Chapter 2

Comparison of protein sequences

During the last three decades a considerable effort has been made to develop algorithms that com-
pare sequences of macromolecules (proteins, DNA). The purpose of such algorithms is to detect
evolutionary, structural and functional relations among the sequences. Successful sequence com-
parison would allow to infer the biological properties of new sequences from data accumulated on
related genes. For example, a similarity between a translated nucleotide sequence and a known
protein sequence suggests a homologous coding region in the corresponding nucleotide sequence.
Significant sequence similarity among proteins may imply that the proteins share the same sec-
ondary and tertiary structure, and have close biological functions. The prediction of unknown
protein structures is often based on the study of known structures of homologous proteins.

This chapter is a survey of sequence comparison, scoring schemes, and the statistics of sequence
alignments which are essential for the purpose of distinguishing true relations among proteins from
chance similarities. The chapter is based on books by M. Waterman [1995] and by Setubal and
Meidanis [1996], as well as on various papers in this field.

2.1 Alignment of sequences

As is well known, the DNA molecule serves as a blueprint for the genetic information of every
organism. Therefore, the evolution of organisms must be related to changes in the DNA. The
simplest events of molecular evolution are the substitution of one base by another (point mutations)
and the insertion or deletion of a base pair. Suppose that the sequence b is obtained from the
sequence a by substitutions, insertions and deletions. It is customary and useful to represent the
transformation by an alignment where a is written above b with the common (conserved) bases
aligned appropriately. For example, say that a = ACTTGA and b is obtained by substituting the
second letter from C to G, inserting an A between the second and the third letters, and by deleting
the fifth base (G). The corresponding alignment will be:

a = A C - T T G A
b = A4AG A TT — A

We usually do not actually know which sequence evolved from the other. Therefore the events are
not directional and insertion of A in b might have been a deletion of A in a.

In a typical application we are given two related sequences and we wish to recover the evolu-
tionary events that transformed one to the other. The goal of sequence alignment is to find the
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14 Methods for global organization of the protein sequence space

correct alignment that encodes the true series of evolutionary events which have occurred. The
alignment can be assigned a score which accounts for the number of identities (a match of two
identical letters), the number of substitutions (a match of two different letters), and the number
of gaps (insertions/deletions). With high scores for identities, and low scores for substitutions and
gaps, the basic strategy towards tracing the correct alignment seeks the alignment which scores
best (see next section for details).

The algorithms described below may be applied to the comparison of protein sequences as well
as to DNA sequences (coding or non-coding regions). Though the evolutionary events occur at the
DNA level, the main genetic pressure is on the protein sequence. Consequently, the comparison of
protein sequences has proven to be a much more effective tool [Pearson 1996]. Mutations at the
DNA level do not necessarily change the encoded amino acid due to the redundancy of the genetic
code. Mutations often result in conservative substitutions at the protein level, namely, replacement
of an amino acid by another amino acid with similar biochemical properties. Such changes tend to
have only a minor effect on the protein’s functionality. Within the scope of this work, and in view
of the last paragraph, this chapter focuses on the comparison of protein sequences.

2.1.1 Global similarity of protein sequences

Let a = ajas...a, and b = b1 by...b,, where a;,b; € A, the alphabet of amino acids, be two given
protein sequences . A global alignment of these sequences is an alignment where all letters of a
and b are accounted for.

Let s(a;, b;) be the similarity of a;,b; and let o > 0 be the penalty for deleting/inserting of one
amino acid. The score of an alignment with N;; matches of a; and b; and N, insertions/deletions
is defined as

ZNZ']' . s(ai, bj) — Ngap Lo
1,J

The global similarity of sequences a and b is defined as the largest score of any alignment of
sequences a and b, i.e.

S(a, b) = maxalignments{z Nij : S(Gia bj) - Ngap : a}
i,

Usually, pairwise scores are the logarithm of likelihood ratios (log-odds), as explained in section
2.4. Therefore, the definition of the alignment score as the sum of the pairwise scores may be inter-
preted as likelihood. The corresponding similarity score is thus essentially a maximum likelihood
measure.

How to find the best alignment 7 The exponentially large number of possible alignments makes
it impossible to perform a direct search. For example, the number of possible alignments of two
sequences of length 1000 exceeds 10%°° [Waterman 1995]. However, a dynamic programming algo-
rithm makes it possible to find the optimal alignment without checking all possible alignments, but
only a very small portion of the search space.

Calculating the global similarity score S(a,b)

Denote by S; j the score of the best alignment of the substring aias..a; with the substring b1bs..b;,
ie.

Sij = S(a1ag..a; , biby..b;)
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The optimal alignment of ajas..a; with the substring b1b2..b; can end only in one of following
three ways:

a; a; —
b; — b;
Also, each sub-alignment must be optimal as well. Therefore, the score S(a,b) can be calculated
recursively:
Initialize

S(),O =0 Si,() =—i-a fori=1.n S(),j = —j - forj =1.m
Recursively define
Si;j = max{Si—1,j-1 + s(ai, bj), Sijj1—, Si1j— o}

In practice, the scores are stored in a two-dimensional array of size (n + 1) - (m + 1). The
initialization set the values at row zero and column zero. The computation proceeds row by row
so that the value of each matrix cell is calculated from entries which were already calculated.
Specifically, we need the three matrix cells, on the west, the south and the southwest of the current
cell. The time complexity of this algorithm is ©(n - m).

Dynamic programming algorithms were already introduced in the late 50’s [Bellman 1957).
However, the first to propose a dynamic programming algorithm for global comparison of macro-
molecules, were Needleman and Wunsch [Needleman & Wunsch 1970].

2.1.2 Penalties for gaps

In sequence evolution, an insertion or deletion of a segment (several adjacent amino acids) usually
occurs as a single event. That is, the opening of the gap is the significant event. Therefore, most
computational models assign a penalty for a gap of length k that is smaller than the sum of &
independent gaps of length 1. If the penalty for gap of length k is a(k), we are thus interested in
sub-additive functions and assume that a(z + y) < a(z) + a(y).

Denote by Nj_gqp the number of gaps of length k in a given alignment. Then the score of this
alignment is defined in this case as

ZNij : S(Giabj) - ZNk—gap - a(k)
,] k

This discussion allows the alignment to end in a gap of arbitrary length, and therefore S; ; is defined
as follow:
Set
S(),o =0 Sz',o = —Oé(’i) So,j = —Oz(j)

then
Sij = maz{Si—1,j-1 + s(ai, b;), mazri1<k<j{Si;j—r — a(k)}, mari<i<i{Si—1; — a(l)}}

In practice, to compute each matrix cell, we need now to check the cell in the diagonal, all the
cells in the same row and all the cells in the same column. For arbitrary function «(k), the time
complexity is 3, ;(i + j + 1) = ©(n* - m +n - m? + n-m) plus n +m calculations of the function
a(k). For n = m we get O(n?).
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Optimization

A better time complexity can be obtained for a linear gap function a(k) = ao + a1 - (k — 1) where ao is the penalty
for opening a gap, and «; is the penalty for extending the gap.

