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The increasing number and diversity of protein sequence families
requires new methods to de®ne and predict details regarding function.
Here, we present a method for analysis and prediction of functional sub-
types from multiple protein sequence alignments. Given an alignment
and set of proteins grouped into sub-types according to some de®nition
of function, such as enzymatic speci®city, the method identi®es positions
that are indicative of functional differences by comparison of sub-type
speci®c sequence pro®les, and analysis of positional entropy in the align-
ment. Alignment positions with signi®cantly high positional relative
entropy correlate with those known to be involved in de®ning sub-types
for nucleotidyl cyclases, protein kinases, lactate/malate dehydrogenases
and trypsin-like serine proteases. We highlight new positions for these
proteins that suggest additional experiments to elucidate the basis of
speci®city. The method is also able to predict sub-type for unclassi®ed
sequences. We assess several variations on a prediction method, and
compare them to simple sequence comparisons. For assessment, we
remove close homologues to the sequence for which a prediction is to be
made (by a sequence identity above a threshold). This simulates situ-
ations where a protein is known to belong to a protein family, but is not
a close relative of another protein of known sub-type. Considering the
four families above, and a sequence identity threshold of 30 %, our best
method gives an accuracy of 96 % compared to 80 % obtained for
sequence similarity and 74 % for BLAST. We describe the derivation of a
set of sub-type groupings derived from an automated parsing of align-
ments from PFAM and the SWISSPROT database, and use this to per-
form a large-scale assessment. The best method gives an average
accuracy of 94 % compared to 68 % for sequence similarity and 79 % for
BLAST. We discuss implications for experimental design, genome anno-
tation and the prediction of protein function and protein intra-residue
distances.
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Introduction

Multiple sequence alignments are central to pro-
tein classi®cation and analysis. When protein
sequences are aligned, it becomes possible to see
sequence conservation patterns that are indicative
of, for example, enzyme active sites and secondary
structure types (e.g. Zvelebil et al., 1987; Casari
et al., 1995; Lichtarge et al., 1996a). With such
patterns, it is possible to derive motifs that encap-
sulate the features de®ning the protein family.
Moreover, the aligned sequences can be used to
construct sensitive pro®les (e.g. Gribskov et al.,
1987; Birney et al., 1996), or hidden Markov models
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62 Protein Functional Sub-types
(HMMs; e.g. Eddy, 1998; Krogh et al., 1994) that
can be used to detect further, more remote mem-
bers of a protein family. These techniques and
others have aided greatly the detection of protein
families and the associated construction of protein
alignment databases, such as SMART (Schulz et al.,
1998) and PFAM (Bateman et al., 1999), which are
of growing importance in the analysis of data from
large scale genome sequence projects.

However, the detection and alignment of
sequences from diverse protein families creates
new problems. Among these is the fact that hom-
ologous proteins frequently evolve different func-
tions, which we hereafter refer to as a sub-type. It
is common for proteins to evolve slightly different
functions, such as different substrate speci®cities,
or activities. In extreme cases, both enzymes and
effector molecules (i.e. non-enzymes) can reside in
the same homologous superfamily (e.g. Murzin,
1993), and ultimately proteins with similar folds
can perform completely different functions (e.g.
Russell et al., 1998). If a protein is of unknown
function, but is found to belong to a diverse pro-
tein superfamily, or fold, with multiple functions,
then determining functional sub-type becomes of
great importance.

Often a perfect division of a protein family into
sub-types can be accomplished by a simple phylo-
genetic analysis. In other words: sub-type corre-
lates exactly, and it is clear that with the branches
of a phylogenetic tree, therefore making the predic-
tion of sub-type simply a matter of deciding into
which branch a protein belongs. It is not surprising
that most previous attempts to classify proteins
have been very reliant on phylogenetic trees.

However, the division of proteins into functional
sub-types cannot always be accomplished by phy-
logeny. If much time has passed since the evol-
ution of different sub-types, then sequences may
have diverged beyond the point where phylogeny
can easily give a clear division. In addition, pro-
teins usually have multiple features that co-evolve,
such as differing af®nities for more than one sub-
strate, variations in sub-cellular location (e.g. mem-
brane attached versus cytosolic) or the interaction
with other proteins that differ across paralogues,
even if other details, such as catalytic mechanism,
remain unchanged. Finally, there remains the
possibility that details of molecular function may
evolve convergently (e.g. Makarova & Grishin,
1999). This is particularly likely in instances where
speci®city is conferred by only a handful of resi-
dues, or even a single position (e.g. Wu et al.,
1999).

Various methods have been developed pre-
viously that attempt to address the problem of the
analysis and prediction of protein sub-types from
protein sequence alignments. Livingstone & Barton
(1993) developed a method to annotate protein
sequence alignments with the aim of highlighting
positions of residue conservation. They made use
of amino acid properties similar to those of Taylor
(1986) and ``sensible groups'' provided from
sequence similarity, functional or evolutionary
criteria to highlight positions in the alignment con-
ferring the unique features of a sub-group. The
method was demonstrated graphically by analysis
of SH2 and annexin domains, but to our knowl-
edge, it has not been applied to the problem of pre-
dicting sub-types.

Casari et al. (1995) used a principle component
analysis of a vector representation of sequences in
space to develop an elegant method for identifying
functional residues on proteins based on a multiple
sequence alignment. Analysis of various dimen-
sions in the vector sequence space gave both pos-
itions that are conserved across the whole protein
family, in addition to residues speci®c to sub-
types, either speci®ed in advance, or determined
from analysis of the sequence space itself. The
method was successful at identifying positions
determining speci®city in the Ras-Rab-Rho super-
family, SH2 domains and cyclins. Subsequent stu-
dies have applied this method to alcohol
dehydrogenases (Atrian et al., 1998), the ran-RCC1.
interaction (Azuma et al., 1999), effector recognition
by GTP-binding proteins (Bauer et al., 1999), and
other families.

Lichtarge et al. (1996a) developed the ``Evol-
utionary Trace'' method, to determine important
positions on protein sequences and structures that
were of functional importance. Their method com-
bined knowledge of protein structures with an
evolutionary history derived from a phylogenetic
tree to extract functionally important residues to
identifying functional interfaces on protein sur-
faces. They made a distinction between positions
conserved across all sequences, and those that vary
only between subgroups (class-speci®c). In this
way they were able to identify positions on protein
structures that were important, both for features of
the family as a whole, as well as for particular sub-
types. The method has been applied to several pro-
tein families, including SH2, SH3, nuclear hormone
receptors (Lichtarge et al., 1996a), G-proteins/
G-protein coupled receptors (Lichtarge et al.,
1996b), zinc binding domains (Lichtarge et al.,
1997) and the RGS/G-protein interaction (Sowa
et al., 2000).

