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Abstract 580 kb genome sequence was determined at TIGR in 1995.
Motivation: Genome sequencing projects and further sysiVe discuss future applications of the E-CELL system with
tematic functional analyses of complete gene sets afPecial respectto genome engineering

producing an unprecedented mass of molecular informatiofivailability: The E-CELL software is available upon request
for a wide range of model organisms. This provides us witRUPplementary information:-The complete list of rules of

a detailed account of the cell with which we may begin tée developed cell model with kinetic parameters can be
build models for simulating intracellular molecular pro- Obtained via our web site at: http://e-cell.arg/

cesses to predict the dynamic behavior of living cell<Contact: mt@sfc.keio.ac.jp

Previous work in biochemical and genetic simulation has

isolated well-characterized pathways for detailed analysidntroduction

but methods for building integrative models of the cell th
incorporate gene regulation, metabolism and signaling hav
not been established. We, therefore, were motivated
develop a software environment for building such integrativ
models based on gene sets, and running simulations
conduct experiments in silico

Results:E-CELL, a modeling and simulation environment

for biochemical and genetic processes, has been develop ues of protein function are being _con_structed.
The E-CELL system allows a user to define functions of he challenge created by genomics is to understand how

proteins, protein—protein interactions, protein—DNA inter—aII tht? ceIIE[J_Iar tproteclins V;'O”; cl?t?lle(jctlvely_ asa Il!v!ng syﬁtem.

actions, regulation of gene expression and other features gﬁ a |§nt;p m8| otun erz_aF € dynamics |nf |V|hng cetls, V\t’e

cellular metabolism, as a set of reaction rules. E-CELIS"OU!d D€ able 1o predict consequences of changes Intro-
duced into the cell and/or its environment, e.g. knocking out

simulates cell behavior by numerically integrating the Iteri ilabl tabolites. Possibl
differential equations described implicitly in these reactiorft 96N€ O aftering avaiiable metabolites. Fossible conse-
uences of such intervention include cell death, changes in

rules. The user can observe, through a computer displa ; : ;
g P P fowth rate, and an increase or decrease in the expression of

dynamic changes in concentrations of proteins, protei i The devel t of sufficiently refined cell
complexes and other chemical compounds in the cell. Usi§'§ec' IC genes. Ihe development of sufliciently retined ce
I

this software, we constructed a model of a hypothetical c odels which allow pr edictions of such behavior would
with only 127 genes sufficient for transcription, translation comp[ement the experlmenta! efforts now being made sys-
tgmatlcally to modify and engineer entire genomes.

energy production and phospholipid synthesis. Most of th In this paper, we present E-CELL, a computer software

enes are taken from Mycoplasma genitalium, the organism . ; ) .
g ycop g g ironment for modeling and simulation of the cell. The

having the smallest known chromosome, whose compléteY . . . ) ;
g P -CELL systemis a generic object-oriented environment for

simulating molecular processes in user-definable models,
equipped with graphical interfaces that allow observation
3Present address: Department of Zoology, Downing Street, and interaction. E-CELL provides a unified, object-oriented
Cambridge CB2 3EJ, UK framework for modeling and simulation of the complex

he complete genomes of more than 18 microorganisms have
en sequenced. The availability of this new information on
e gene content of organisms has led to the emergence of a
mber of heretofore unavailable approaches to biology. Sys-
tematic analyses of genes/proteins are now under way in nu-
merous centers around the world, and comprehensive cata-

72 © Oxford University Press



Cell modeling and analysis by computer simulation

interactions among the gene products of completed gaded at runtime. The substance list defines all objects
nomes. Our modeling approach described in this paper athich make up the cell and the culture medium. The rule list
tempts to link diverse cellular processes such as gene aefines all of the reactions which can take place within the
pression, signaling and metabolism, to construct a cell modetll, and the system list defines spatial and/or functional

for conducting experimentis silico. structure of the cell and its environment. The state of the cell
at each time frame is expressed as a list of concentration va-
Previous work in simulations of cellular processes lues of all substances within the cell, along with global values

) for cell volume, pH and temperature. The simulator engine

Many attempts have been made to simulate molecular prganerates the next state in time by computing all of the func-
cesses in both cellular and viral systems. Perhaps the mgghs defined in the reaction rule list. In addition to using the
active area of cellular simulation is the kinetics of b'OChem'sampIe models provided with the system, the user can create
cal metabolic pathways. Several software packages fger-defined models by writing original substance and rule
quantitative simulation of biochemical metabolic pathways;sts. Graphical interfaces are provided to allow observation
based on numerical integration of rate equations, have beghq interaction throughout the simulation process.
developed, including GEPASI (Mendes, 1993, 1997), KIN- A gypstance can be a substrate, product or catalyst of a
SIM (Barshoret al, 1983; Dang and Frieden, 1997), MIST reaction. Typical substances include proteins, protein com-
(Ehlde and Zacchi, 1995), METAMODEL (Cornish- pjexes, DNA (genes), RNA and small molecules. The list of
Bowden and Hofmeyr, 1991) and SCAMP (Sauro, 1993).gypstance concentrations is updated with the new values