Set E; ; = maxi1<k<;j{Si,j—r —a(k)}. This is the maximum value over all the matrix cells in the same row, where
a gap is tested with respect to each one of them. Note that

Ei; = maz{Si; 1 —a(l), mazrck<;{Si;-x —a(k)}}
= maz{Si ;-1 — a0, mazi<k<j-1{Sij-k+1) —a(k+1)}}
= maz{Si ;-1 — a0, mazi<k<j—1{Si,-1)-k — a(k)} +on}
= maz{Sij—1 —ao, Eij_1—ai}
Therefore, only two matrix cells from the same row need to be checked. These cells correspond to the two options
we need to check, i.e. opening a new gap at this position (first term) or extending a previously opened gap (second

term). The sub-linearity of o implies that it is never beneficial to concatenate gaps.
Similarly, for a column define F; ; = mazi<i<;{Si—1,; — @(l)} and in the same way obtain

F;j = maz{Si—1,; — oo, Fi-1,; — a1}

Initialize

Eo,0 = Fo0=S00=0
E;o=Sio=—afi) Fo; = So,; = —a(j)
then
Si,j = mam{Sifl,jfl =+ S((li,bj), Ei,j, Fi,j}
and the time complexity is O(m - n)

For arbitrary convex gap functions it is possible to obtain an O(n - m) algorithm [Waterman 1995]. However,
such functions seems to be inappropriate for the context of comparison of macromolecules. For arbitrary concave
function (and in particular, for sub-additive functions) it is possible to obtain time complexity of O(n? - log(n)) with
a more complex algorithm [Waterman 1995].

Gonnet et al. [Gonnet et al. 1992] have proposed a model for gaps that is based on gaps occurring in pairwise
alignments of related proteins. The model suggests an exponentially decreasing gap penalty function (see section
2.4.4). However, a linear penalty function has the advantage of better time complexity, and in most cases the results
are satisfactory. Therefore the use of linear gap functions is very common.

2.1.3 Global distance alignment

In some cases it is interesting to define a distance among sequences D(a,b) - for example for the
construction of evolutionary trees, or when investigating the geometry of the sequence space. The
advantage of defining a distance among sequences, is the construction of a metric space on the
space of sequences.

In general a metric is a function D : X x X — R which is:
e Nonnegative: D(a,b) > 0 for all a,b € X with equality if and only if a = b
e Symmetric: D(a,b) = D(b,a)

e Satisfies the triangle inequality: D(a,b) < D(a,c) + D(c,b) Va,b,c € X
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In contrast to similarity, where we are interested in the best alignment and its score gives a
measure of how much the strings are alike, distances approach assigns a cost to elementary edit
operations (evolutionary events) and seeks a series of operations that transforms one string to
another, with the minimal cost.

The definition of distance resembles the definition of similarity, except that s(a;,b;) is replaced
with d(a;, bj) which reflect the distance between amino acids a; and bj, and «(k), the gap penalty
now adds to the total distance (instead of decreasing the similarity). The minimum distance is

obtained by minimizing the sum of matches/mismatches costs and the penalties for gaps.

D(a,b) = minaignments{Y_ Nij - d(ai,bj) + Y N gap - a(k)}
i\ k
One restriction is that d(-,-) is a metric on A, the alphabet of amino acids (and so satisfies the
three requirements above). Also a(k) has to be positive. These restrictions imply that the total
global distance D(-,-) is zero only if the two sequences are identical.
In some cases, distance and similarity measures are related by a simple formula: Let s(a;,b;)
be a similarity measure over A and a(k) the penalty for gap of length k. Let d(a;, b;) a metric on

A and é(k) a corresponding cost for gaps of length k. If there is a constant ¢ such that

d(ai,bj) =cCc— s(ai, bj) Ya;, bj eA

and
k
a(k) = a(k) + 5
then each alignment A; satisfies:
c(n+m)
D(4) = —— - 5(4)

where n (m) is the length of the sequence a (b). In particular,

D(aa b) = minalz’gnments AZD(AZ)
c(n+m
= % — MAaZTglignments AIS(AI)
— c(nz;m) — S(a,b)

i.e. an alignment is similarity optimal if and only if it is distance optimal (the proof of this claim
is based on the observation that n +m =2-37, i Nij + =5 Ni—gap)-

Though the formula suggests a simple transformation from a similarity measure to a distance
measure, it should be noted that the transformation from s(a;, b;) to d(a;, b;) does not yield a metric
when applied to the common scoring schemes, since the value s(a;, a;) varies among different amino
acids (see section 2.4). Consequently, there is no ¢ such that d(a;,a;) = ¢ — s(a;,a;) = 0 for all
a; € A, as needed.
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2.1.4 Position dependent scores

In many proteins, mutations are not equally probable along the sequence. Some regions are func-
tionally /structurally important and consequently, the effect of mutation in these regions can be
drastic. They may create a nonfunctional protein or even prevent the molecule from folding into
its native structure. Such mutations are unlikely to survive, and therefore these regions tend to be
more evolutionary conserved than other, less constrained regions (e.g. loops) which can significantly
diverge.

Accordingly, it may be appropriate to use position-dependent scores for mismatches and gaps.
The incorporation of information about structural preferences can lead to alignments that are more
accurate biologically. If a protein’s structure is known, the secondary structure should be taken into
account. In the absence of such data, general structural criteria, such as the propensities of amino
acid for occurring in secondary structures versus loops can be taken into account. For example, the
probability of opening a gap in existing secondary structure can be decreased, while the probability
for opening/inserting a gap in loop regions can be increased.

The dynamic programming algorithm can be adapted to account for position-specific scores as
follow: Let s; j(a,b) be the score for aligning a and b in the i-th position of a = a;as...a, and j-th
position of b = by by...by,, respectively, and let ¢; (y;) be the penalty for opening a gap at position
i (7) and f; (6;) for extending it. Recursion is used as before to define the similarity of a and b:

E;; = m‘”{si,j—l — %> Bij-1— 5j}

Fij = maﬂ?{s'—l,j — g, Fjqj— Bi}

and

Sij = maz{Si—1,j-1 + sij(ai, b;), Eij, Fi;}

Usually position-specific scoring matrices, or profiles, are not tailored to a specific sequence. Rather, they
are built to utilize the information in a group of related sequences, and provide representations of protein families
and domains. These representations are capable of detecting subtle similarities between distantly related proteins.
Without going into detail, profiles are usually obtained by applying algorithms for multiple alignment (i.e., a combined
alignment of several proteins) to align a group of related sequences. The frequency of each amino acid at each position
along the multiple alignment is then calculated. These counts are normalized and transformed to probabilities, so
that a probability distribution over amino acids is associated with each position. Finally, the scoring matrix is
defined based on these probability distributions as well as on the similarities of pairs of amino acids (taken from a
standard scoring matrix). For example, the score for aligning the amino acid a at position i of the profile is given by
si(a) = D yc.4 Prob(b at position i)s(a,b) (a few minor modifications are needed to formulate the above algorithm for
comparison of a sequence with a profile). For a review of algorithms for multiple alignment and profile techniques

see [Waterman 1995, Setubal & Meidanis 1996, Gribskov & Veretnik 1996, Taylor 1996].
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2.1.5 Local alignments

In many cases the similarity of two sequences is limited to a specific motif or domain, the detection of
which may yield valuable structural and functional insights, while outside of this motif/domain the
sequences may be essentially unrelated. In such cases global alignment may not be the appropriate
tool. In the search for an optimal global alignment, local similarities may be masked by long
unrelated regions. Consequently, the score of such an alignment can be as low as for totally
unrelated sequences. Moreover, the algorithm may even misalign the common region. A minor
modification of the previous algorithm solves this problem.

First we define a local alignment of a and b as an alignment between a substring of a and a
substring of b. The local similarity of sequences a and b is defined as the maximal score over all

possible local alignments.

Calculating the local similarity score

Define H; ; to be the maximum similarity of two segments ending at a; and b;

H; ; = maz{0, S(agagt1..-ai, bybyi1..05): 1<z <i, 1<y<j}
This quantity is calculated recursively as before. Initialize
H;jp=Hp;j=0 1<i<n, 1<j<m
then
Hij = maz{0, Hi_1;-1+ s(ai,b;), mazi<p<i{Hi—k,j — a(k)}, mazi<i<;{Hi;1 — a(l)}}
and the local similarity of sequences a and b is obtained by maximizing over all possible segments
H(a,b) =maz{Hy; 1<k<mn, 1<I<m}

For linear gap functions (that improve computation time) the formulation is done as before, with
initialization H; ; = E; j = F; j =0 for i - j = 0.