Sjolander (1998) developed a method of Phylo-
genetic Inference speci®cally designed for protein
super-family analysis. Here, a phylogenetic tree is
built for the input sequences based on nearest
neighbour heuristics. The nodes in the tree are rep-
resented by a sequence pro®le of the sequences
under that node, and the distance between two
nodes is computed in terms of symmetric relative
entropy, together with Dirichlet mixture priors.
The method ensures that the highly conserved sites
have higher weights while computing distances
between nodes. The method was applied to SH2-
domain containing proteins, resulting in new sub-
family assignments for two proteins.

Here, we present another approach for studying
protein sub-types associated with sequence align-
ments. Rather than attempt to de®ne sub-types, we
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focused on the problems of identifying regions that
confer speci®city of sub-types already known (e.g.
from experimental studies), and of predicting sub-
types for ``orphan'' sequences (i.e. those where no
sub-type is known).

Given a multiple sequence alignment and a
classi®cation of different sub-types (e.g. differences
in enzyme speci®city), the method exploits the
differences between hidden Markov model pro®les
to highlight positions on the sequences that are
most discerning of each sub-type. The method per-
mits conservative substitutions, and tolerates miss-
ing data by combining alignments with amino acid
exchange matrices via the construction of an HMM
(Eddy, 1998). For new sequences known to be
homologous to an existing family, but of unknown
sub-type, the method can exploit the known sub-
type classi®cations and associated pro®les to pre-
dict sub-type. We demonstrate the method ®rst by
application to four well characterised protein
families. We then perform a large scale assessment
of sub-type prediction by applying the method to
automatically derived sub-type groupings for 42
alignments from PFAM (Bateman et al., 1999). We
discuss implications for experimental design, pre-
diction of protein function, prediction of inter- and
intra-protein distances, and applications to genome
annotation.

Algorithm

Assessing the discerning value of amino
acid positions

This procedure locates positions in a protein
alignment that are best able to discriminate
between different sub-types. Essentially this
involves ®nding positions that are conserved
within each sub-type, but that vary between the
different sub-types.

Given an alignment A of sequences in family F,
and the sub-types S1, S2, � � � , Sk of the sequences,
we extract the sub-alignment Aj from A, corre-
sponding to the sequences of sub-type Sj. We use
the hmmbuild program of the HMMER 2.1.1
(http://hmmer.wustl.edu) to build pro®le Pj of the
alignment Aj. In pro®le building, the issues of
small sample sizes and bias in the sample are
important. By default HMMER uses Dirichlet
priors and G/S/C sequence weighting scheme to
address these issues. We refer the reader to Durbin
et al. (1998) for the details of these methods.

We represent the pro®le of Aj at position i of the
alignment by Pj

i, and the pro®le value for amino
acid x at position i of the alignment by Pj

i,x. We
convert the score pro®le in the hmmbuild output
into a probability pro®le such that:X

for all x

P
j
i;x � 1

for each alignment position i. For a sub-type s, we
use s to denote the union of all the sub-types
excluding s. To estimate the role of an alignment
position (or, site) i in determining the sub-type s,
we compute the relative entropy (Shannon &
Weaver, 1963; Durbin et al., 1998) of the position i
for sub-type s with respect to the entropy of that
position for the sub-type s. Let REs

i be relative
entropy of Ps

i with respect to P�s
i :

REs
i �

X
for all x

Ps
i;x log

Ps
i;x

P�s
i;x

Notice that RE is greater than or equal to zero and
is exactly zero when the two distributions are iden-
tical (Durbin et al., 1998). To estimate the role of an
alignment position i in determining the sub-types,
we de®ne cumulative relative entropy CREi as:

CREi �
X

for all sub-types s

REs
i

The cumulative relative entropies for all the pos-
itions are converted into Z-scores based on the dis-
tribution of entropies for an alignment. Let m and
s be the mean and the standard deviation of
cumulative relative entropies of all positions, then
the Z-score for position i is computed as:

Zi � CREi ÿ m
s

We expect a position with high Z-score to be
important in determining the sub-types. Inspection
of alignments together with knowledge of residues
determining speci®city via experiment suggested
that Z-scores > 3.0 correlated well with preconcep-
tions of positions known to determine speci®city.
We use this value in the discussion of individual
families below.

Once we identify the important sites, we identify
the residues responsible for the low entropies at
those sites. Given a position i, we compute the
ratio of the probability of observing amino acid x
in sub-type s to that for sub-type s. Let PRs

i,x be
value of this ratio for amino acid x in the pro®le of
P�s with respect to P�s

i :

PRs
i;x �

Ps
i;x=P

�s
i;xX

for all y

Ps
i;y=P

�s
i;y

Inspection shows that single amino acid residues
(or groups with similar properties) having
PRs

i,x 5 0.5 agreed with our prior knowledge of
determinants of sub-type speci®city. We thus use
this value when highlighting amino acid residues
in Figures 1 through 6.

Predicting protein sub-types

Sequence similarity method

If a particular sequence X of unknown sub-type
has a high sequence similarity to a sequence with
known sub-type, then X can often be assigned



Figure 1. Alscript (Barton, 1993) Figure showing an alignment of representatives of nucleotidyl cyclases with pos-
itions predicted to confer speci®city to adenylate or guanylate highlighted by the method. The alignment only shows
regions that contain positions predicted to confer speci®city, deleted regions are indicated by dashes (- - -). Positions
are coloured only if PRs

i,x 5 0.5. Colours are according to the residue conservation: hydrophobics, yellow; small resi-
dues, light blue; positive residues, dark blue; negative residues, red; polar residues, magenta. Note that positions
sharing the same colour across both groups may have subtle differences that are discussed in more detail in the text.
Numbers above the alignment refer to positions discussed in the text, and correspond to the PDB structure 1ab8.
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(accurately) to the same sub-type as the most simi-
lar sequence. For comparison to the methods
described below, we devised a simple sequence
similarity method on this principle. Given a
sequence of unknown sub-type, we assign it the
same sub-type as the sequence of known sub-
type with the highest percent sequence identity,
calculated by ignoring gaps, and by leaving
the sequence aligned as they were in the original
alignment.

BLAST method

Another means to assign sub-type via sequence
similarity is to perform a database search. This
would be a typical strategy adopted when given a
new gene known to belong to a large homologous
family, particularly in the absence of pre-computed
multiple sequence alignments. To test this
approach, we performed a BLAST search (Altschul
et al., 1990) using the query sequence, X, and
assigned it to the sub-type of the best HSP score.