In predicting cell behavior, the simulation of a single or &omputed by the simulator engine after each time interval.
few interconnected pathways can be useful when the pathyj 3 single time interval, each rule in the rule list is called
way(s) being studied is relatively isolated from other bioypon by the simulator engine to compute the change in con-
chemical processes. However, in reality, even the simplegéntration of each substance. The net change in concentra-
and most well-studied pathways, such as glycolysis, cafyn for each substance is added to the present concentration
exhibit complex behavior due to connectivity. Moreoverg; the end of each time interval to update the set of state vari-
simulations of metabolic pathways alone cannot account fgijes, j.e. to generate the next state of the cell. By encapsulat-
the longer time-scale effects of processes such as geag numerical integration methods into object classes, vir-
regulation, cell division cycle and signal transduction. tually any integration algorithm can be used for simulation

Several groups have proposed and analyzed gene regulaigiyn E-CELL model. Furthermore, E-CELL allows the as-
and expression models by simulation (Meyers and Friedlangignment of any numerical integration algorithm for each
1984; Koile and Overton, 1989; Karp, 1993; Aetal, 1994;  compartment of the cell model, facilitating the optimization
McAdams and Shapiro, 1995). The cell division cycle (Tysorsf the simulation for the user’s purpose (e.g. simulation accu-
1991; Novak and Tyson, 1995) and signal transductlon mech;cy or speed). Different time intervalst can also be de-
anisms (Brayet al, 1993) have also been active areas of réfined for each spatial or functional compartment and they can
search for biological modeling and simulation. Most of thenpe redefined through the control panel at runtime by the user.
have utilized qualitative models to deal with the general lagl, the present version, the system defaults to 1 nast famd
of quantitative data in molecular biology. However, whilethe yser can select between the first-order Euler [error is
_qualltatlve mod_els are generally useful when |nformat_|on iB(At2)] or fourth-order Runge—Kutta{At%)] methods for
incomplete (Kuipers, 1986), they often generate ambiguoyge numerical integration in each compartment. The Euler
results (Kuipers, 1985), the behaviors of which are difficult tghethod is used in compartments with discrete, stochastic re-
predict due to combinatorial explosion (for a review on comactions such as DNA—protein binding, and the Runge—Kutta
puter simulations in biology, see Galjeeral, 1993). ~ method is used for compartments with deterministic reac-

Previous studies in biochemical and genetic simulationgns defined by continuous rate functions.
have usually limited their models to focus on only one of the The simulation of our present whole-cell model runs at
several levels of the time-scale hierarchy in cellular processes,./20 of real time on a laptop computer with Pentium-I1 200
Linking the gaps between the various levels of this hierarchHz, and about four times faster on a DEC alpha 21264A
is an extremely challenging problem that has yet to be a833 MHz with 1 ms integration step and monolithic integra-

equately addressed. This paper presents a step towards ii§ model. A single pathway such as glycolysis riB8
grative simulation of several levels of cellular processes. times faster under the same conditions.

Implementation of the E-CELL system )
o . _User interfaces
The E-CELL system is, in essence, a rule-based simulation

system and is written in C++, an object-oriented progranithe E-CELL system provides several graphical interfaces
ming language. The model consists of three lists, and which allow the user to observe the cell’s state and manipulate
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Fig. 1. A snapshot of user interfaces of the E-CELL system. The tracer window for ‘glycolysis1’ (upper right) shows dynamic changes in
quantities of glycolytic metabolites:glucose 6-phosphate (C00092), protein histidine (CO0645)ctose 6-phosphate (CO0085)fructose
1,6-biphosphate (C00354)glyceraldehyde 3-phosphate (C00118) and glycerone phosphate (C00111). The other tracer window (left) shows
changes in quantities of ATP (C00002), ADP (C00008), NADH (C00004), NAD+ (C00003) and CTP (C00063). Two reactor windows (lower
left) show activities of phosphopyruvate hydratase (EC 4.2.1.11) and fructose-biphosphate aldolase (EC 4.1.2.13). Twavsulistance
(bottom left) show precise quantities of ATP (C00002) ewglucose 6-phosphate (C00092). The GeneMapWindow (bottom right) shows
current activities (the number of mRNA molecules) of all genes in the cell. Different colors indicate an increase or flexateso
Knocked-out genes are marked ‘OFF'.
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Fig. 2. Metabolism overview of the model cell. It has pathways for glycolysis and phospholipid biosynthesis, as well as tramsatiption
translation metabolisms.
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Fig. 3. Ontology structure of the E-CELL system. There are three fundamental classes: Substance, Reactor and System. Reactors &
CellComponents are the user-definable classes. See our web site for more detailed information.