In the literature, this algorithm is often called the Smith-Waterman (SW) algorithm, after those
who introduced this modification [Smith & Waterman 1981].

It should be noted that whereas global similarity measures can sometime be transformed into
global distance measures (as in section 2.1.3), no such transformation is known for local similarity
measure. A case which seems to rule out the possibility of defining a local distance measure is
depicted in Fig. 2.1. However, it is possible to define pseudo-metrics on protein sequences based

on local similarity measures. For a brief discussion see chapter 4.

2.2 Other algorithms for sequence comparison

During the last two decades the sequencing techniques have greatly improved. Many large scale

sequencing projects of various organisms are carried throughout the world, and as a result the
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@) (b)
a I— a I ——
b — b
Figure 2.1: Local similarities make it difficult to define a distance between protein sequences. Two
cases in mind are: (a) If b is a subsequence of a, the sequences are obviously related. However, a distance measure
should account for those parts of the sequence a which are not matched with b. Consequently, the distance D(a,b)

may be as high as for totally unrelated sequences. (b) Multi domain proteins. If b and ¢ are unrelated sequences
(i-e., D(b,c) >> 1), then assigning a low distance for D(a, b) and D(a, c) will violate the triangle inequality.

number of new sequences which are stored in the databases is rapidly increasing. In a typical
application new protein sequence is compared with all sequences in the database, in search of
related proteins.

The dynamic programming algorithms described above that seek optimal pairwise alignment
of sequences (with insertions/deletions and substitutions) may not be suitable for this purpose.
The complexity of this algorithm is quadratic (with linear gap function), and the comparison of
a sequence, of average length of 350 amino acids, against a typical database (like SWISSPROT
[Bairoch & Apweiler 1999], with more than 70,000 sequences), may take few CPU hours on a stan-
dard PC of nowadays (pentium-II 400 MHz).

Several algorithms have been developed to speed up the search. The two main algorithms
are FASTA [Pearson & Lipman 1988] and BLAST [Altschul et al. 1990]. These are heuristic al-
gorithms which are not guaranteed to find the optimal alignment. However, they proved to be
very effective for sequence comparison, and they are significantly faster than the rigorous dynamic
programming algorithm.

In the last few years, biotechnology companies such as Compugen and Paracel, have developed
special purpose hardware that accelerates the dynamic programming algorithm [Compugen 1998].
This special-purpose hardware has again made the dynamic programming algorithm competitive
with FASTA and BLAST, both in speed and in simplicity of use. However, meanwhile, FASTA and
BLAST have become standard in this field and are being used extensively by biologists all over the
world. Both algorithms are fast, effective, and do not require the purchase of additional hardware.
BLAST has an additional advantage, as it may reveal similarities which are missed by the dynamic
programming algorithm, for example when two similar regions are separated by a long dissimilar

region.

2.2.1 BLAST (Basic Local Alignment Search Tool)

BLAST compares two sequences and seeks all pairs of similar segments, whose similarity score
exceeds a certain threshold. These pairs of segments are called “high scoring segment pairs”
(HSPs). A segment is always a contiguous subsequence of one of the two sequences. Segment pair
is a pair of segments of the same length, one from each sequence. Hence the alignment of the

segments is without gaps. The score of the match is simply the sum of matches of the amino acids
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(defined by a scoring matrix) along the segment pair. The segment pair with the highest score is
called the “maximum segment pair” (MSP)!.

The algorithm is an outgrowth of the statistical theory for local alignments without gaps (see
section 2.3). This theory gives a framework for assessing the probability that a given similarity
between two protein sequences (i.e. the MSP) could have emerged by chance. If the probability
is very low, then the similarity is statistically significant and the algorithm reports the similarity
along with its statistical significance.

It should be kept in mind that BLAST’s similarity score is only an approximate measure for the
similarity of the two sequences, since gaps are ruled out. The algorithm may indeed miss complex
similarities which include gaps. However, the statistical theory of alignments without gaps provided
a reliable and efficient way of distinguishing true homologies from chance similarities, thus making

this algorithm an important tool for molecular biologists.

Implementing BLAST

The algorithm locates “seeds” of similarity among the query sequence and the database sequence,
and then extends them. The algorithm operates in three main steps:

e Compile a list of words of length w (usually w = 3 or 4 for protein sequences) that score at

least T" with some substring of length w of the query sequence.

e Scan database sequences in search for hits with words in the list from the first step. Each
hit is a seed. To allow a fast scanning of the database two approaches are used to store the
list. The first is a hash table, and the second employs a deterministic finite automaton. Both

methods scan each library sequence only once.

o Extend seeds: each seed is extended in both directions, without gaps, until the maximum
possible score for the extension is reached. The resulting HSP is record. If the score of
the extension falls below a certain threshold then the process stops. Therefore, there is a
chance (usually small, depending on the threshold) for the algorithm to miss a possible good

extension.

e Attempt to combine multiple MSP regions. For each consistent combination, calculate the
probability of this combination using the Poisson or sum statistics [Altschul et al. 1994] and

report the most significant one (lowest probability).

In the latest version of BLAST the criterion for extending seeds has been modified, to save
processing time [Altschul et al. 1997]. The new version requires the existence of two non-
overlapping seeds on the same diagonal (i.e. the seeds are at the same distance apart in both
sequences), and within a certain distance (typically 40) of one another, before an extension

is invoked. To achieve comparable sensitivity, the threshold 7T is lowered, yielding more hits

Tt is possible to find the MSP with the dynamic programming algorithm, by setting the gap penalty to co.
However, BLAST finds it much faster because of its efficient implementation.
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than previously. However, only a small fraction of these hits are extended, and the overall

speed increases.

Changes in the threshold T' permit a tradeoff between speed and sensitivity. A higher value
of T yields greater speed, but also an increased probability of missing weak similarities. Though
there are no analytic bounds on the time complexity of this algorithm, in practice, the run time is

proportional to the product of the lengths of the query sequence and the database size.

Current improvements of BLAST allow gapped alignments, by using dynamic programming
to extend a central seed in both directions [Altschul et al. 1997]. This is complemented by PSI-
BLAST, an iterative version of BLAST, with a position-specific score matrix (see section 2.1.4)
that is generated from significant alignments found in round 7 and used in round 7 + 1. The latter

may better detect weak similarities that are missed in database searches with a simple sequence

query.

2.2.2 FASTA

FASTA is another heuristic that performs a fast sequence comparison. The algorithm starts by
creating a hash table of all k-tuples in the query sequence (usually, k = 1 or 2 for protein sequences,
where k=1 gives higher sensitivity). For each such k-tuple there is an index vector with all positions
of the k-tuple in the query sequence.

Then, when scanning a library sequence, a vector indexed with offsets (see below) is initialized
with zeros. Each k-tuple of the library sequence is looked up in the hash table. If the k-tuple
appears in the hash-table then per each appearance of this k-tuple in the query sequence, the offset
(the relative displacement of the k-tuple) is calculated (if the k-tuple appears in position ¢ in the
query sequence and position j in the library sequence then the offset is i — j), and the offset vector
is incremented at the index corresponding to the offset value. After the library sequence has been
scanned, the diagonal which corresponds to the offset with the maximal number of occurrences
(highest density of identities) can serve as a seed for the dynamic programming algorithm. In

practice the algorithm proceeds as follow.