HMM method

Since we use HMMER to compute the pro®les
for each sub-type, another approach is to use the
search program hmmsearch to align the sequence of
unknown sub-type to all HMMs and assign it to
the sub-type yielding the maximum (Viterbi) align-
ment score.
Profile (HMM-derived) method

Frequently, the alignment resulting from
hmmsearch is slightly different from the original
alignment. For many protein families, hand-editing
is performed to give alignments that are generally
better than those generated automatically (this is
true for both SMART and seed alignments within
PFAM). Slight changes to the alignment introduced
by an alignment algorithm (i.e. hmmsearch) might
thus affect the prediction accuracy adversely. To
avoid this potential problem we devised a pro®le
method, where instead of aligning the sequence to
HMM using hmmsearch, we assume the original
alignment, and compute the score as described
below.

We assume that a sequence with unknown sub-
type is aligned to the other members of the family
so that the length of the aligned sequence is the
same as the length of the pro®le. For a sequence
X � x1 x2 � � � xn, and pro®le P, the score of X with
respect to P is computed as:

p�XjP� �
Yn

i�1

Pi;xi

Given sub-types S1, S2, � � � , Sk, with pro®les P1, P2,
� � � , Pk, respectively, X is assigned to sub-type Si

that maximises p(Pi j X), which is the same as max-
imising p(X j Pi) using Bayes rule and assuming
equal a priori probabilities of various sub-types.
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Note we could potentially use the known sizes of
sub-types to compute their a priori probabilities.
However we feel that this would unfairly favour
the pro®le method.

Sub-profile method

This method is a slight variant of the pro®le
method. The difference is that only those positions
in the alignment with a positive relative entropy
Z-score are used when computing the score of a
sequence against a pro®le. More exactly:

p�XjP� �
Yn

i�1;Zi>0

Pi;xi

Essentially, this removes contributions of the non-
discriminating alignment positions to the score,
thus ®ltering out noise.

The sequence similarity and BLAST methods
attempt to simulate predictions of sub-type that
might be made by a simple sequence database
search. We acknowledge that it does not necess-
arily compare to a rigorous phylogenetic analysis
(e.g. Sjolander, 1998).

Evaluation of sub-type prediction accuracy

As mentioned above, we believe that if a
sequence X, with unknown sub-type, has a high
degree of sequence similarity to a sequence with
known sub-type, then X can be assigned the same
sub-type with con®dence. The methods proposed
in this paper are aimed at predicting sub-types in
the absence of very similar sequences of known
sub-type. Therefore, before predicting sub-type for
sequence X, we ®rst eliminated all the sequences
highly similar to X. We de®ned sequence similarity
as percentage sequence identity (ignoring gaps)
and we varied the threshold for sequences to
ignore when making a prediction (see Results).

For the sequence similarity and BLAST methods,
we assign sequence X to the sub-type of the most
similar sequence in the reduced set (after removing
the close homologues). For the HMM method, we
construct HMMs using hmmbuild for the reduced
set of each sub-type, align the sequence to each of
the HMMs using hmmsearch and assign the
sequence to the sub-type yielding the maximum
score. The pro®le and the sub-pro®le methods are
similar to the above, but instead of aligning the
sequence against the HMMs using hmmsearch, we
simply score the sequence against the pro®les
derived from the HMMs, as described before, leav-
ing the original alignment of the sequence unper-
turbed. For the sequence similarity, pro®le, and
sub-pro®le- methods we did not adjust the align-
ment in any way from that found in PFAM or
PKR.
Aligned sequence data and sub-types

To test and demonstrate the method initially, we
chose four examples of large enzyme families with
clear sub-types: nucleotidyl cyclases, eukaryotic
protein kinases, lactate/malate dehydrogenases
and trypsin-like serine proteases. For all of these
families laboratory experiments (e.g. site-directed
mutagenesis or crystallography) or manual anal-
ysis of the alignments have been used previously
to determine details regarding speci®city. We also
sought examples where phylogeny or simple
sequence comparison would not easily lead to a
correct prediction of catalytic sub-type. For all four
of these protein families, we generated trees using
the Clustal W package (1000 bootstrap trials,
excluding positions with gaps, and not correcting
for multiple substitutions). For all this procedure
failed to separate the sub-types into distinct clades
(results not shown). Note that division into sub-
types may still be possible via other methods of
tree construction (e.g. for the cyclases see Danchin,
1993).

The aim for these four protein families was to
see if previously identi®ed positions were found
by the method, and check for additional insights
that might have been missed during previous stu-
dies. For this reason, we required that all of the
examples contained at least one protein of known
3D structure, to allow inspection of spatial proxi-
mity of amino acid residues thought to be import-
ant. Unless otherwise stated, alignments were
taken from PFAM (Bateman et al., 1999), and
groupings from inspection of SWISSPROT (Bairoch
& Apweiler, 1999) annotations, or prior bio-
chemical knowledge.

For a rigorous assessment, ideally one would
require a carefully curated set of sub-groupings for
a large set of alignments (e.g. from PFAM or
SMART). It is unfortunate that this would involve
a vast literature investigation that would be
beyond the scope of this paper. It is also proble-
matic to construct a large set of test examples auto-
matically, since details regarding molecular
function of a particular protein are not easily
extracted from any database currently available.
However, certain resources do provide some
capacity to derive such a large set of alignments
and sub-type groupings. Here, we divided proteins
within the PFAM database (version 2.0, 1465 align-
ments) by considering functional details described
in SWISSPROT (Bairoch & Apweiler, 1999). We
®rst sought to use all keyword data (KW), how-
ever these produced ambiguities that lead to a vast
number of meaningless groups. We thus chose to
focus on details of enzymatic activity. We extracted
activities by searching for the string ``CC -!- CATA-
LYTIC ACTIVITY'' for each SWISSPROT entry in
PFAM alignments, and then grouped sequences in
alignments accordingly. After ignoring groups
with fewer than ten sequences, we constructed all
possible group combinations, and ignored those



Figure 2. Rasmol (Sayle & Milner-White, 1995)
Figure showing the structure of adenylate cyclase (PDB
accession 1ab8, chain A), with positions found to confer
speci®city for adenylate or guanlyate by the method.
Those that are starred (*) were reported to switch the
speci®city from guanylate to adenylate by mutagenesis
(Tucker et al..,1998). More details are given in the text.
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where sequences were contained in more than one
group.

The above procedure initially produced 96
groups from 50 alignments. Inspection ruled out 18
(e.g. different names for the same activities; knowl-
edge that enzymatic function was not conferred in
the domain considered, etc.). Another 16 were
ignored because the pairwise sequence identities
indicated that the divisions based on catalytic
activity would be easily discernable by sequence
comparison. 62 groupings from a total of 42 align-
ments remained. These are described in Table 1. To
avoid biasing due to multiple groups from a single
alignment, we randomly chose one grouping for
each alignment. This resulted in a set of 42 group-
ings over 42 alignments.

A problem with the above procedure is the
assignment of catalytic activity to the correct
domain. For example, the groupings for SH2
domains were discarded as we knew that the kinase
catalytic activity was not localised in this domain.
There is no simple way of doing this by parsing
SWISSPROT, therefore, the results of analysing
these data must be considered with some caution.