it interactively (Figurel). The tracer interface is the most im- step, we are constructing a model of a hypothetical, minimal
portant interface which allows the user to select substancesoatl, based on the gene seMyfcoplasma genitaliuphe self-
reactions of interest and observe dynamic changes in their quagplicating organism having the smallest known genome, whose
tity or rate, respectively. Since the state of the cell in an E-CELdomplete 580 kb genome sequence was determined in 1995
simulation is defined as the list of all substance quantities, thiraseret al, 1995). We have reducstigenitaliun®s gene set
interface provides the most direct means of observing the caté. accommodate only those genes required for what we have
Observing dynamical changes in reaction rates is equally irdefined, for our purpose here, as a minimal cellular metabolism.
portant, as the systemic behavior of the cell is characterized byThis model cell takes up glucose from the culture medium
the interaction of a large number of individual reactions. Thasing a phosphotransferase system, generates ATP by cataboliz-
tracer interface is implemented as a window displaying a twaag glucose to lactate through glycolysis and fermentation, and
dimensional plot in which animated line graphs represemixports lactate out of the cell. Since enzymes and other proteins
changes in the quantity of selected substances or reactions. Eamehmodeled to degrade spontaneously over time, they must be
window can display up to six substances simultaneously, acdnstantly synthesized in order for the cell to sustain ‘life’. The
multiple tracers may be invoked to observe all substances miotein synthesis is implemented by modeling the molecules
interest. This interface can also produce a ‘dump file’ of tracatkecessary for transcription and translation, namely RNA poly-
data for further analysis. merase, ribosomal subunits, rRNAs, tRNAs and tRNA ligases.
The substance window shows the exact quantity of a selecf€de cell also takes up glycerol and fatty acid, and produces
substance. It also allows the user to alter the quantity at wihosphatidyl glycerol for membrane structure using a phos-
during the simulation process. The reactor window displays timholipid biosynthesis pathway (Figug® The model cell is
activity of a selected reaction. The activity of a reaction is deself-supporting’, but not capable of proliferating; the cell does
fined as the amount of product produced in the reaction per semt have pathways for DNA replication or the cell cycle.
ond. The gene map window provides the user with a means offhe cell model is basically constructed with three classes of
monitoring the expression level of all genes at a glance pbjects: Substances, Genes and reaction rules. The reactions
graphically displaying the quantity of mRNA transcripts forrules are internally represented as Reactor objects. The entire
each gene. The gene map window also allows the user to knaskology structure of the system is shown in Fidure
out a selected gene or group of genes by a click of the mouse.

Modeling the cell Substances

In constructing E-CELL, the primary focus of our interest is taAll molecular species within the cell are defined as Sub-
develop a framework for constructing simulatable cell modelstances. The same molecule in different states (e.g. phospho-
based on gene sets derived from completed genomes. As a figation) is defined as separate molecular species, and each
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spatial compartment of the model retains a list of all of thdable 1. The number of genes in important pathways of the hypothetical cell
substance objects it may contain.

All of the enzymes in our hypothetical model cell are listed Gene type M.gen Other Total
in Table3 and the other small-molecule Substances present Glycolysis ) 0 9
in the cell, such as intermediate metabolites, amino acids, | ,ctate fermentation 1 0 1
nucleotides and cations, are listed in Tabl®ulti-protein Phospholivid bi thesi 4 4 g

. - ospholipia biosynthesis

complexes, protein-DNA complexes, protein—-RNA com-

plexes and other multi-molecule complexes are also defined hosophotransferase system 2 0 2

as Substances, although they are not listed in the table. Glycerol uptake 1 0 1
RNA polymerase 6 2 8

Genes Amino acid metabolism 2 0 2

DNA sequences in chromosomes are modeled as a doubly R?bosomal L Subun,lt 30 0 30

linked list of GenomicElements. The GenomicElement cla Ribosomal S subunit 19 0 19

can have fragments of sequence such as coding sequences, [pro- rRNA 2 0 2

tein binding sites and intergenic spacers. The Gene class is de- tRNA 20 0 20

fined as a GenomicElement which has a transcribed sequence. tRNA ligase 19 1 20

The genome of the cell consists of 127 genes including 20 Initiation factor 0 4
tRNA genes and two rRNA genes. Out of the 127 genes, 120 Elongation factor 1 0 1
have been identified in the genomeMafenitalium(Table - -
1and?). Four of the seven genes which have notbeen identi- ~ Protein coding genes 98 T105
fied in M.genitaliumare for the phospholipid biosynthesis RNA coding genes 22 0 22
pathway (acylglycerol lipase, glycerol-1-phosphatase, phos- Total 120 7127

phatidylglycerophosphatase and diacylglycerol kinase). The
phospholipid biosynthesis pathway Migenitaliumis not  pg hinding reaction of two or more molecules to form a

well characterized anql it is not clear hc_>w the functions. O(t,omplex can be expressed in a similar way, where the result-
these genes are substituted for. Nucleoside-phosphate kin complex would be defined as a separate molecular
and nucleoside-diphosphate kinase have also not bezﬁcies. For example, the reaction in which a GTP (C00044)

identified inM.genitalium but we have added them to the 51606 hinds to elongation factor Tu (GXtleftu) can be de-
cellmodel in order to compensate for the lack of a nucleotidg,qq as follows:

biosynthesis pathway; these enzymes provide a recycliRgyefiy + C00044 . GXtleftu+GTP

mechanism for degraded DNA/RNA in the model cell, ac- [none]

counting for the lack of nucleotide biosynthesis. The last afhere ‘GXtleftu+GTP’ is a Substance object representing
the seven E-CELL genes not foundrgenitaliumis gluta-  the complex. Other molecular binding phenomena, such as
mine—tRNA ligase, whose function is probably substitutegrotein~-DNA interaction and ribosome formation from ribo-
for by glutamate—RNA ligase iNl.genitalium as it is i somal proteins, can be modeled in a similar fashion.