At a second stage, the ten regions with the highest density of identities are rescanned. Common
k-tuples which are on the same diagonal (same offset) and are sufficiently close to an existing run
are added to the run (the exact parameters are set heuristically) to form a region (a gapless local
alignment, or HSP in BLAST terminology). The regions are scored to account for the matches
as well as the mismatches, and the best region is reported (its score is termed “initial score” or
“init1”). Then, the algorithm tries to join nearby high scoring regions, even if they are not on the
same diagonal (the corresponding score being termed “initn score”). Finally, a bounded dynamic
programming is run in a band around the best region, to obtained the “optimized score”. If the

sequences are related then the optimized score is usually much higher than the initial score.
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2.3 Probability and statistics of sequence alignments

In the evolution of protein sequences, not all regions mutate at the same rate. Regions which
are essential for the structure and function of proteins, are more conserved. Therefore, significant
sequence similarity of two proteins suggests a common evolutionary origin and possibly similar
structures. In many cases it reflects close biological functions.

The algorithms that were described in the previous sections can be used to identify such sim-
ilarities. However, on any two input protein sequences, even if totally unrelated, the algorithms
always find some similarity. For unrelated sequences this similarity is essentially random. As the
length of the sequences compared increase, this random similarity may increase as well. Therefore,
in order to assess the significance of a similarity score it is important to know what score to expect
simply by chance.

Naturally, we would like to identify those similarities which are genuine, and biologically mean-
ingful. In the view of the last paragraph, the raw similarity score may not be appropriate for this
purpose. However, when the sequence similarity is statistically significant we can deduce, with high
confidence level, that the sequences are related?. The reverse implication is not always true. We
encounter many examples of low sequence similarity despite structural and functional similarity.

Though statistically significant similarity is neither necessary nor sufficient for a biological
relationship, it may give us a good indication of such relationship. When comparing a new sequence
against the database, in search of close relatives, this is extremely important, as we are interested
in reporting only significant hits, and sorting the results according to statistical significance seems
reasonable.

To estimate the statistical significance of similarity scores, a statistical theory should be devel-
oped. A great effort was made in the last two decades to establish such statistical theory. Currently,
there is no complete theory, though some important results were obtained. These results have very
practical implications and are very useful for estimating the statistical significance of similarity
scores.

The statistical significance of similarity scores for “real” sequences is defined by the probability
that the same score would have been obtained for random sequences. The statistical results concern
the similarity scores of random sequences, when the similarity scores are defined by ungapped
alignments. However, these results have created a framework for assessing the statistical significance
of various similarity scores, including gapped sequence alignments, and recently, even structural
alignments [Levitt & Gerstein 1998].

2.3.1 Basic random model

In the basic random model, the sequences are random sequences of characters where the characters

are drawn independently and identically (i.i.d) from a certain distribution over the alphabet A.

2Two exceptions are segments with unusual amino acid composition, and similarity that is due to convergent

evolution.
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Each sequence is thus viewed as a sequence of i.i.d random variables drawn from the distribution
P over the alphabet A. In what follows, upper case letters (A;) denote random variables and lower
case letters (a;, a; € A) indicate a specific value of the random variable. Upper case bold letters
denote sequences of random variables, and lower case bold letters denote sequences of amino acids.

For two random sequences A and B, the scores S(A,B) (the global similarity score) and
H(A,B) (the local similarity score) are random variables. The distributions of these scores for
randomly drawn sequences differ, and the next two sections summarize the main properties known

about these distributions.

2.3.2 Statistics of global alignment
Fixed alignment - global alignment without gaps

This is a very simplistic case, but the results are straight forward. Let A = A;A4s...A, and
B = B1B,...B, where A;,b; are i.i.d random variables as defined above. For the alignment with
no gaps,

A = A A . . . A,

B = B B .. . B,

the score is simply defined as S = Y_i-; s(4;, B;)-

S is the sum of i.i.d random variables and therefore for large n it is distributed approximately
normally with expectation E(S) = n - E(s(A,B)) = nu and Var(S) = n - Var(s(4, B)) = no?,
where p and o are the mean and standard deviation of the scoring matrix s(a, b).

The main characteristic of this distribution is the linear growth (or decline, depends on the
mean of the scoring matrix) with the sequence length. Surprisingly, perhaps, this characteristic

holds for the general case as well.

Unknown alignment

In the general case, gaps are allowed in the alignment, and the similarity score is defined as the

maximum over all possible alignments,

S = S(A,B) = mazasignments{Y_ Nij - $(ai, b;) = > Ni—gap - (k) } (2.1)
ij k

where a(k) (the penalty for a gap of length k) is a general non-negative sub additive function, i.e.

a(z +y) < a(z) + afy).

The normal distribution limit law no longer holds because of the optimization over all possible
alignments. However, it is possible to partly characterize the (limit at large n) distribution of S
based on Kingman’s theory and the Azuma-Hoeffding lemma [Waterman 1995]. Kingman’s theory
is applied to show that the global similarity score grows linearly with the sequences length.

Theorem 1: Let A = A Aj...A, and B = B B»...B,, where A;, B; are i.i.d random variables
drawn from the distribution P over the alphabet A. Define S = S(A,B) as in equation 2.1, and
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under the same restrictions on the function a(k), then there is a constant p > E(s(A, B)) such that

lim — =
n—o00 n, p

with probability 1 and in the mean.

The last result obtained for an infinitely long sequence. However, since it holds almost surely, than the average
over a large ensemble of finite sequences satisfies

E(S)

—
" p

Theorem 1 defines the expected global similarity score for random sequences. The statistical
significance of a similarity score obtained for “real” sequences, which exceeds the expected score
by a certain amount, is estimated by the probability that the similarity score of random sequences
would exceed the expected mean by the same amount. The Azuma-Hoeffding lemma gives a bound
on the probability that such a random variable exceeds its mean by a certain amount (it provides
a concentration of measure result for a broad class of random variables which includes this case).

Theorem 2: Let A = A1Ay...4, and B = B B»...B,, where A;, B; are i.i.d and define § =
S(A,B) as in equation 2.1, then

Prob(S —E(S)>v-n) < e 22

where c is a constant that depends only on the scoring matrix and the penalty for a gap.

Though the linear growth of the global similarity score is an important feature, both results are
theoretical and have little practical use. In spite of much effort, p has not yet been determined.
Therefore, theorem 1 remains only a qualitative result. Moreover, the bound obtained by the
Azuma-Hoeffding lemma is not very useful for a typical protein where n is of the order of 300.
For example, for a typical scoring matrix such as the BLOSUM 62 matrix (see section 2.4.2), and
a gap opening penalty of 12, the constant ¢ in theorem 2 equals 30. If a global similarity score
exceeds the expected mean by 3 -n (which, for a global similarity score is usually significant), then
the corresponding bound would be Prob(S — E(S) > 3-n) < 0.223, which is not very significant
(suggesting, perhaps, that the bound is not tight). The variance of the global similarity score has

not been determined either, and the best results give only an upper bound.

In practice, it is possible to empirically approximate the distribution by shuffling the sequences
and comparing the shuffled sequences. By repeating this procedure many times it is possible to
estimate the mean and the variance of the distribution, and a reasonable measure of statistical

significance (e.g. by means of the z-score) can be obtained®.

3Denote by S the global similarity score. Let u and o be the mean and the variance of the distribution of scores.
Then, the z-score associated with the score S is defined as S—;"i This score measures how many units of standard
deviation apart the score S is from the mean of the distribution. The larger it is, the more significant is the score S.
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2.3.3 Statistics of local alignment
Exact matching

As for global alignments, interesting results for local alignment are obtained already under a very
simplistic model. Specifically, it is interesting to study the asymptotic behavior of the longest
perfect match between two random sequences of length n, when the alignment is given and fixed.
Let X = Prob(Match) = > ,ca p2 where p, is the probability of the letter a. The problem can
be rephrased in terms of the length R,, of the longest run of heads in n coin tosses, when the
probability for head is A.