All of the sequence alignment and sub-type data
are available from the authors.

Results

Nucleotidyl cyclases

Nucleotidyl cyclases are a family of membrane
attached or cytosolic domains that catalyse the
reaction that forms a cyclic nucleotide monophos-
phate from a nucleotide triphosphate. The known
cyclases act either on GTP (guanalyate cyclase) or
ATP (adenylate cyclase). Mutations of two residue
positions from Glu-Lys and Cys-Asp are known to
be suf®cient to change the speci®city of the enzyme
from GTP to ATP (Tucker et al., 1998). Mutations
of several other residues near to the key Cys-Asp
change were shown not to have any signi®cant
effect on speci®city or enzymatic activity.

Figure 1 shows an alignment of nucleotidyl
cyclases highlighting positions that have an entro-
py Z > 3.0. These positions are shown on the
known 3D structure of adenylate cyclase (Zhang
et al., 1998; PDB code 1ab8) in Figure 2. The ®rst
and third best positions are the Asp-Cys (residue
1018 in 1ab8, Z � 6.5) and Lys-Glu (938, Z � 4.0)
changes identi®ed by Tucker et al. (1998) that can
be changed to modify cyclase speci®city. Positions
1019 (Z � 2.6) and 1020 (Z � 3.9) were also ident-
i®ed by Tucker et al. but the change from Leu,Phe
in guanylate cyclase to Ile,Trp (as is seen in most
adenylate cyclases) in concert with the changes
above actually lead to a poorer adenylate cyclase
activity. The Trp-Phe (1020) change implies that a
larger side-chain is needed in the adenylyl cyclases,
and changes Ile-Val (937, Z � 3.0) and Val/Ile-Leu
(1019) appear to be involved in subtle positioning
of the residues that are adjacent on the sequence.
Positions 937 and 1019 pack against one another in
the known structures, implying a complementary
change. The Val/Ile-Leu (1019) change is also
interesting in that it suggests that the adenylyl
cyclases require a branched Cb residue (i.e. two
non-hydrogen substituents on the beta carbon, as
is only seen in valine, isoleucine or threonine)
instead of the non-Cb-branched leucine found in
the guanylyl cyclases. Inspection of the structure
suggests that this may have to do with adopting a
slightly different main-chain conformation:
branched Cb residues are slightly more restricted
in the backbone psi/phi conformations that they
can adopt (Swindells et al., 1995). These obser-
vations may help to explain why the mutants
involving position 1019 in guanylate cyclase (sub-
stituting Leu with Ile; in concert with the Glu-Lys
and Cys-Asp changes mentioned above) performed
by Tucker et al. (1998) lead to poorer adenylate
cyclase activities. If the changes had been made in
concert with the appropriate mutation at position
937, then activity may have been closer to the
wild-type.

The method also identi®ed additional positions.
The second best scoring position was the Lys/Arg-
Met substitution (1014, Z � 4.6), which is also far
away from the others in space if one considers a
single cyclase subunit. However, inspection of the
dimeric structure of adenylate cyclase (PDB code
1azs) shows that the equivalent position from the
adjacent subunit is in the same location as the
other positions discussed above. Changes Ala-Ser



Table 1. Groupings for PFAM alignments extracted from SWISSPROT

No. PFAM name Substrates

1 2-Oxoacid dh Acetyl-coA/succinyl-coA
2 ATP-gua Ptrans Creatine/L-arginine
3 Aconitase C 3-Isopropylmalate/malate/citrate
4 Epimerase dTDP-glucose/UDP-glucose
5 FGGY D-xylulose/glycerol
6 GATase 1-(2-carboxyphenylamino)-1-deoxy-D-ribulouse-5-phosphate/

2ATP�glutamine/
ATP�xanthosine-50-phosphate�L-glutamine/
chorismate�L-glutamine

7 GATase 2 5-Phospho-b-D-ribosylamine�L-glutamate/
ATP�L-asparate�L-glutamine/
L-glutamine�D-fructose-6-phosphate

8 GHMP kinases D-Galactose/L-homoserine
9 HMA ATP/HG�NADP(�)�H(�)
10 OTCace Asparate/ornithine
11 Orn DAP Arg deC L-Arginine/L-ornithine/meso -2,5diaminoheptanedioate
12 PDEase (Adenosine/Guanosine) -30,50-cyclicphosphate
13 PGAM 2-phosphoglycerate�2,3-diphosphoglycerate/

ATP�D-fructose-6-phosphate/
D-fructose-2-6-bisphosphate

14 PGM PMM a-D-glucose-1-phosphate/D-mannose-1-phosphate
15 Pribosyltran IMP/orotidine-50-phosphate
16 Rhodanese Protein-Tyr-phosphate/thiosulphate�cyanide
17 Rieske Plastoquinol-1�2 oxidised plastocyanin/

QH2-�2 ferricytochrome c
18 SQS PSY 2-Farnesyldiphosphate/prephytoenediphosphate
19 S T dehydratease L-theronine/O-acetyl-L-serine/

O-phospho-L-homoserine
20 Semialdhyde dh L-Asparate-semialdehyde/

N-Acetyl-L-glutamate-5-semialdehyde
21 aakinase L-Aspartate/L-glutamate/L-glutamate-5-semialdehyde
22 aconitase 3-Isopropylmalate/citrate
23 adh zinc Alcohol/cinnamylalcohol
24 aminotran 1 L-Asparate�2-oxoglutarate/S-adeosylmethionine
25 aminotran 3 (S)-4-amino-5-oxopentanoate/

4-aminobutanoate�2-oxoglutarate/
L-ornithine�A 2-oxoacid/
N-2-acetyl-L-ornithine�2 oxoglutarate

26 cytochrome b N Plastoquinol-1�2 oxidised plastocyanin/
QH2-�2 ferricytochrome c

27 guanylate cyc ATP/GTP
28 malic NAD/NADP
29 isodh 3-Carboxy-2-hydroxy-4-methylpentanoate/

Isocitrate�NAD/
Isocitrate�NADP

30 ldh L-lactate/L-malate
31 ligase-CoA ATP/GTP
32 lyase 1 L-Argininosuccinate/L-malate
33 oxidored nitro Reduced ferredoxin�6H��N2 �NATP/

chlorophyllidea�NADP
34 oxidored q1 Plastoquinone/ubiquinone
35 oxidored q1 N Plastoquinone/ubiquinone
36 pyr redox dihydrolipoamide/