Gram-positive bacteria (Frasetral, 1995). Besides quantitative information for each substance,
information concerning the location of a substance is often
Reaction rules important. We have defined the same molecular species at

. o . . . two different locations as two different objects. For example,
Atypical reaction in a metabolic pathway is transformation ofj, uptake of glycerol (C00116) into the cytoplasm catalyzed

one molecular species into another, catalyzed by an enzyge e membrane protein GlycerolUptake PassiveTransport
which remains unaltered. For example, the enzyme 6-ph gu001) is defined as:

phOfrUCtaSOkinase (EC 27111) Catalyzes the transformati VIRONMENT:C00116 — CYTOPLASM:C00116
of p-fructose 6-phosphate (C00085) imdructose 1,6-bi- [EQu001]

phosphate (C00354), consuming ATP (C00002) and genergjhere ENVIRONMENT:C00116 and CYTOPLASM:C00116
ing ADP (C00008) and H+ (C00080) (E-CELL Substancgepresent glycerol in the environment (culture medium) and
IDs shown in parentheses). Schematically, such a reaction c@fioplasm, respectively.
be defined in an E-CELL reaction rule as follows:
C00085 + C0O0002 - C00354 + C00008 + C00080
[EC 2.7.1.11]

Pathways can then be implemented by defining a serieslof order to obtain efficiently the necessary information to
reactions which use the products of another reaction as panplement the pathways in our cell model, we have been
ticipating reactants. utilizing knowledgebases such as EcoCyc (Ktigd, 1996)

Using biological knowledgebases for model construction
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Table 2. Protein coding genes in the hypothetical cell.

1D

name ID name
MGO005 Serine-tRNA ligase MG215 6-phosphofructokinase (pfkA)
MGO021 Methionine-tRNA ligase MG216 pyruvate kinase (pyk)
MGO023 fructose-bisphosphate aldolase (tsr) MG232 ribosomal protein L21
MGO033  glycerol uptake facilitator(glpF) MG234 ribosomal protein L27
MGO035 Histidine-tRNA ligase MG249 RNA polymerase sigma S subunit
MGO036 Aspartate-tRNA ligase MG251 Glycine-tRNA ligase
MGO038  glycerol kinase (glpK) MG253 Cysteine—tRNA ligase
MGO041 Protein histidine(HPr)(ptsH) MG257 ribosomal protein L31
MGO069 phosphotransferase enzymell(ptsG) MG266 Leucine-tRNA ligase
MGO70 ribosomal protein S2 MG283 Proline-tRNA ligase
MGO081 ribosomal protein L11 MG292 Alanine-tRNA ligase
MGO082 ribosomal protein L1 MG300 phosphoglycerate kinase (pgk)
MGO087 ribosomal protein S12 MG301 G3PD (gapA)
MGO088 ribosomal protein S7 MG311 ribosomal protein S4
MGO089 Elongation Factor G MG325 ribosomal protein L33
MGO090 ribosomal protein S6 MG334 Valine-tRNA ligase
MGO092 ribosomal protein S18 MG340 RNA polymerase beta’ subunit
MGO093 ribosomal protein L9 MG341 RNA polymerase beta subunit
MG111 phosphoglucose isomerase B (pgiB) MG344 Lipase
MG113 Asparagine-tRNA ligase MG345 Isoleucine-tRNA ligase
MG114 PGP synthase (pgsA) MG351 inorganic pyrophosphate (ppa)
MG126 Tryptophan—tRNA ligase MG361 ribosomal protein 110
MG136 Lysine-tRNA ligase MG362 ribosomal protein L7
MG142 translation initiation factor2 MG363 ribosomal protein L32
MG150 ribosomal protein S10 MG363.1 ribosomal protein S20
MG151 ribosomal protein L3 MG365 Methionyl-tRNA formyltransferase
MG152 ribosomal protein L4 MG375 Threonine-tRNA ligase
MG153 ribosomal protein L23 MG378 Arginine-tRNA ligase
MG154 ribosomal protein L2 MG407 enolase (eno)
MG155 ribosomal protein S19 MG417 ribosomal protein S9
MG156 ribosomal protein L22 MG418 ribosomal protein 1,13
MG157 ribosomal protein S3 MG424 ribosomal protein S15
MG158 ribosomal protein L16 MG426 ribosomal protein 128
MG159 ribosomal protein L29 MG429 proteinphosphotransferase(ptsl)
MG160 ribosomal protein S17 MG430 phosphoglycerate mutase (pgm)
MG161 ribosomal protein L14 MG431 triosephosphate isomerase (tpiA)
MG162 ribosomal protein L24 MG433 Transcription elongation factor Ts
MG163 ribosomal protein L5 MG437 CDP-diglyceride synthetase (cdsA)
MG164 ribosomal protein S14 MG444 ribosomal protein L19
MG165 ribosomal protein S8 MG446 ribosomal protein S16
MG166 ribosomal protein L6 MG451 Transcription elongation factor Tu
MG167 ribosomal protein L18 MG455 Tyrosine-tRNA ligase
MG168 ribosomal protein S5 MG460 L-lactate dehydrogenase (1dh)
MG173 translation initiation factorl MG462 Glutamate-tRNA ligase
MG174 ribosomal protein L36 MG466 ribosomal protein 1.34
MG175 ribosomal protein S13 SCMNPK  Nucleoside-phosphate kinase
MG176 ribosomal protein S11 ECNDK Nucleoside-diphosphate kinase
MG177 RNA polymerase alpha core subunit ECGLNS Glutamine—tRNA ligase
MG178 ribosomal protein L17 T0001 Acylglycerol lipase
MG194 Phenylalanine~tRNA ligase alpha T0002 Glycerol-1-phosphatase
MG196 transltion initiation factor3 ECPGPB  Phosphatidylglycerophosphatase
MG197 ribosomal protein L35 ECDGKA  Diacylglycerol kinase (dgkA)
MG198 ribosomal protein L20