According to Erdés and Renyi [Erdos & Renyi 1970] R,, — log; /5 n. The intuition is that the
probability of run of m heads is \™, and for m << n there are approximately n possible runs (one

for each possible starting point). Therefore,
E(number of runs of length m) ~ n - \™
If the longest run is unique then R, should satisfy 1 = n - \f»
= Rp =logy/nn

The proof is now concluded, using Borel-Cantelli lemma. It is given in details in [Waterman 1995].

This result holds for exact matches, which start at the same position in both sequences. Allowing
shifts makes the problem more interesting to molecular biology. The length of the longest match
in this case is actually the score of the best local alignment S = H(A,B) given that the score for
a match is 1, it is —oo for a mismatch, and oo for opening a gap.

When shifts are allowed, there are n? possible starting positions (4, j) for the match (the number
of possible starting positions of a match defines the size of the search space). Therefore, following

the intuition of the previous claim we expect that
S— logl/)\n2 =2-log;/\n

and the logarithmic characteristic is preserved (for a proof see [Waterman 1995]).

The same result is obtained when postulating that the sequences are generated by first order
Markov chains, and even when the the two sequences are drawn from different distributions (this
makes more sense, biologically). However, these results hold for perfect matches, while the original
problem allows mismatches as well. Surprisingly, the results holds even when mismatches are

allowed (see next section).

Matching with score - local alignment without gaps

So far, the score for a match was 1. This section proceeds to the case of a general scoring scheme
s(a,b) for a,b € A, with the constraints (i) F(s(a,b)) < 0 and (7i) s* = maz{s(a,b)} > 0. The first
requirement implies that the average score of a random match will be negative (otherwise, extending

a match would tend to increase the score, and this contradicts the idea of local similarity). The
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second condition implies that a match with a positive score is possible (otherwise a match would
always consist of a single pair of residues).

The following theorem concerns local matches (as defined in section 2.1.5) with a general scoring
scheme but without gaps (i.e., the penalty for opening a gap is 00). It characterizes the maximal
score of local alignment S = H(A, B) of two random sequences, and the distribution of amino acids
in the maximal scoring segments.

Theorem 3: Let A = A;A5...A, and B = B B5...B, where A;, B; are i.i.d and sampled
from the same distribution P over an alphabet A. Assume that s(a,b) satisfies E(s(4,B)) < 0
and s* = maz{s(a,b) : a,b € A} > 0. Let A\ > 0 be the largest real root of the equation

E(ers(4:B)) = 1. Then
S

n=oo Inn?
A

and the proportion of letter a aligned with the letter b in the best scoring match converges to
Gap = Pappe™ (WY
The direct implication of this theorem is that for two random sequences of length n and m,

In(n-m)

the score of the best local alignment (the MSP score in BLAST jargon) is centered around —5—.

=1 (2.2)

That is, the local similarity score grows logarithmically with the length of the sequences, and

with the size of the search space n-m. Practically, given the distribution P (for example the overall

background distribution of amino acids in the database), A is obtained by solving the equation
S~ pappe @) =1 (2.3)
ab

using a method such as Newton’s method.

This result in itself is still not enough to obtain a measure of statistical significance for local
similarity scores. This can be done only once a concentration of measure result is obtained or the
distribution of similarity scores is defined. Indeed, one of the most important results in this field
is the characterization of the distribution of local similarity scores without gaps. This distribution
was shown to follow the extreme value distribution [Karlin & Altschul 1990, Dembo & Karlin 1991,
Dembo et al. 1994b].

Formally, as the sum of many i.i.d random variables is distributed normally, then the maxi-
mum of many i.i.d random variables is distributed as an extreme value distribution [Gumbel 1958].
This distribution is characterized by two parameters: the index value w and the decay constant A
(for u = 0 and A = 1, the distribution is plotted in Fig. 2.2). The distribution is not symmetric.
It is positive definite and unimodal with one peak at u. Practically, the score of the best local
alignment (the MSP score) is the maximum of the scores of many independent alignments, which
explains the observed distribution. This is summarized in the next theorem, which concerns the
distribution of local similarity scores for random sequences.

Theorem 4: Let S be a random variable whose value is the local similarity score for two
random sequences of length n and m, as defined above. § is distributed as an extreme value
distribution and

Prob(8 > z) ~ 1 — exp(—e M=) (2.4)
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Figure 2.2: Probability density function for the extreme value distribution with « =0 and X\ = 1.

where ) is the root of equation 2.3 and v = 2Emn

, where K is a constant that can be estimated
from first-order statistics of the sequences (i.e., the background distribution) and the scoring ma-
trix s (K is given by a geometrically convergent series which depends only on the p, and sg
[Karlin & Altschul 1990]).

Theorem 4 holds, subject to the restriction that the amino acid composition of the two sequences
that are compared are not too dissimilar [Karlin & Altschul 1990]. Assuming that both sequences
are drawn from the background distribution, the amino acid composition of both should resemble
the background distribution. Without this restriction theorem 4 overestimates the probability of
similarity scores, and indeed, this is observed in protein sequences with unusual compositions (see
also chapter 8).

For a large « we can use the approximation 1 — exp(—e %) ~ e %. Therefore, for a large z,
Prob(8 > z) ~ e M@ = gmAT AU — AT (2.5)

This result helps to calculate the probability that a given MSP score could have been obtained by
chance. The score will be statistically significant at the 1% level if S > zy where zy is determined
by the equation Kmne %0 = 0.01. In general, a pairwise alignment with score S has a p-value
of p where p = Kmne 5. Ie., there is a probability p that this score could have happened by
chance.

The probability p, that a similarity score S could have been obtained simply by chance from the
comparison of two random sequences, should be adjusted when multiple comparisons are performed.
One example of this is when a sequence is compared with each of the sequences in a database of
size D. Denote by p-match a match between two sequences that has a p-value < p (i.e., its score
> §). The probability of observing at least one p-match (i.e., at least one “success”), in a database
search is distributed as a Poisson distribution (the distribution is in fact binomial, but in practice,
the Poisson § = Dp approximation is applied for the Binomial(D, p) distribution for D large and
d = Dp small). The probability of m successes is Pr(m) ~ ‘57’; e 9. Therefore, the probability P of

m
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getting by chance at least one p-match, when searching in a database containing D sequences is
P =Prob(m>1)=1-Prob(m=0)=1-e°=1-¢D? (2.6)
and for P < 0.1 this is well approximated by Dp. Thus,
P~1—e PP~ Dp=KDmne ¢ (2.7)

This discussion assumes that all sequences in the database (library sequences) have the same
probability of sharing a similar region with the query sequence. However, it is more appropriate
to assume that all equal-length protein segments in the database have an equal apriori probability
that they are related to the query sequence (since similarity usually follows a domain). Therefore,
if the query sequence is of length n, and the (pairwise) alignment of interest involves a library
segment of length m, and the database has a total of N amino acids, then D should be replaced

with N/m. Hence, equation 2.7 is corrected to obtain
P ~ KNne ™S (2.8)

where the term Nn can be viewed as the “effective size” of the search space.

It is very common to use the expectation value (e-value) as a measure of statistical signif-
icance. It is well known that the parameter § of the Poisson distribution is also the expectation
value of this distribution (as well as of the original binomial distribution which is approximated by

the Poisson distribution). Therefore,
E = E(number of p—matches) = 6 = Dp (2.9)
and as discussed above, D should be replaced with N/m. Hence
E = KNne S (2.10)

This is the expected number of distinct matches (segment pairs) that would obtain a score > S
by chance in a database search, with a database of size N (amino acids) and composition P (the
background distribution of amino acids). If E = 0.01, then the expected number of random hits
with a score > § is 0.01. In other words, we may expect a random hit once in 100 independent
searches. If ¥ = 10, then we should expect 10 hits with a score > S by chance, in a single database
search. This means that such a hit is not significant. Note that E ~ P for P < 0.1 (equations 2.8
and 2.10), and consequently, in many publications in this field there is no clear distinction between
E and P. However, for P > 0.1 they differ, where P = 1 — exp(—FE) (equations 2.6 and 2.9).
Finally, by setting a value for E' and solving the equation above for S, it is possible to define a
threshold score, above which hits are reported. This is the score above which the number of hits
that are expected to occur at random is < FE. Therefore, we can deduce that a match with this
score or above reflects true biological relationship, but we should expect up to E errors per search.