Hg�NADP�H�/NADPH�glutathione
37 pyridoxal deC L-glutamate/L-tryptophan
38 tRNA-synt 1 L-Isoleucine/L-leucine/L-methionine/L-valine
39 tRNA-synt 1b L-tryptophan/L-tyrosine
40 tRNA-synt 2 L-aspartate/L-lysine/L-histidine/L-asparagine
41 tRNA-synt 2b L-Histidine/L-proline/L-serine/L-threonine
42 tyrosinase 2-Catechol/L-tyrosine�L-dopa

Substrates for different sub-types are separated either by a/character or a line-break. Names in boldfaced italic text indicate those
that form the randomly chosen group in instances where more than one grouping was available.
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(890, Z � 3.1) and Ile-Tyr (919, Z � 3.6) are in the
same approximate spatial location as the others,
but are not in direct contact with any of the pos-
itions mentioned above. Inspection of the structure
suggests that these changes may be responsible for
subtle shifts in secondary structures that may help
accommodate different substrates. Alternatively,
these could be evolutionary relics, re¯ecting the
likely divergence of adenlyate and guanylate
cyclases (e.g Danchin, 1993). These positions may
simply have not yet been subject to genetic drift
that may have occurred at the majority of positions
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within the cyclases that are not involved in func-
tion. Only further experimental studies on the
cyclases can reveal the meaning of these changes.

Protein kinases

Proteins serine, threonine and tyrosine kinases
form one of the largest protein families known,
estimated to make up between 1-2 % of proteins
from metazoan genomes (e.g. Chervitz et al., 1998).
They function to attach a phosphate group to a
hydroxyl moeity on a particular amino acid side-
chain. A major division is that between serine/
threnonine and tyrosine kinases. Serine and threo-
nine are quite similar in size and shape, with a
hydroxyl group attached to the Cb carbon; the only
difference is a methyl group in threonine in place
of a hydrogen in serine also attached to the Cb car-
bon. In tyrosine, however, the hydroxyl group is
attached to a six-membered aromatic ring, making
both the chemistry of the reaction and the size of
the substrate substantially different. Certain pos-
itions are known to confer this speci®city. Within
sub-domain VI of protein kinases (Hanks et al.,
1988), the consensus sequence RDLKPEN is
Figure 3. Alscript (Barton, 1993) Figure showing an alignm
predicted to confer speci®city to Ser/Thr or Tyr highlighted
positions discussed in the text, and refer to the PDB structu
``domain'' nomenclature of Hanks et al. (1988). Other details
usually found in serine/threonine kinases, whereas
the sequence RDLAARN is typical of tyrosine
kinases (Hanks & Hunter, 1996). Analysis of the
®rst kinase crystal structures also identi®ed other
regions (Taylor et al., 1995). We used the alignment
(295 sequences) and divisions from the protein
kinase resource (Smith et al., 1997). The three major
categories of Ser/Thr kinases were grouped into a
single type, and the category ``other protein
kinases'' (OPK, of unknown or ambiguous sub-
type) were ignored.

Figures 3 and 4 show an alignment and 3D
structure highlighting the ten positions with the
highest entropy Z score (Z > 3.04). All of these pos-
itions lie in the C-terminal (catalytic domain), and
most of the top scoring positions lie in two regions
of the sequence and adjacent in space. One of these
regions, containing positions 168 to 170 (in PDB
code 2cpk, Z � 5.7, 3.4, 3.9) are in the Hanks et al.
sub-domain VI region known to determine kinase
speci®city (discussed above), in the catalytic loop
(Lys,Pro,Glu-Ala, Ala, Arg). The second contains
substitutions Thr/Ser-Pro (201, Z � 5.5), Trp-Lys/
Arg (203, Z � 3.2), Tyr - Trp (204, Z � 6.5) and Ile/
Val/Leu-Ser (209, Z � 3.2) from sub-domain VIII,
ent of representatives of protein kinases with positions
by the method. Numbers above the alignment refer to

re 2cpk. Labels below the alignment refer to the kinase
are as for Figure 1.



Figure 4. Rasmol (Sayle & Milner-White, 1995)
Figure showing the structure of cAMP-dependent serine
threonine kinase (PDB accession 2cpk, chain E), with
positions found to confer speci®city for serine/threonine
or tyrosine by the method. Those that are starred (*) are
taken from the literature (Hanks & Hunter, 1996; Taylor
et al. 1995) and are thought to confer serine/threonine
versus tyrosine speci®city. More details are given in the
text
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within (or near to) the P � 1 loop. Most of the pos-
itions within these regions were identi®ed by
Taylor et al. (1995) as those that are most character-
istically distinct for the Ser/Thr and Tyr sub-types.

The other positions shown in Figure 4 are His -
Ala/Ser (158, subdomain VI), Ala-Trp (229, subdo-
main IX, Z � 3.1) and Leu/Met/Cys-Trp (273, sub-
domain XI, Z � 3.3), and numerous other positions
with Z > � 3.0 are near to these in space (results
not shown). None of these positions are close
enough to interact directly with those residues dis-
cussed above. However, as for the cyclases, inspec-
tion suggests that they may be involved in aiding
subtle conformational changes of the structure to
accommodate differing substrates. Several other
differences between protein kinase A (Ser/Thr)
and insulin receptor tyrosine kinase (IRK) were
reported by Taylor et al. (1995), though not
detected during this study. Inspection of the align-
ment shows that the positions are either not con-
served across the sub-types, or show substantial
overlap between the Ser/Thr and Tyr sub-types
when one considers all homologous sequences
(results not shown).

Lactate/malate dehydrogenases

Dehydrogenases that act on lactate and malate
are part of a larger superfamily of Rossmann fold
(nucleotide-binding domain) containing enzymes
(e.g. Rossmann & Argos, 1976; Russell & Barton,
1992). Lactate and malate dehydrogenases (LDH,
MDH) form a large sub-set of this family, and
share the additional common feature of a similar
substrate binding domain. They are found across
all kingdoms of life and are thus highly divergent,
meaning that it is dif®cult to distinguish between
lactate and malate sub-types. A key mutation Gln-
Arg (position 102 in pig LDH, PDB code 9ldta) is
known to switch the speci®city from lactate to
malate (Wilks et al., 1988), and is known to be
involved in distinguishing lactate from malate. In
addition, all possible variants of postions 101 and
102 have been analysed (Hawrani et al., 1996).
These variants were used to determine residues
conferring speci®cities for many other substrates
known to bind to this large family of enzymes,
including phenyl-lactate, hydroxyisocaproate and
4-phenyl-2-hydroxy-butanoate, though we do not
consider these substrates here.

Figure 5 shows an alignment illustrating the six
positions with the highest entropy Z score. The
position with the highest entropy (Z � 4.0) is the
Gln-Arg (102) change identi®ed by experiment.
With the exception of the Tyr - Pro change (pos-
ition 190, Z � 3.4) all positions are near to the Gln -
Arg position and surround the experimentally
determined location of NAD. They are thus likely
to be involved in the lactate/malate distinction. All
have Z > 3.0 with the exception of the Glu-Gly
change at position 194 (Z � 2.9), which is shown as
it also appears to have a role in determining
substrate speci®city.