and KEGG (Kanehisa, 1996). Both of these knowledgebaseasetabolic pathways which proved essential in our effort to

provide links between information on genes, enzymes arabnstruct a model cell.
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Table 3.Enzymes in the hypothetical cell

1D name

EC1.1.1.27 L-Lactate dehydrogenase
EC1.2.1.12 Glyceraldehyde-3-phosphate dehydrogenase (phosphorylating)
EC2.1.2.9 Methionyl-tRNA formyltransferase
EC2.7.1.107 Diacylglycerol kinase

EC2.7.1.11 6-Phosphofructasokinase
EC2.7.1.30 Glycerol kinase

EC2.7.1.40 Pyruvate kinase

EC2.7.1.69 phosphotransferasesystem enzyme II, ABC component(ptsG)
EC2.7.2.3 Phosphoglycerate kinase

EC2.7.3.9 phosphoenolpyruvate-proteinphosphotransferase(ptsl)
EC2.7.4.4 Nucleoside-phosphate kinase
EC2.7.4.6 Nucleoside-diphosphate kinase
EC2.7.7.41 CDPdiglyceride pyrophosphorylase
EC2.7.8.5 CDPdiacylglycerol-glycerol-3-phsophate 3-phosphatidyltransferase
EC3.1.1.23 Acylglycerol lipase

EC3.1.1.3 Lipase

EC3.1.3.21 Glycerol-1-phosphatase

EC3.1.3.27 Phosphatidylglycerophosphatase
EC3.6.1.1 Inorganic pyrophosphatase
EC3.6.1.1 Pyrophosphatase

EC4.1.2.13  Fructose-bisphosphate aldolase
EC4.2.1.11 Phosphopyruvate hydratase
EC5.3.1.1 Triose-phosphate isomerase
EC5.3.1.9 Glucose-6-phosphate isomerase
EC5.4.2.1 Phosphoglycerate mutase
EC6.1.1.1 Tyrosine-tRNA ligase

EC6.1.1.10 Methionine-tRNA ligase
ECe6.1.1.11 Serine-tRNA ligase

EC6.1.1.12 Aspartate-tRNA ligase

EC6.1.1.14 Glycine-tRNA ligase

EC6.1.1.15 Proline-tRNA ligase

EC6.1.1.16 Cysteine-tRNA ligase

ECe6.1.1.17 Glutamate-tRNA ligase
EC6.1.1.18 Glutamine-tRNA ligase
EC6.1.1.19 Arginine-tRNA ligase

EC6.1.1.2 Tryptophan-tRNA ligase
EC6.1.1.20 Phenylalanine-tRNA ligase
EC6.1.1.21 Histidine-tRNA ligase

EC6.1.1.22 Asparagine-tRNA ligase
EC6.1.1.3 Threonine-tRNA ligase

EC6.1.1.4 Leucine-tRNA ligase

EC6.1.1.5 Isoleucine-tRNA ligase

EC6.1.1.6 Lysine-tRNA ligase

EC6.1.1.7 Alanine-tRNA ligase

EC6.1.1.9 Valine-tRNA ligase

KEGG was first used to construct the overall structure oAlthough EcoCyc itself does not include kinetic information,
the model cell's metabolism based on the gene 8é&gefi-  its rich references to the literature enabled us to obtain much
talium as determined by Fraser al (1995). KEGG has a of the further information we required to build the model.
large collection of species-non-specific metabolic pathway
diagrams, a_nd provides the utility of highlighting the_Transcription and translation
enzymes which are known/thought to be present in a species
of interest. We retrieved diagrams for all of the metaboli€omplex reactions such as transcription and translation are
pathways which are present hgenitaliumaccording to modeled in detail as a series of reactions, part of which is
KEGG, and manually constructed a single comprehensiviustrated in Figuret.
network diagram of.genitalium(not shown). Since our present model cell does not need to switch the