The specific value of E affects both the sensitivity of a search (the number of true relationships
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detected) and its selectivity (the number of errors). A lower value of E would decrease the error
rate. However, it would decrease the sensitivity as well. A reasonable choice for F is between 0.1
and 0.001 (see chapter 8 for more details).

In general, the same two sequences may have more than one high-scoring pair of segments. This
may happen whenever insertions/deletions should be introduced to align the sequences properly.
The combined assessment of scores from several ungapped alignments can be evaluated by applying

—Mz—v)  Given the k highest scoring HSPs, among which

Poisson statistics with the parameter p = e
the lowest HSP score is z, the Poisson distribution can be used to calculate the probability that
at least k segments pairs, all with a score of at least z, would appear by chance in one pairwise
comparison. This approach has the disadvantage of being dependent on the lowest score among
the k£ highest scores. Another alternative is to calculate the sum Sy of the highest k& scores. The
distribution of such sums has been derived [Karlin & Altschul 1993] and the probability of a given
sum is calculated (numerically) by a double integral on the tail of the distribution. In either case,

the HSPs should first satisfy a consistency test before the joint assessment is made.

Local alignment with gaps

Though local alignments without gaps may detect most similarities between related proteins, and
give a good estimation of the similarity of the two sequences, it is clear that gaps in local alignments
are crucial in order to obtain the correct alignment, and for a more accurate measure of similarity.
However, no precise model has been proposed yet to explain gaps in alignments. Moreover, in-
troducing gaps in alignments greatly complicates their mathematical tractability. Rigorous results
have been obtained only for local alignments without gaps.

Recent studies suggest that the score of local gapped alignments can be characterized in the
same manner as the score of local ungapped alignments: According to theorem 3 the local un-
gapped similarity score grows logarithmically with the sequence’s length and the size of the search
space. Arratia & Waterman [1994] have shown that for a range of substitution matrices and gap
penalties, local gapped similarity scores have the same asymptotic characteristic. Furthermore,
empirical studies [Smith et al. 1985, Waterman & Vingron 1994] strongly suggest that local gapped
similarity scores are distributed according to the extreme value distribution, though some correction
factors may apply [Altschul & Gish 1996].

Based on empirical observations, Pearson [1998] has derived statistical estimates for local align-
ment with gaps, using the extreme value distribution for scores obtained from a database search.
A database search provides tens of thousands of scores from sequences which are unrelated to the
query sequence, and therefore are effectively random. As discussed above, these scores are thus
expected to follow the extreme-value distribution. This is true as long as the gap penalties are not
too low. Otherwise the alignments shift from local to global and the extreme value distribution no
longer apply.

Since the logarithmic growth in the sequence length holds in this case, scores are corrected first

for the expected effect of sequence length. The correction is done by calculating the regression
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line S = a+ b-Inn for the scores obtained in a database search, after removing very high scoring
sequences (probably related sequences). The process is repeated as many as five times. The
regression line and the average variance of the normalized scores are used to define the z-score:

S—(a+b-Inn)
var

Z—Sscore =

and the distribution of z-scores is approximated by the extreme value distribution

p = Prob(z—score > z) =1 — exp(—e“'*™?)
where ¢; and ¢y are constants, and the expectation value is defined as before by E(z—score > ) =
N - p where N is the number of sequences in the database (the number of tests).

This empirical approach has the advantage of internal calibration of the accuracy of the es-
timates, and has proved to be very accurate in estimating the statistical significance of gapped

similarity scores [Pearson 1998] (see also chapter 8 and [Brenner et al. 1998]).

2.4 Scoring matrices and gap penalties

Protein sequences are compared using scoring matrices that are not just +1 for a match and 0
for a mismatch. Since the late 60s, several different approaches were taken to derive reliable and
effective scoring matrices. I’ll briefly discuss some of this work in this section. For more details,
and comparison of different scoring methods see [Feng et al. 1985, Johnson & Overington 1993].

The genetic code matrix [Fitch & Margoliash 1967] measures amino acid similarity by the num-
ber of common nucleotide bases in their codons. This quantity is maximized by considering the
closest matching representatives codons. Identical amino acids share 3 bases, while non-identical
share 2 or less. Despite this nice rational which returns to the very basic evolutionary events at the
DNA level, most of the genetic pressure is on the protein sequence. Although there is some correla-
tion between the codons of different amino acids and their biochemical properties?®, this correlation
is not strong enough to detect weak homologies.

Some matrices are based directly on similarities between physico-chemical properties of amino
acids [Grantham 1974, Miyata et al. 1979]. However, these matrices do not perform very well.
The reason is that there is no single property of amino acids which can account for preserving the
structure and function of a protein.

The most effective matrices are those that are based on actual frequencies of mutations that
are observed in closely related proteins. Exchange occur more frequently among amino acids that
share certain properties. Indeed, these matrices reflect the biochemical properties of the amino
acids, which influence the probability of mutual substitution, and amino acids with similar prop-
erties have high pairwise score. Matrices which are based on sequence alignments include the
family of PAM matrices [Dayhoff et al. 1978] (and their improvement by [Jones et al. 1992]), the

4[Gonnet et al. 1992] have shown that for low divergence, the structure of the code influence the distribution of
accepted point mutations.
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BLOSUM matrices [Henikoff & Henikoff 1992], Gonnet matrix [Gonnet et al. 1992] and more (e.g.
[McLachlan 1971]).

Several matrices were extracted from secondary structure propensities of the amino acids
[Levin et al. 1986, Mohana Rao 1987]. Other matrices, which proved to be very effective for protein
sequence comparison, are those that are based on structural principles [Johnson & Overington 1993,
Risler et al. 1988]. These matrices reflect the statistics of pairwise substitutions that are observed
at structurally equivalent positions in aligned structures of proteins from the same family. These
matrices may increase the accuracy of sequence alignment and perform well in detecting homolo-
gous proteins. They might be a good choice in aligning relatively mutable regions (sequence derived
matrices are based on conserved regions, and therefore cannot accurately model more mutable re-
gions). However, in such regions gaps are much more frequent and it is necessary to include gaps in
the alignments. No theoretical model has been established for gaps (see 2.4.4), and when modeled
improperly, gaps can significantly reduce the performance and the alignment accuracy. Moreover,

it is not clear how to select the parameters for gap penalties relative to the substitution matrix.

The two most extensively used families of scoring matrices are the PAM matrices and the

BLOSUM matrices. A detailed description of these matrices is given in the next two sections.

2.4.1 The PAM family of scoring matrices

PAM matrices were proposed by Dayhoff et al in 1978 based on observations of hundreds of align-
ments of closely related proteins. The frequencies of substitution of each pair of amino acids were
extracted from alignments of proteins of small evolutionary distance, below 1% divergence, i.e. at
most one mutation per 100 amino acids, on average. These frequencies, normalized to account for
the frequencies of single amino acids, resulted in the PAM-1 matrix. The PAM-1 matrix reflects
an amount of evolutionary change that yields on average one mutation per 100 amino acids. Ac-
cordingly, it is suitable for comparison of proteins which have diverged by 1% or less. The PAM-1
matrix is then extrapolated to yield the family of PAM-k matrices. Each PAM-k matrix is ob-
tained from PAM-1 by k consecutive multiplication, and is suitable for comparison of sequences
which have diverged k%, or are k evolutionary units apart. For example, PAM-250 = (PAM-1)2%0
reflects the frequencies of mutations for proteins which have diverged 250% (250 mutations per 100
amino acids®). These matrices were later refined by [Jones et al. 1992] based on much larger data
set. The significant differences were detected for substitutions that were hardly observed in the
original data set of [Dayhoff et al. 1978].