Serine proteases

Trypsin-like serine proteases are a large family
of enzymes involved in the hydrolysis of peptide
bonds. Although they all act via a similar catalytic
mechanism, they have different preferences for the
amino acids that they prefer to cleave. Trypsin
cleaves C-terminal to arginine or lysine, chymo-
trypsin next to large aromatic residues, and elas-
tase cleaves next to small, uncharged amino acid
residues, and it was proposed long ago that the
distinction is conferred by key changes in a speci-
®city pocket (e.g. Fersht, 1985). Three positions
were proposed originally to de®ne the pocket. An
aspartic acid found in trypsin (Asp189) is usually
replaced by a small residue in chymotrypsins (Ser)
and elastases (Gly). Two positions adjacent to this
in space were originally described as de®ning sub-
strate differences in these three families (e.g.
Fersht, 1985). Positions 216 and 226 (in trypsin) are
generally glycine in chymotrypsins and trypsins,
but replaced by valine and threonine in elastases.

Figure 6 shows the positions with Z > � 3.0
identi®ed by the method for the trypsin-like serine
proteases when grouped into elastase, chymotryp-
sin and trypsin sub-types. The top two scoring pos-
itions (position 189, in bovine trypsin, PDB code
5ptp, Z � 5.6 and 226, Z � 3.9) correspond to two



Figure 5. Alscript (Barton, 1993)
Figure showing an alignment of
representatives of lactate and
malate dehydrogenases with pos-
itions predicted to confer speci®city
for lactate or malate highlighted by
the method. Numbers above the
alignment refer to positions dis-
cussed in the text, and refer to the
PDB structure 9ldt. Other details
are as for Figure 1.

Figure 6. Alscript (Barton, 1993) Figure showing an alignment of representatives of tyrpsin-like serine-proteases
with positions predicted to confer speci®cites known for trypsins, chymotrypsins or elastases highlighted by the
method. Numbers above the alignment refer to positions discussed in the text, and refer to the PDB structure 5ptp.
The box shows a position not highlighted by the method that is thought to be involved in enzyme speci®city. Other
details are as for Figure 1.
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of the pocket positions above. The third pocket
position (216) has a low Z score (1.0). Inspection of
the alignment (see boxed position in Figure 6)
shows that glycine is frequently tolerated in the
elastases sub-type, giving a low Z score. The third
best scoring position (221, Z � 3.6) is an Asn resi-
due in the elastases, and generally an Ala residue
in trypsins, and is near to the speci®city pocket dis-
cussed above. Of the other three positions ident-
i®ed only position 184 (Z � 3.1) is near to the other
pocket forming residues in space. Here glycine,
which is preferred in the elastases may aid the rec-
ognition of small side-chains in elastase substrates.
The other two positions with Z > 3.0 (121, Z � 3.5;
137, Z � 3.3) are not near to the pocket in space,
though like the cyclases and kinases (above), it is
possible that they are involved in any subtle con-
formational adjustments to accommodate differing
substrates.
Table 2. Prediction accuracies of all methods for four protein

Cyclase (2) 72 Kinase (2) 293

Sequence
identity
threshold (%) Pred. Acc. (%) Pred. Acc. (%

SP: 0 SP: 100
HMM: 33 HMM: 94

20 6 P: 0 191 P: 96
SS: 0 SS: 60
B: 0 B: 57

SP: 100 SP: 100
HMM: 91 HMM: 98

30 43 P: 63 293 P: 97
SS: 21 SS: 98
B: 9 B: 94
SP: 90 SP: 100
HMM: 63 HMM: 10

40 63 P: 54 293 P: 100
SS: 56 SS: 100
B: 37 B: 100

SP: 100 SP: 100
HMM: 99 HMM: 10

50 72 P: 99 293 P: 100
SS: 97 SS: 100
B: 88 B: 100

SP: 100 SP: 100
HMM: 100 HMM: 10

60 72 P: 100 293 P: 100
SS: 99 SS: 100
B: 97 B: 100

SP: 100 SP: 100
HMM: 100 HMM: 10

100 72 P: 100 293 P: 100
SS: 99 SS: 100
B: 97 B: 100

The number of sub-types for each family is shown in parenthesi
sequences in the alignment is shown in the ®rst row under the fami
homologue is not available, for each sequence (assumed to be of u
greater than a threshold were ignored. The ®rst column shows th
sequences (e.g. trypsins at 20 %), the elimination process removes a
such a sequence is considered unpredictable. Pred gives the numbe
gives the percentage accuracy of prediction for those sequences pred
for the sub-pro®le (SP), HMM (HMM), pro®le (P), sequence simil
kinases at threshold of 20 %, the values are 100 % (sub-pro®le), 94 %
the accuracy column means that no predictions could be made.
Prediction accuracies for cyclases, kinases,
dehydrogenases and serine proteases

Table 2 reports the prediction accuracies for the
four families discussed above (see legend for
details). The accuracies of the methods vary greatly
according to the percentage sequence identity
threshold used to include sequences in the align-
ment.

The sequence similarity method is consistently
better than the BLAST method for these four
families. When all but the very distant homologues
of the predicted sequence are removed (i.e. 30 %
threshold) the HMM and pro®le methods clearly
out-perform these two methods. The distinction
between the methods diminishes as the threshold
is raised, and when sequences sharing identities of
50 % or greater with the predicted sequence are
included in the alignment, the predictive accuracies
families

Dehydrogenase (2) 103 Trypsin (3) 101

) Pred. Acc. (%) Pred. Acc. (%)

SP: 47 SP: N/A
HMM: 78 HMM: N/A

103 P: 47 0 P: N/A
SS: 24 SS: N/A
B: 56 B: N/A

SP: 88 SP: 76
HMM: 88 HMM: 65

103 P: 88 37 P: 68
SS: 63 SS: 54
B: 56 B: 39
SP: 90 SP: 96

0 HMM: 92 HMM: 85
103 P: 91 89 P: 83

SS: 87 SS: 66
B: 85 B: 75

SP: 93 SP: 97
0 HMM: 95 HMM: 91

103 P: 91 101 P: 85
SS: 97 SS: 94
B: 92 B: 90

SP: 96 SP: 100
0 HMM: 96 HMM: 98

103 P: 98 101 P: 98
SS: 98 SS: 97
B: 97 B: 97

SP: 100 SP: 100
0 HMM: 100 HMM: 100

103 P: 100 101 P: 100
SS: 99 SS: 99
B: 98 B: 100

s along with the family names in the ®rst row. The number of
ly name for each family. To simulate the situation where a close
nknown sub-type) all other sequences with percentage identity
e similarity threshold used to eliminate sequences. For certain
ll sequences of the sub-type. In these situations, the sub-type of
r of sequences for which a sub-type prediction was made. Acc
icted. The four numbers given in each column are the accuracies
arity (SS), and BLAST (B) methods. For example, for the 191

(HMM) 96 % (pro®le) and 60 % (sequence similarity). N/A in
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of the methods are indistinguishable as expected.
The HMM method is almost always superior to the
pro®le method. This may indicate that the risk of
wrong alignment by hmmsearch is well compen-
sated by the fact that hmmsearch pays careful atten-
tion to the gap penalties which are not considered
in the pro®le method where we only incorporate
the ``match'' states in the pro®le. It may also re¯ect
that only one of the four alignments studied here
(the kinases) was hand-curated.

