡ �0.04 �0.3 52 0.2�0.4

M. tuberculosis 1,122 16.4 Organism �0.05 �0.3 53 0.0�0.1
and S. coelicolor Sequence‡ �0.06 �0.4 53 0.6�0.2

Structural Various 32 50.4 Sequence‡ �1.3 �3.2 72 22�0

*Bit scores for all comparisons were calculated by using composition-based statistics (19), and experimentally determined gapped statistical parameters (18, 19),
as is now standard in BLAST (12, 13). All matrices were scaled to have ungapped � � 0.00635 and used in conjunction with gap costs of �550 �50k for a gap of
length k.

†Equivalent to a change of �3.322 bits.
‡Twenty pseudocounts proportional to the amino acid frequencies implicit in BLOSUM-62 were added to the actual amino counts from the proteins compared.

15690 � www.pnas.org�cgi�doi�10.1073�pnas.2533904100 Yu et al.



yielded by unadjusted and adjusted BLOSUM-62 matrices were
29.7 and 31.8 bits, respectively. This 2.1-bit change is equivalent
to an increase in statistical significance of a factor of �4 for this
twilight-zone example.

In reference to the example in Fig. 1, Tables 6–9, which are
published as supporting information on the PNAS web site,
provide the amino acid frequencies of the sequences compared,
the scaled original BLOSUM-62 matrix and composition-
adjusted matrix used, and the differences between these two
matrices. Notable changes include decreased scores for most
aligned pairs of residues involving amino acids that are biasedly
rare in one of the proteins and increased scores for pairs that
include biasedly abundant amino acids. One case is alanine,
which comprises 	5% of the P. falciparum protein and 	14% of
the M. tuberculosis protein, compared with a background fre-
quency of 	7% for BLOSUM-62. This is one factor in the
increased length and score of the optimal alignment of Fig. 1b,
which contains 6 additional substituted alanines from the P.
falciparum protein but 24 from the M. tuberculosis protein,
compared with the alignment of Fig. 1a.

Discussion and Conclusion
We have shown that log-odds substitution matrices are valid, in
the sense of having consistent target and background frequen-
cies, only in the unique context of the background frequencies
implicit in the data used for their construction. Consequently,
standard amino acid substitution matrices are not appropriate
for the comparison of proteins or protein domains with non-
standard amino acid composition. We have developed one
rationale for transforming the target frequency data implicit in
standard substitution matrices for application to nonstandard
compositional contexts. This transformation can be accom-
plished efficiently (in a small fraction of a second on standard
workstations) by using a multidimensional Newtonian optimi-
zation procedure.

We evaluated the performance of the resulting composition-
ally adjusted matrices by using test sets of sequence pairs with
low-scoring alignments, including many cases with borderline
statistical significance. For all the test sets, context-specific
adjusted matrices showed improved performance in detecting
biologically appropriate alignments of biased sequences, consis-
tent with COG orthology relationships or structural evidence.
We also found (data not shown) that adjusted matrices gave
generally enhanced bit scores for the less demanding cases of
more closely related ortholog pairs, with BLOSUM-62 align-
ment scores of 100–2,000 bits. In contrast, for the negative
controls of unrelated sequence pairs (Table 1), the unadjusted
and adjusted BLOSUM-62 matrices showed only small unsys-
tematic differences in alignment bit scores, as expected from the
theory of normalized scoring systems for random sequence
alignment (1, 20). Taken together, these results demonstrate the
substantially enhanced power of compositionally adjusted sub-
stitution scores to discriminate biological alignments from
chance.

Other efforts have been made to improve the sensitivity of
sequence alignment by constructing specialized substitution
matrices specific for particular protein classes: notable examples
are the PHAT (21) and SLIM (22) matrices, which were derived
from curated collections of transmembrane proteins. Our strat-
egy differs from these in two important respects. First, it
generates asymmetric matrices that maintain consistency be-
tween the background and target frequencies. Second, it re-
quires as input only the pair of sequences being compared and
a valid general-purpose substitution matrix. Our method avoids
extensive curatorial work with collections of compositionally
biased proteins and is readily implementable in a sequence-
comparison procedure. We note that matrix-construction strat-
egies starting from curated alignments, as for the PAM and
BLOSUM series, cannot in principle yield valid asymmetric
target frequencies and substitution scores. This is because the

Fig. 1. Example of an alignment extension yielded by compositional adjustment of the scoring system. The sequences compared are P. falciparum putative
asparagine synthase (NCBI gi 16805184) (top lines) and M. tuberculosis PurF protein (NCBI gi 15607948) (bottom lines). In the central lines, aligned identical
residues are echoed, and aligned residues with positive substitution score are indicated by � symbols. (a) The alignment yielded by a scaled version of the standard
BLOSUM-62 substitution matrix (see * footnote in Table 1). The alignment has a normalized score of 29.7 bits. (b) The alignment yielded by a composition-
adjusted matrix derived from BLOSUM-62 (see * and ‡ footnotes in Table 1). The normalized score of the alignment is 31.8 bits. The alignment in b corresponds
very closely to the three-dimensional structural superposition of the entire domain fold (NCBI CDD 9909, COG 0034) that is shared between the PurF and
asparagine synthase families. Secondary structure elements were assigned by using the known crystal structures of E. coli asparagine synthetase B (PDB ID 1CT9
chain A) and B. subtilis PurF protein (PDB ID 1GPH chain 3). �-strands (straight bars) and �-helices (zig-zags) are indicated above and below their respective
homologous sequences.
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initial aligned sequences are treated symmetrically, with no
justifiable distinction between ‘‘query’’ and ‘‘subject.’’ Moreover,
a time-reversible Markov model or its variants cannot generate
asymmetric target frequencies. Indeed, before our treatment in
this article, we have not found a systematic way to construct
asymmetric log-odds matrices that maintain consistency between
background and target frequencies.