The acronym PAM stands for Percent of Accepted Mutations (and hence the distance is in
percentages) or for Point Accepted Mutations (and hence the distance in number of mutations per

100 amino acids).

®Though the definition of PAM-250 seems odd, it still make sense, as is subsequently explained.
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Computing PAM matrices (following the scheme described in [Setubal & Meidanis 1996])

Each evolutionary distance defines a probability transition matrix M. The scores matrix S, is then obtained from
M. The initial matrix - PAM-1 is derived from:

(1) A list of accepted mutations.

(2) The probability of occurrence p, of each amino acid (3", pa = 1).

The list of accepted mutations is created by observing mutations that occur in alignments of closely related homologous
proteins. Such pairs of proteins which have diverged through only small number of mutations, so that the correct
alignment is obvious. The term “accepted” is used to emphasize that these mutations didn’t destroy the protein’s
functionality, and the major properties of the protein were preserved. Selecting closely related proteins also minimizes
the probability of mediated mutations (a — b — ¢), which are inappropriate for the computation of PAM-1.

The probability for each amino acid can be estimated from the relative frequencies of amino acids in a large,
heterogeneous set of proteins.

The frequencies f,» of mutations (a <+ b) are calculated from the list of accepted mutations. The mutations are
undirected events, that is, given a pair of aligned amino acids, we do not know which amino acid mutated into the
other. Therefore, fop = fra. Let fo = Eb ta fab, 1.e. the total number of mutations in which a was involved. Let
f =72, fa be the total number of amino acids involved in mutations (twice the number of mutations).

In the PAM-1 matrix the element M,; denotes the probability that amino acid @ mutates into the amino acid
b. The element M,, denotes the probability that the amino acid remains unchanged during the corresponding
evolutionary interval, and it is derived from the relative mutability m, of the amino acid a (the tendency/probability
of amino acid a to change). It is defined as

__ fa
O (2.11)

Intuitively, fT“ gives the relative frequency of the mutations in which amino acid a is involved. The division by p,
normalize this relative frequency in the frequency of occurrence of the amino acid a, to avoid bias due to different
frequencies of the amino acids. The division by 100 normalize this quantity to correspond to the specific evolutionary
time interval. This way the total amount of possible change sums into 1 mutation per 100 amino acids, as will be
shown soon (in terms of probability, the probability of a mutation is 0.01).

The probability that amino acid a remains unchanged is the complementary probability My, = 1 — mg. The
probability that a mutates into b is given by

MabzP(a—>b)=

P(a — b/a changed) - P(a changed) = % “Mag
a
These calculations are based on a simple Markov-type model of protein evolution, according to which the prob-
ability that amino acid change does not depend on the past, nor does is depend on the other amino acids in the
sequence. These two assumptions are clearly oversimplified.
The matrix M has the following properties: The probability that amino acid a mutates into any amino acid b

including itself (the probability that it remains unchanged) sum to 1, as required:

ZMab:Z%'ma“‘Maa:;_ama‘FMaa:ma‘l‘l_ma:l

b b#a

Also, the probability that the sequence remains unchanged is

ZpaMaazzm(l—ma)=Zpa—2pam0_fﬁ=1—1:7)=0.99 (2.12)

Therefore, the expected rate of mutations is 1 per 100 amino acids, and the PAM-1 matrix corresponds to one unit
of evolution, as required (this explains the normalization in equation 2.11). It should be noted that one unit of
evolution does not necessarily equal to one unit of time, as different proteins from various protein families have

evolved at different rates.
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Given the basic matrix M, it is now possible to get the transition probabilities for larger evolutionary distances.
For example, the probability that a mutates to b in two PAM units of evolution is given by Zc MycMecp,. Therefore,
the matrix that correspond to two units of evolution is given by PAM-2 = M - M, and for k units of evolution PAM-k
= M*. For large k (on the order of a thousand) M* converges to a matrix with identical rows, where each row equals
the distribution of amino acids. Therefore, for large evolutionary distances, no matter what amino acid is chosen,
the probability that it mutates into b is simply ps.

The scoring matrix S is obtained from the transition probability matrix M. The entries are defined by the
likelihood ratio of two events: a pair is a mutation versus a random occurrence. The probability that a changes into
b is M, but there is a probability p, that we encounter b in the second sequence, just by chance. The likelihood

ratio is Ap{‘;". The score S,p is defined as 10 times the logarithm of this ratio. The logarithm is taken because the
alignment score is the sum of pairwise scores, and this way it corresponds to the logarithm of the product of the
ratios (log-likelihood). The factor 10 is used because the similarity scores are rounded to integers to speed up the
calculations, and this reduces the numerical error. For distance of k evolutionary units

(Mk)ab

Sk =10-1o
b 810 Do

and the matrix is symmetric S¥, = S, (recall that the accepted mutation used for defining the scores are undirected

events).

The PAM-250 matrix

The PAM-250 matrix is one of the most extensively used matrices in this field. This matrix corresponds to a divergence
of 250 mutations per 100 amino acids. Naturally one may ask whether it makes sense to compare sequences which have
diverged this much. Surprising as it may seem, when calculating the probability that a sequence remains unchanged
after 2560 PAMs (applying equation 2.12 for PAM-250), the outcome is that such sequences are expected to share
about 20% of their amino acids. For reference, note that the expected percentage of identity in a random match is
100 - Ea p2. Therefore, for a typical distribution of amino acids (in a large ensemble of protein sequences), we should
expect less than 6% identities.

2.4.2 The BLOSUM family of scoring matrices

Unlike PAM matrices, which are extrapolated from a single matrix PAM-1, the BLOSUM series
of matrices was constructed by direct observation of sequence alignments of related proteins, at
different levels of sequence divergence. The matrices are based on “blocks” - a collection of mul-
tiple alignments of similar segments without gaps [Henikoff et al. 1999], each block representing a
counserved region of a protein family. These blocks provide a list of (accepted) substitutions, and a

log-odds scoring matrix can be defined:

Gab

Sab = log —

€ab
where ¢, is the observed relative frequency of the pair a <> b given by qup = fan/ Doa Db fab and
eqp is the expected probability of the pair, estimated from the population of all observed pairs as
follows: the probability of the occurrence of amino acid a in a pair is pg = gaq + Y_p gab/2, hence

the expected probability of the pair a <> b is p.pp for a = b and papp + PePa = 2pepp for a # b.

To reduce the bias in the amino acid pair frequencies caused by multiple counts from closely

related sequences, segments in a block with at least £% identity are clustered and pairs are counted



Chapter 2. Comparison of protein sequences 35

between clusters, i.e., pairs are counted only between segments less than 2% identical. When
counting pairs frequencies between clusters, the contributions of all segments within a cluster are
averaged, so that each cluster is weighted as a single sequence. Varying the percentage of identity
z within clusters results in a family of matrices BLOSUM-z, where z ranges from 30 to 100. For
example, BLOSUM-62 is based on pairs that were counted only between segments less than 62%
identical.