The sub-pro®le method performs best of all.
Removing contributions from positions that do not
discriminate between the sub-types has a dramatic
effect. This is perhaps not surprising, as non-discri-
minating positions will be expected only to contrib-
ute noise to the overall score. The inherent
variability of the noise would be expected to pro-
duce incorrect predictions. At a 20 % threshold, the
poor accuracy of the sub-pro®le method for
cyclases (0 %) and dehydrogenases (47 %) is due to
the fact that the removal of close homologues
leaves very few sequences with which to build a
pro®le (fewer than three). The Z-scores based on so
few sequences do not capture the important pos-
itions in this situation and hence the performance
of the sub-pro®le method is not signi®cantly better
than the pro®le method. This highlights the fact
that the method can only work ef®ciently with a
suf®cient number and diversity of sequences of a
particular sub-type.

PFAM alignments

The large set of alignments and groups extracted
automatically from PFAM provides a useful set for
assessing the predictive accuracy of the methods
above. Based on the results for the four families
discussed above, we chose only two similarity
thresholds (20 % and 30 %) for the automatically
generated PFAM alignments grouped by SWIS-
SPROT, and we only applied the sequence simi-
larity, BLAST and sub-pro®le methods. Inspection
showed that the results did not differ greatly from
those for the four families discussed above. We
expect, in particular, that the HMM method would
also be effective in discerning sub-types.

Out of a total of 2593 sequences in the 42 align-
ments/groupings, sub-type predictions could be
made for 1520 and 2204 sequences at the 20 % and
30 % thresholds, respectively (no prediction could
be made on the remaining since removing the
close homologues removed all the sequences
within a group). At the 20 % threshold, the accu-
racies for the sequence similarity, BLAST, and sub-
pro®le methods were 51.5, 69.8 and 91.2 respect-
ively. With a 30 % threshold the ®gures were 68.1,
78.2 and 94 %. Considering the percentage accu-
racies averaged for each of the 42 families: with a
20 % threshold the values were 46, 62.6, and 82 %;
with a 30 % threshold, the values were 68, 79.2 and
94 %. It is clear that the sub-pro®le method is pro-
viding highly successful predictions of protein sub-
types, even when only very distant homologues
are present in the alignment.

Table 3 shows details calculated for each of the
42 PFAM alignments with a sequence identity
threshold of 30 %, for sub-type groupings speci®ed
in Table 1. In no instance do the sequence simi-
larity or BLAST methods signi®cantly out-perform
the sub-pro®le method, though there are two
instances (3'50-cyclic nucleotide phosphodiesterase,
PDEase; CoA ligases, ligase-CoA) where the three
methods essentially perform randomly (i.e. when
there are two groups of approximately equal size,
one expects about a 50 % prediction accuracy). In
neither case does it appear that speci®city is
located in a different domain, implying that these
are genuine failures of the method to discern the
respective sub-types. Apart from these, the sub-
pro®le method gives good and in many instances
perfect predictions.

There is insuf®cient space to discuss the analysis
on PFAM alignments in detail. However, inspec-
tion of select families is illustrative of the general
applicability of the method. One example, where
the sub-pro®le method greatly outperforms the
sequence similarity method (100 % compared to
24 % and 28 %), is for the pyridine nucleotide-disul-
phide oxidoreductases (class I; PFAM name pyr_-
redox). Here the method has identi®ed 14 positions
within the alignment predicted to confer speci®city
between dihydrolipoamide, mercury (Hg�) and
glutathione. Of these positions, 12 are found near
to the experimentally determined location of the
co-factor FAD in dihyrolipoamide dehydrogenase
from Azotobacter vinelandii (PDB code 3lad; Mattevi
et al., 1991). Residues Pro13, Tyr16, Lys34, Gly104
Met324, Ala326 and His327 are located within the
FAD binding domain (residues 1 to 158 and 278 to
348) whereas residues Ser389, Gly390, Ala449,
Ala456 and Glu459 are within the dimerisation
domain (according to SCOP, Murzin et al., 1995). It
is interesting that these last four residues are near
(in sequence and space) to two catalytic residues
(His450 and Glu455; Mattevi et al., 1991). Inspec-
tion of single chains from the dimeric structure did
not show proximity of residues from the two
domains. However when one considers the active
homodimer, both sets of residues are near to the
bound FAD molecule (in two sites within the
homodimer). It is clear that the method has suc-
cessfully identi®ed positions likely to confer speci-
®city within this diverse group of enzymes, and
which could be the subject of site-directed muta-
genesis or other experiments to probe enzymatic
function. Moreover, by focussing attention on these
positions, the method is able to predict the correct
speci®city perfectly, even if all homologues with
>30 % sequence identity are removed.

A similar picture is seen for a family of carbo-
hydrate kinases (PFAM FGGY). Here, the method
has identi®ed 11 positions that are predicted to dis-
tinguish between D-xylulose and glycerol. Within
the known structure of glycerol kinase from
Escherichia coli (PDB code 1glf; Feese et al., 1998) six



Table 3. Prediction accuracies for automatically derived groups for PFAM alignments

PFAM Family Npos
Npos

(Z > � 3.0) Nseq Pred. Acc. SS (%) Acc. B (%) Acc. SP (%)