Amino acid content bias can reflect both directional mutation
pressures at the genomic level and constraints specific to classes
of proteins. Our data show that compositional adjustment of
substitution matrices is beneficial in both cases. Whereas the
average proteome amino acid composition of such organisms as
B. subtilis, L. lactis, and Homo sapiens is very close to that implied
by BLOSUM-62, the different protein families found in these
organisms show a wide distribution of distances from this
BLOSUM-62 standard. Indeed, these compositional distances,
measured by relative entropy or other metrics, can form part of
a heuristic to determine whether compositional adjustment of
matrices would likely be advantageous for a given sequence pair.
Other simple heuristics can be readily applied to enable domain-
specific adjustment of scoring matrices for cases of multidomain
sequences with internal compositional heterogeneity. Such ad-
ditional procedures, and the systematic application of composi-
tional adjustment to the comparison of proteins from organisms
with nucleotide-biased genomes, and to general-purpose data-
base searching, will be described more extensively elsewhere.

Appendix: The Scale and Background and Target Frequencies
of a Valid Substitution Matrix
Here we will first explain how to extract the scale � and target
and background frequencies implied by a valid substitution
matrix and then prove that these associated numbers are in fact
unique.

Extracting the Scale and Background and Target Frequencies. From
the definition of a valid substitution matrix (Eq. 2), we have
pi exp[�sij] � qij�p�j, and with (Eq. 1) we obtain

�
i

pi e�sij � 1 � j; �
j

e�sijp�j � 1 � i [6]

together with the constraints ¥i pi � 1, ¥j p�j � 1, and pi � 0 and
p�j � 0 for all i and j.

To extract an unknown � from a valid substitution matrix with
scores sij, we proceed as follows. Define a matrix M(�) depending
on the parameter �, with matrix element Mij(�) given by Mij(�) �
exp[�sij]. The conditions (Eq. 6) then lead to

�
i

pi Mij
�� � 1; �
j

Mij
��p�j � 1, [7]

where the first equation in Eqs. 7 can be viewed as multiplying
the matrix M(�) by a row vector {pi} from the left and the second
equation in Eqs. 7 as multiplying the matrix M(�) by a column
vector {p�j} from the right. Let matrix Y(�) be the inverse of M(�).
We then have

pi � �
j

Yji
��; p�j � �
i

Yji
��; [8]

and the condition ¥i pi � ¥j p�j � 1 implies simply that

�
ij

Yij
�� � 1. [9]

One can easily use numerical tools to invert the matrix M(�)
and vary the parameter � until the condition (Eq. 9) is fulfilled.
Once � is found, one obtains pi and p�j by Eq. 8, and qij is then
pi p�j exp(�sij). As shown below, any sensible solution, i.e., one
with positive pi and p�j, must be unique.

Uniqueness of the Background and Target Frequencies. Can there
exist more than one set of target frequencies corresponding to
a valid substitution matrix? The answer is no: Every valid matrix
implies a unique set of target frequencies.

We will use Hölder’s inequality to prove this uniqueness.
Hölder’s inequality, in the form we need, states (23): Let r � 1,
s � 1, and 1�r � 1�s � 1, and assume {an} and {bn} are
nonnegative numbers. We then have

� �
j�1

N


aj�
r� 1�r� �

j�1

N


bj�
s� 1�s

� �
j�1

N

ajbj, [10]

and equality holds only when

aj
r

�j�1
N 
aj�

r �
bj

s

�j�1
N 
bj�

s � j. [11]

Given a set of scores sij, assume that qij and Qij are two distinct
corresponding sets of target frequencies. Without loss of gen-
erality, we assume the qij correspond to scale parameter � � 1,
and the Qij correspond to a scale parameter 1�x � 1. That is to
say,

sij � ln
qij

pi p�j
� x ln

Qij

Pi P�j
, [12]

where pi � ¥j qij, p�j � ¥i qij, Pi �¥ j Qij, and P�j � ¥i Qij. Con-
sequently, we have

qij

pi
� � Qij

Pi P�j
� x

p�j � �Qij p�j
1�x

Pi P�j
� x

, [13]

which implies

1 � �
j

qij

pi
� �

j
�Qij p�j

1�x

Pi P�j
� x

. [14]

Multiplying Eq. 14 by the identity

1 � �
j

p�j � �
j
� p�j

x�1
x � x

x�1
,

we obtain

1 � ��
j
�Qij p�j

1�x

PiP�j
� x� 1�x��

j
�p�j

x�1
x � x

x�1�
x�1

x

� �
j

Qij p�j
Pi P�j

. [15]

Equality holds only when

� Qij

Pi P�j
� x

p�j

�
j
� Qij

Pi P�j
� x

p�j

�
p�j�
j

p�j
� j. [16]

By Eq. 14 and the definition of probability, both denominators
in the above equation are equal to 1, so the condition for equality
to hold, excluding p�j � 0, in Eq. 15 becomes

� Qij

Pi P�j
� x

� 1,
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which, after excluding Qij � PiP�j, can only be true if x � 0.
Because x � 1 by assumption, we know that equality can never
be reached. Eq. 15 therefore leads to

�
j

Qij

p�j
P�j

� Pi � i . [17]

We now show that Eq. 17 cannot be true. Using
¥i Qij � P�j, ¥j p�j � 1, and ¥i Pi � 1, we find the contradictory

result, 1 � 1, after summing over i on both the left-hand side and
right-hand side of Eq. 17. We therefore have proved that a
scoring system can never have more than one valid set of target
and background frequencies.
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