2.4.3 Information content of scoring matrix

Theorem 3 has a direct bearing on the question of how to choose the appropriate substitution
matrix. It states that the frequency of a letter a aligned with the letter b in the best scoring match

of two random sequences converges to

qab = Pappexp™*(@?) (2.13)

as the length of the compared sequences grows without bound. These frequencies are called target
frequencies. Hence, any substitution matrix has an implicit target distribution for aligned pairs
of amino acids, which can be easily calculated from the scores s(a,b). According to equation
2.3 these frequencies sum to 1. The implicit target frequencies of a matrix characterize the best
scoring alignments, i.e. the alignments this matrix is optimized to find. In other words, only if the
frequencies of aligned pairs in a match resemble the target frequencies will the corresponding match
have a high score. Therefore, it is claimed [Karlin & Altschul 1990, Altschul 1991] that a matrix is
optimal for distinguishing true distant homologies from chance similarities, if the matrix’s target
frequencies correspond to the real frequencies of paired amino acids in the alignment of distantly
related proteins.

Equation 2.13 can be restated as:

1 ( qab >
Sab == | In 2.14
ab by Dabb ( )

Le. the score for an amino acid pair can be written as the logarithm (to some base) of the pair’s
target frequency divided by the product of their probability of occurrence. This denominator is the
probability of the occurrence of this pair under independent selection. This ratio thus compares the
probability of an event under two alternative hypotheses, and is termed likelihood or odds ratio.
Therefore, each scoring matrix is implicitly a “log-odds” matrix, even if the underlying model is
not based on observed substitutions. The PAM and the BLOSUM matrices are explicitly of this
form.

By equation 2.3 it follows that multiplying a substitution matrix by a constant factor « is

equivalent to dividing A by a but does not alter the implicit target frequencies, nor the implicit
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form of log-odds matrix 6. Such scaling merely corresponds to a different base for the logarithm
in equation 2.14. If X\ is chosen to be A = In2, the base for the logarithm is 2, and scores can be
viewed as bits of information.

How many bits of information are needed to deduce a reliable relationship? If the expected
number of MSPs with a score of at least S (equation 2.10) is set to E and the equation is solved
for S, then

K
S = log, ol + logy, Nn

Recall that this is the score above which the number of hits that are expected to occur at random
is < E. If a very low value is set for F, then the match is very significant and probably biologically
meaningful. Therefore, this score, expressed in bits, can be viewed as the (minimal) number of
bits needed to distinguish an MSP from chance (with error rate < E). For a typical substitution
matrix K is of the order of 0.1, and for an alignment to be considered significant, £ should be
0.05 or less [Altschul 1991, Altschul & Gish 1996]. Therefore the dominant term is the logy, Nn. In
other words, to distinguish an MSP from chance, the number of bits needed is roughly the number
of bits needed to specify where the MSP starts among Nn possible positions [Altschul 1991]. For
example, for an average protein length of 350, and the SWISSPROT database with over 20,000,000
amino acids, at least 33 bits are needed.

With this interpretation, it is possible to get a rough measure of which matrix is appropriate
for a search. Matrices can be evaluated by their information content, i.e., the average information

per position,

qab
H= Z 9abSab = ZQab 10g2 —-
a,b a.b papb

which is the relative entropy of the target and background distributions. The higher the value, the
better the distributions are distinguished, and the shorter is the length of an alignment with the
target distribution that can be distinguished from chance (i.e., the minimum significant length
is shorter).

For PAM matrices the information content decreases as the PAM distance increase. For example,
PAM-120 has an information content of 0.98 bits per position. Assuming that at least 33 bits
are needed to distinguish a true relationship from chance similarity (see above), the minimum
significant length is 34. PAM-250 has an information content of 0.36 bits per position and the
minimum significant length is 92. This is much longer than many regions of possible similarity
such as domains or motifs. Therefore, short motifs can be detected by PAM matrices only if they
have diverged a small PAM distance. For BLOSUM matrices the information content is higher
when the index of the matrix is higher (e.g., BLOSUM-100 has an information content of 1.45
bits per position, while BLOSUM-45 has an information content of 0.38 bits per position). It is

5Theorem 3 and its implications for scoring matrices hold for local alignments. For global alignments, multiplying
all scores by a constant has no effect on the relative scores of different alignments (as for local alignments). However,
the same is true when adding a constant a to the score of each aligned pair and a/2 to a gap. Such transformation
entails that no unique log-odds interpretation of global substitutions matrices is possible, and probably no theorem
about target frequencies can be proved [Altschul et al. 1990].
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important to note that higher information content does not signify a better performance in terms
of detecting distant homologies. It is the target distribution of a matrix that determines if the
matrix is optimal for a specific search. Therefore, a matrix like the BLOSUM-100, which reflects
substitutions between closely related proteins, is not appropriate for the purpose of detecting distant
homologies, despite its high information content. A commonly used matrix is the BLOSUM-62,
which has an information content of 0.7 bits per position (the same as PAM-160). This matrix is
appropriate for comparison of moderately diverged sequences, and it is considered to be one of the
best matrices for database searches due to its overall performance, which is superior to all PAM

matrices (see next section).

Choosing the scoring matrix

When comparing two sequences, the most effective matrix to use is the one which corresponds to
the evolutionary distance between them (see previous section). However, we usually do not know
this distance. Therefore, it is recommended to use several scoring matrices which cover a range
of evolutionary distances, for example PAM-40, PAM-120 and PAM-250. In general, low PAM
matrices are well suited to finding short but strong similarities, while high PAM matrices are best
for finding long regions of weak similarity.

Exhaustive evaluations have been carried out to compare the performance of different scoring
matrices [Henikoff & Henikoff 1993, Pearson 1995]. The evaluation procedures are performed as
follows: a few hundred protein families are used as a benchmark, and the quality of a matrix is
estimated by the portion of these families it is able to detect in a database search. Specifically, a
query sequence is chosen from each family, and a database search is performed, each time with a
different scoring matrix. All family members with a score above a certain threshold are considered
to have been detected. The threshold can be chosen, for example, as the the score at 1% error rate,
or the score above which the number of related sequences equals the number of unrelated sequences
[Pearson 1995] (see also chapter 6). The matrix which detects the maximum number of members
from the family is considered optimal for this family. The best matrix may vary among different
families, therefore the quality is averaged over all families in the reference set.

These studies show that log-odds matrices derived directly from alignments of highly conserved
regions of proteins (such as BLOSUM matrices or the Overington matrix, which is based on struc-
tural alignment [Johnson & Overington 1993]) outperform extrapolated log-odds matrices based
on an evolutionary model, such as PAM matrices. Moreover, the accuracy of alignments based on
extrapolated matrices decreases as the evolutionary distance increases. This suggests that extrap-
olation cannot accurately model distant relationships, and that the PAM evolutionary model is
inadequate. BLOSUM matrices were shown to be more effective in detecting homologous proteins.
Specifically, BLOSUM-62 and BLOSUM-50 gave superior performance in detecting weak homolo-
gies. These matrices offer good overall performance in searching the databases. The best hybrid of
matrices for searching in different evolutionary ranges is either BLOSUM 45/62/100 or BLOSUM
45/100 plus the Overington matrix.
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2.4.4 Gap penalties

There is no mathematical model to explain the evolution of gaps. Practical considerations (the
need for a simple mathematical model, time complexity) have led to the broad use of linear gap
functions. However, there is evidence that the real behavior is quite different. By observing
alignments of related proteins, Gonnet et al. [Gonnet et al. 1992] have empirically shown that
the probability for (opening) a gap increase linearly with the PAM distance of the two sequences.
However, the probability of a gap of length k decreases as k*%, independent of the PAM distance
of the two sequences. This offers a further evidence to the hypothesis that gaps are not created
by consecutive events of insertions/deletions. Here is a possible simplified explanation for this
functional dependency: Given an accepted gap (inserted/deleted chain), it is reasonable to assume
that the two ends of the extracted/inserted chain lie structurally close to each other, so that the
chain’s insertion/deletion does not affect much the global 3D structure of the protein, and hence
its functionality. The probability that the two ends of a randomly coiled chain are placed spatially
close is inversely proportional to the mean volume it occupies. This volume increases as k3 for

random chains of length k£ which explains the dependency of k3.