2-oxoacid dh (2) 257 7 27 10 40 50 90
ATP-gua Ptrans (2) 429 10 38 4 100 100 100
Aconitase C (2) 218 2 50 50 100 100 100
Epimerase (2) 797 16 37 24 100 82 100
FGGY (2) 431 6 26 26 50 88 100
GATase (3) 388 6 63 54 69 100 100
GATase 2 (3) 268 6 49 19 89 95 100
GHMP kinases (2) 93 2 28 28 100 96 100
HMA (2) 30 1 67 56 16 88 98
OTCace (2) 461 16 73 73 90 96 100
Orn DAP Arg deC (2) 605 6 29 29 34 79 100
PDEase (2) 290 6 44 34 38 26 53
PGAM (2) 278 4 28 28 43 100 96
PGM PMM (2) 1160 12 31 31 61 84 90
Pribosyltran (2) 268 4 41 41 100 100 100
Rhodanese (2) 201 1 63 63 71 89 98
Rieske (2) 175 1 31 30 57 100 100
SQS PSY (2) 349 6 30 30 80 97 100
S T dehydratase (3) 551 7 54 54 87 93 96
Semialdhyde dh (2) 623 11 34 34 100 100 100
aakinase (2) 316 3 35 35 94 100 100
aconitase (2) 604 18 59 59 75 81 95
adh zinc (2) 1133 28 111 91 87 85 100
aminotran 1 (2) 738 14 48 35 57 97 94
aminotran 3 (4) 604 7 55 32 16 38 72
cytochrome b N (2) 409 6 306 233 55 55 100
guanylate cyc (2) 385 7 98 67 46 100 100
isodh (3) 586 11 79 79 14 42 89
ldh (2) 436 5 103 103 63 56 93
ligase-CoA (2) 169 1 32 32 44 38 47
lyase 1 (2) 542 0 32 32 38 100 100
malic (2) 615 10 28 4 100 50 100
oxidored nitro (2) 722 13 74 74 78 96 95
oxidored q1 (2) 519 6 295 295 79 79 86
oxidored q1 N (2) 71 0 92 56 84 84 100
pyr redox (3) 797 16 51 29 24 28 100
pyridoxal deC (2) 455 3 27 17 12 0 65
tRNA-synt 1 (3) 2210 37 59 59 92 68 93
tRNA-synt 1b (2) 614 13 33 33 100 100 100
tRNA-synt 2 (2) 1001 17 38 37 81 68 92
tRNA-synt 2b (3) 983 12 66 66 97 100 100
tyrosinase (2) 418 4 29 18 83 100 100

Details of applying our method to 42 groups derived automatically for PFAM alignments. The value given in parentheses after
the PFAM name is the number of groups considered (the exact groups are speci®ed in Table 1). Npos indicates the number of posi-
tions in the alignment Npos (Z > � 3) the number where the relative entropy Z score is 3 or higher. Nseq gives the number of
sequences in the alignment, Pred the number for which predictions were possible (given the sequence identity threshold of 30 %),
Acc SS , Acc B and Acc SP give, the prediction accuracies for the sequence similarity, BLAST and sub-pro®le methods respectively.
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of these residues (Arg188, Gln246, Gly259, Trp356,
Asp409, Leu418) are near to the experimentally
determined location of bound glycerol or ATP and
two others (Thr86, Val165) appear to be interacting
with these residues. As for the pyridine nucleotide-
disulphide oxidoreductases (above), the method
appears to have identi®ed residues conferring
speci®city, and has predicted sub-type accurately
even in the absence of close homologues.

Discussion

We have presented and evaluated a method for
assigning and analysing sub-types within protein
sequence alignments. For four examples we have
shown that the method is able to detect positions
known to confer speci®city in close agreement
with experiment. Both on these four examples,
and the 42 groupings derived from PFAM/
SWISSPROT, the method is shown to predict
protein sub-types with remarkable success, even in
the absence of closely related sequences of the
same sub-type, and predictions are much better
than those made by a simple sequence comparison.

There are obvious similarities between the meth-
od presented here and those of Livingstone &
Barton (1993), Casari et al. (1995) and Lichtarge
et al. (1996a). One difference encoded in the meth-
od here is a careful handling of non-identical pos-
itions by way of the construction of a hidden
Markov model and incorporation of amino acid
exchange matrices. Incorporation of exchange
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matrix data will permit amino acids not seen in the
current set of known sequences from a sub-type if
they have suf®ciently similar physicochemical
properties.

The method presented here is perhaps most
similar in spirit to that of Sjolander (1998) with one
important difference: we make no attempt at phy-
logenetic reconstruction, and no attempt to de®ne
sub-type groupings. Our method is most useful in
analysing super-families where there are relatively
few functional sub-types and there is some knowl-
edge of members belonging to sub-types in the lit-
erature. This method takes advantage of the
knowledge by constructing pro®les of the sub-
types explicitly, and also by an explicit analysis
of the positions to detect functionally important
sites.

Like other methods, that described here has
many potential applications within studies of large
protein sequence families. Prior knowledge of the
functions of the sub-types can be used to extract
regions on the protein sequence that are the best
candidates for laboratory experiments to elucidate
function. If an uncharacterised protein shares only
a weak degree of sequence similarity with a large
protein family, then the method can identify the
correct sub-type. This is likely to be of greatest use
when there are multiple orphan members of a pro-
tein family, and where some priority or rank order
of experiments (e.g. ligand binding assays, etc.)
must be assigned to keep laboratory experimental
effort to a minimum.

The method may also be applied to genome
annotation. Newly sequenced genes that are only
weak matches to large protein families with differ-
ent functions can be tested and highlighted if they
contain amino acid residues that determine a par-
ticular functional sub-type. In this way, it might be
possible to avoid ambiguities that arise when a
weak sequence similarity score cannot distinguish
between two or more different sub-types (e.g.
amino acid permeases; see Figure 2(a) of Brenner,
1999).

Another application is for the prediction of
spatial proximity of residues within proteins of
unknown 3D structure. There have been several
studies attempting to correlate intra-protein dis-
tances with correlated mutations (or compensating
changes, or cooperative subsitutions, or correlated
changes; or complementary changes; Gobel et al.,
1994; Taylor & Hatrick, 1994; Neher, 1994; Olmea
& Valencia, 1994; Russell & Barton, 1994).
Although techniques vary, the common theme is to
identify positions within a protein sequence that
are co-varying during evolution. Residues involved
in conferring sub-type are frequently near to each
other in space, even when they are far apart on the
protein sequence. Methods that identify positions
that confer sub-type (this study; Livingston &
Barton, 1993; Casari et al., 1995; Lichtarge et al.,
1996a; Sjolander, 1998) are thus likely to be of use
in predicting inter and intra-protein distances (e.g.
Pazos et al., 1997).
A problem in extending the analysis described in
this paper is the lack of any large source of data
regarding sub-types. A large database of groupings
extracted from the literature would be a time-con-
suming, but rewarding exercise for many further
analyses. Such studies might be aided by recent
attempts to extract textual data from the biological
literature (e.g. Andrade & Valencia, 1998; Andrade,
1999).

The current availability of dozens of complete
genomes provides a wealth of data that will
require many computational analyses. Methods
like that described here and others (e.g. Casari et al.,
1995; Lichtarge et al., 1996a; Sjolander, 1998;
Pellegrini et al., 1999; Marcotte et al., 1999; Enright
et al., 1999; Goh et al., 2000) will be of great import-
ance in attaching biological information to orphan
sequences prior to time-consuming and costly lab-
oratory experiments.
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