For our purpose, EcoCyc proved highly useful in obtaininggenes on and off, it does not have any regulatory factors, such
more detailed information about the enzymes and pathwayas repressors and enhancers. We have therefore not implem-
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Table 4. Small molecules in the hypothetical cell

ID name ID name

C00001 H20 C00148 L-Proline

C00002 ATP C00152 L-Asparagine

C00003 NAD+ C00162 Fatty acid

C00004 NADH C00165 Diacyl-glycerol

C00008 ADP C00183 L-Valine

C00009 Orthophosphate C00186  (S)-Lactate

C00013 Pyrophosphate C00188 L-Threonine

C00015 UDP C00197  3-Phospho-D-glycerate
C00020 AMP C00234 10-Formyltetrahydrofolate
C00022 Pyruvate C00236  3-Phospho-D-glycerate phosphate
C00025 L-Glutamate C00269 CDPdiacylglycerol

C00031 D-Glucose C00305 Mg2+

C00035 GDP C00344 Phosphotidylglycerol
C00037 Glycine C00354 D-Fructose 1,6-bisphosphate
C00041 L-Alanine C00407 L-Isoleucine

Coo044 GTP C00416 Diacyl-sn-glycerol 3-phosphate
C00047 L-Lysine C00615 Protein histidine

C00049 L-Aspartate C00631  2-Phospho-D-glycerate
C00055 CMP C00787 tRNA(Tyr)

C00062 L-Arginine C01635 tRNA(Ala)

Coo063 CTP C01636 tRNA(Arg)

C00064 L-Glutamine C01637 tRNA(Asn)

C00065 L-Serine C01638 tRNA(Asp)

C00073 L-Methionine C01639 tRNA(Cys)

C00074 Phosphoenolpyruvate C01640 tRNA(GIn)

Co0075 UTP C01641 tRNA(Glu)

C00078 L-Tryptophan C01642 tRNA(Gly)

C00079 L-Phenylalanine C01643 tRNA(His)

C00080 H+ C01644 tRNA(Ile)

C00082 L-Tyrosine C01645 tRNA(Leu)

C00085 D-Fructose 6-phosphate C01646 tRNA(Lys)

C00092 D-Glucose 6-phosphate C01647 tRNA(Met)

C00093  sn-Glycerol3-Phosphate C01648 tRNA(Phe)

C00097 L-Cysteine C01649 tRNA(Pro)

C00101  Tetrahydrofolate C01650 tRNA(Ser)

C00105 UMP C01651 tRNA(Thr)

C00111  Glycerone phosphate C01652 tRNA(Trp)

C00112 CDP C01653 tRNA(Val)

C00116  Glycerol C01885 Monoacyl-glycerol

C00118 D-Glyceraldehyde 3-phosphate || C03294 N-Formylmethionyl-tRNA
C00123 L-Leucine C03892 Phosphatidylglycerophosphate
C00135 L-Histidine C04085 Protein N(pai)-phosphohistidine
C00144 GMP

ented gene regulatory reaction rules, although the softwaiactory results in simulation, and we plan to sustain this level
itself allows the user to write rules for sophisticated genef abstraction until necessary.

regulatory reactions such as repressor proteins binding to

DNA regulatory regions.

Our current model does not utilize actual nucleotide o
amino acid sequence information. Although the length o
each gene, mRNA and protein is represented, we have made o _ .
the assumption that each contains equal proportions of ngeneralizing chemical reactions as:
cleotides and amino acids, respectively. In the current cell
model, these simplified reaction rules have produced satis- ViS|+VoS+ ... - Vi§+ ..+ §

eaction kinetics
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Fig. 4. The transcription metabolism in the model cell.

where§, is a concentration of theth substance ang is a

Menten model. For example, the rate equation for a random
bi bi reversible enzymatic reaction with an inhibitor and an
activator (each product is competitive with each substrate)
would be:

[Sy1S,] ENE)
Ry VT Ry "
G N S G O I e O G R Ch )

1442 i

Ky 7 Ky 7Kg Ky KK, TOBKGK, KK, T KKy

v =

wherekK, is the dissociation constant 8, Vi andV; are

forward and reverse maximal velocity, 3, y andd are the

ratios of dissociation constants of complex€spiey:

o = Kiess)/Kiesy = Kiessy/Kiesy,

B= K[Es3s4]/K[E53] = K[E%S4]/K[ES4]1

Y = Kiesssg/Kiesy = Kies,sp/Kiesgs

0= K[Eslsg]/K[Esll = K[ESlS3]/K[E81]'

Given areaction mechanism, such equations can be mechan-

ically derived by hand or with the assistance of computer

programs. For more complex enzymatic reactions for which

rapid equilibrium assumptions are not inadequate, methods

such as the King—Altman method can be used (Segel, 1975).
Some reactions, such as dimer formation and DNA—pro-

tein binding, reach equilibrium within a millisecond, which

is the default single time unit of the system. For a rapid equi-

librium such as:

VIS +VoS+ ... +vp§ = C

whereC is a complex, the following equation holds at equi-
librium:

Ko 101 = | Jisp

stoichiometric coefficient for the substance, the velocity of

each reaction can be expressed as a functiBparfdvs,

whereKjy is the dissociation constant of the reaction. This

Most non-enzymatic reactions are first-order reactiongquation provides a simple way to compute directly the con-
Their velocities directly depend on concentrations of the sulgentration of each molecular species at equilibrium by only

strates and can be expressed as:

-1
v=k-[]is]"

wherev is the velocity of the reaction akds the rate con-

stant.

one dissociation constant, i.e. it assumes the binding of more
than two Substances to occur simultaneously. However, in
reality, the formation of molecular complexes with many

components occurs in a stepwise fashion, and in some cellu-
lar processes, such as protein signaling, a more detailed
representation may be necessary for accurate simulation
(Brayetal, 1997). Since we have notimplemented any com-

Enzymatic reaction with a substrate and a product can Ipdex signaling pathways in our present cell model, we feel

expressed as the Michaelis—Menten equation:
_ Vinax * [q

v _— = =

REES

where [ is the substrate concentrati®yaxis the maximal

that the use of the simple equation above is justified.
Although some kinetic parameter values can be derived
from information available in existing databases, many are
unknown. We have assigned values for these parameters by
estimations based on available information. Barkai and

velocity of the reaction anly, is the Michaelis constant. Leibler (1997) have recently argued that cellular processes
One can easily derive equations for reactions involving mor&re ‘robust’ in many of their properties, in the sense that con-
than one substrate or product, and incorporate the effectssiflerable variation in kinetic parameters often does not affect
inhibitor(s) and activator(s) under this Henri—Michaelis-the behavior of the system as a whole. Many of our simula-
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nount of molecule x 103

Fig. 5. The quantity of ATP increases temporarily and then decreases rapidly when glucose in the culture medium is completaty2@rained
s. They-axis is the number of ATP moleculesl000) in the cytoplasm and tikeaxis is the elapsed time in seconds.

tion results are consistent with their argument; increasing orFigure5 is a trace of the quantity of ATP in the starving
decreasing a particular parameter by one order of magnitudell. Glucose in the culture medium was drained at 20 s. Itis
seldom changes the qualitative behavior of our model celinteresting that the quantity of ATP temporarily increases at
the initiation of starvation. This is explained by the fact that
Virtual experiments some ATP is consumed in the glycolysis pathway before it

The E-CELL interfaces provide a means of conducting sexroduces enough ATP for a netincrease. The shortage of glu-
perimentsn silico’. For example, we can ‘starve’ the cell by cose to fuel glycolysis arrests the ATP consumption at the

draining glucose from the culture medium. The cell would@ginning of the pathway before the intermediates for ATP
eventually ‘die’, running out of ATP. If glucose is addedProduction are completely consumed. This results in a tem-
back, it may or may not recover, depending on the duratidiprary increase of net ATP in the cytoplasm. After a short
of starvation. We can also ‘kill' the cell by knocking out anperiod, however, the quantity of ATP falls sharply.

essential gene for, for example, protein synthesis. The cellFigure6 is a trace of the quantity of mRNA, in which the
would become unable to synthesize proteins, and all enell was starved at 1000 s. Messenger RNA levels are usually
zymes would eventually disappear due to spontaneogfse to steady state due to continuing transcription and
degradation. degradation. When the cell runs out of ATP after starvation,
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Fig. 6. A trace of MRNA levels before and after starvation of the cell. Before starvation at 1000 s, synthesis by transcriptioteaed sp
degradation are close to equilibrium. The loss of ATP following starvation causes transcription to stop, and mRNA lesglsajsdiga

transcription can no longer continue and mRNAs are rapidlyletabolic requirements

lost by degradation.

Application to genome engineering

The assessment of the metabolic requirements of the cell is
an excellent example of a potential application for E-CELL.
At present,M.genitaliumis grown in a complex medium
containing several chemically undefined components in-
cluding fetal bovine serum, and also extracts of yeast and
beef. The problem of designing a chemically defined growth

One of our ultimate goals is to model the real ceMl@feni-  medium could be addressed through a purely empirical ap-
talium, the organism having the smallest known chromoproach. However, a more interesting approach is one that is
some. Because of the small number of genes (470 proteiirsformed by knowledge of the complete genome sequence.
37 RNAs),M.genitaliumis a prime candidate for exhaustive By combining knowledge of the metabolic enzymes present
functional (proteome) analysis. Because there are still mary the cell with information concerning protein transporters
genes whose functions are not yet known, it will probably bef metabolites across the cell membrane, it should be poss-
necessary to hypothesize putative proteins to complemebte to evaluate whether a particular defined medium can
missing metabolic functions, in order for the model cell tsupport growth, by using the E-CELL model. The main diffi-

work in silico.

culty in this approach is that identification of gene function
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solely on the basis of sequence is uncertain. Comparison©bncluding remarks
laboratory results with E-CELL predictions should help to

overcome this difficulty. Agreement between the model an%e have constructed a hypothetical cell using the first ver-

laboratory growth experiments will be evaluated for a Iargtgion of E-CELL, and have developed hundreds of reaction

number of different chemically defined media. Dn‘feren(:e.sl,,ules for a partial set of metabolic pathwayblajenitalium

between experimental observations and the E-CELL pred'ﬁicluding glycolysis, lactate fermentation, glycose uptake,

}:joennsﬂ}’i\ggggnu;fg;\?vr:r:';enggi ?ﬁgg;;%ﬁ:&uﬁrﬁﬂd toet: lycerol and fatty acid uptake, phospholipid biosynthesis,
y p 99 ne transcription, protein synthesis, polymerase and ribo-

V.V'th previously un_as&gned roles, or tothe rer.“o"a' ofaque ome assembly, protein degradation and mRNA degrada-
tionable role assignment based on a marginal level of SEan

uence similarity. ; ;
9 ty Our model cell's gene set of 127 genes is much smaller

than the ‘minimal gene set’ derived through sequence com-
parison of the first two sequenced genomes (Fleisclahan
al., 1995; Fraseet al, 1995) by Musheginan and Koonin

Another area in which we plan to apply the E-CELL Softwaré1996). This is not surprising since ogr.model lacks several
is in the deciphering of gene regulatory networks. Gene e¥nportant features presentin all real living cells. Thg model
pression patterns ®.genitaliumare currently being deter- Cell does not proliferate; we are currently modeling cell
mined at TIGR under a variety of growth conditions. We ex@rowth, DNA replication, chromosome segregation and cell
pect that these results will suggest specific mechanisms féivision. (The next version of the E-CELL system will have
control of transcript levels which can be modeled by rules ifatures to support modeling cell division, including dy-
the E-CELL system. We will conduct parallel experiments ifiamic compartment creation/deletion, programmable com-
the laboratory anih silico with the E-CELL system; given Partment volumg, dynamic reactor/substance _c:reatlon/dele-
an appropriate model of the cell, we can change initial valud@n, and dynamic DNA sequence representation.)
of ingredients of the culture medium and observe increased-urthermore, the present cell model relies on unrealisti-
and decreases of mMRNA levels. The results of timsiico ~ cally favorable environmental conditions. All of the amino
experiments should be consistent with results of biologic&€ids and nucleotides must exist, and pH and osmolarity

and biochemical experiments. The computer model will theRust be kept at physiologically stable levels at all times. The
be refined as necessary. model also lacks cell structure proteins, which would be in-

dispensable in any natural environment.
To address these problems, we are currently modeling
Minimal gene set amino acid and nucleotide biosynthesis pathways. We also
plan to model homeostasis of pH and osmolarity, as well as
We expect that the E-CELL system will be useful in definingoroteins for membrane and cell structure.
the minimal set of genes required for a self-replicating cell An additional point which is worth mentioning is that al-
under a specific set of laboratory conditions. At TIGR, workhough simulation is the primary focus of this research, the
is under way to identify the genes\fgenitaliumwhich are  modeling process has involved much knowledge integration.
non-essential, by gene disruption experiments using transpéithough our efforts to gather extensive information on a
sons. If the E-CELL model is sufficiently detailed and accusingle organismM. genitalium involved much manual
rate, then these gene disruption experiments can be modetedthods (e.g. creating diagrams of metabolic networks) and
in silicoto predict a minimal gene set. The laboratory experiare not, of course, completely automated, we have derived
ments will lead to the prediction of a reduced gene set whigchany routine protocols for modeling pathways. We would
should be a close approximation to the truly miniMgto-  like to integrate E-CELL's knowledge representation scheme
plasmagenome. Alternative predictions of a minimal genewith the schemes of knowledgebases such as EcoCyc and
set can also be proposed on theoretical grounds, or by dedd&GG to facilitate and, where applicable, automate informa-
ing a core set of genes conserved betiégenitaliumand  tion retrieval, which has proven to be a largely time-consum-
other microbial genomes. The E-CELL system should big part of the modeling process.
useful in modeling cells based on these alternative proposals'he applications of E-CELL, such as genome engineering,
for a minimal cellular genome. have only just begun. The approaches to defining a minimal
We expect that a combination of laboratory experimentgene set, described in ‘User interfaces’, are testable in prin-
andin silico modeling using the E-CELL system will lead to ciple. At TIGR a longer term goal of this work is the engin-
a more reliable prediction of the minimal gene complemergering of the genome to produce living cells with substan-
for a self-replicating cell than could be obtained by eithetially reduced genomes. This will allow us to test proposals
method alone. for minimal gene sets directly. It will be interesting to com-

Gene expression
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pare real cells so created with their computer models. Corfiernish-Bowden,A. and Hofmeyr,J.H. (1991) MetaModel: a program
parison of the models with the results of laboratory experi- for modeling and control analysis of metabolic pathways on the IBM
ments will allow further refinement of the computer models. PC and compatible€omput. Applic. BiosGi7, 89-93.
This, in turn, will lead to a better understanding of the experPan9:Q- and Frieden,C. (1997) New PC versions of the kinetic-simula-
mental results, and hence a better understanding of the essefi2" 2nd fitting programs, KINSIM and FITSIMrends Biochem.

tial requirements of a minimal living cell cl, 22, 317.
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