
E-CELL: software environment for whole-cell
simulation
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Abstract
Motivation: Genome sequencing projects and further sys-
tematic functional analyses of complete gene sets are
producing an unprecedented mass of molecular information
for a wide range of model organisms. This provides us with
a detailed account of the cell with which we may begin to
build models for simulating intracellular molecular pro-
cesses to predict the dynamic behavior of living cells.
Previous work in biochemical and genetic simulation has
isolated well-characterized pathways for detailed analysis,
but methods for building integrative models of the cell that
incorporate gene regulation, metabolism and signaling have
not been established. We, therefore, were motivated to
develop a software environment for building such integrative
models based on gene sets, and running simulations to
conduct experiments in silico.
Results: E-CELL, a modeling and simulation environment
for biochemical and genetic processes, has been developed.
The E-CELL system allows a user to define functions of
proteins, protein–protein interactions, protein–DNA inter-
actions, regulation of gene expression and other features of
cellular metabolism, as a set of reaction rules. E-CELL
simulates cell behavior by numerically integrating the
differential equations described implicitly in these reaction
rules. The user can observe, through a computer display,
dynamic changes in concentrations of proteins, protein
complexes and other chemical compounds in the cell. Using
this software, we constructed a model of a hypothetical cell
with only 127 genes sufficient for transcription, translation,
energy production and phospholipid synthesis. Most of the
genes are taken from Mycoplasma genitalium, the organism
having the smallest known chromosome, whose complete
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580 kb genome sequence was determined at TIGR in 1995.
We discuss future applications of the E-CELL system with
special respect to genome engineering.
Availability: The E-CELL software is available upon request.
Supplementary information: The complete list of rules of
the developed cell model with kinetic parameters can be
obtained via our web site at: http://e-cell.org/.
Contact: mt@sfc.keio.ac.jp

Introduction

The complete genomes of more than 18 microorganisms have
been sequenced. The availability of this new information on
the gene content of organisms has led to the emergence of a
number of heretofore unavailable approaches to biology. Sys-
tematic analyses of genes/proteins are now under way in nu-
merous centers around the world, and comprehensive cata-
logues of protein function are being constructed.

The challenge created by genomics is to understand how
all the cellular proteins work collectively as a living system.
By attempting to understand the dynamics in living cells, we
should be able to predict consequences of changes intro-
duced into the cell and/or its environment, e.g. knocking out
a gene or altering available metabolites. Possible conse-
quences of such intervention include cell death, changes in
growth rate, and an increase or decrease in the expression of
specific genes. The development of sufficiently refined cell
models which allow predictions of such behavior would
complement the experimental efforts now being made sys-
tematically to modify and engineer entire genomes.

In this paper, we present E-CELL, a computer software
environment for modeling and simulation of the cell. The
E-CELL system is a generic object-oriented environment for
simulating molecular processes in user-definable models,
equipped with graphical interfaces that allow observation
and interaction. E-CELL provides a unified, object-oriented
framework for modeling and simulation of the complex
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interactions among the gene products of completed ge-
nomes. Our modeling approach described in this paper at-
tempts to link diverse cellular processes such as gene ex-
pression, signaling and metabolism, to construct a cell model
for conducting experiments in silico.

Previous work in simulations of cellular processes

Many attempts have been made to simulate molecular pro-
cesses in both cellular and viral systems. Perhaps the most
active area of cellular simulation is the kinetics of biochemi-
cal metabolic pathways. Several software packages for
quantitative simulation of biochemical metabolic pathways,
based on numerical integration of rate equations, have been
developed, including GEPASI (Mendes, 1993, 1997), KIN-
SIM (Barshop et al., 1983; Dang and Frieden, 1997), MIST
(Ehlde and Zacchi, 1995), METAMODEL (Cornish-
Bowden and Hofmeyr, 1991) and SCAMP (Sauro, 1993).

In predicting cell behavior, the simulation of a single or a
few interconnected pathways can be useful when the path-
way(s) being studied is relatively isolated from other bio-
chemical processes. However, in reality, even the simplest
and most well-studied pathways, such as glycolysis, can
exhibit complex behavior due to connectivity. Moreover,
simulations of metabolic pathways alone cannot account for
the longer time-scale effects of processes such as gene
regulation, cell division cycle and signal transduction.

Several groups have proposed and analyzed gene regulation
and expression models by simulation (Meyers and Friedland,
1984; Koile and Overton, 1989; Karp, 1993; Arita et al., 1994;
McAdams and Shapiro, 1995). The cell division cycle (Tyson,
1991; Novak and Tyson, 1995) and signal transduction mech-
anisms (Bray et al., 1993) have also been active areas of re-
search for biological modeling and simulation. Most of them
have utilized qualitative models to deal with the general lack
of quantitative data in molecular biology. However, while
qualitative models are generally useful when information is
incomplete (Kuipers, 1986), they often generate ambiguous
results (Kuipers, 1985), the behaviors of which are difficult to
predict due to combinatorial explosion (for a review on com-
puter simulations in biology, see Galper et al., 1993).

Previous studies in biochemical and genetic simulations
have usually limited their models to focus on only one of the
several levels of the time-scale hierarchy in cellular processes.
Linking the gaps between the various levels of this hierarchy
is an extremely challenging problem that has yet to be ad-
equately addressed. This paper presents a step towards inte-
grative simulation of several levels of cellular processes.

Implementation of the E-CELL system

The E-CELL system is, in essence, a rule-based simulation
system and is written in C++, an object-oriented program-
ming language. The model consists of three lists, and is

loaded at runtime. The substance list defines all objects
which make up the cell and the culture medium. The rule list
defines all of the reactions which can take place within the
cell, and the system list defines spatial and/or functional
structure of the cell and its environment. The state of the cell
at each time frame is expressed as a list of concentration va-
lues of all substances within the cell, along with global values
for cell volume, pH and temperature. The simulator engine
generates the next state in time by computing all of the func-
tions defined in the reaction rule list. In addition to using the
sample models provided with the system, the user can create
user-defined models by writing original substance and rule
lists. Graphical interfaces are provided to allow observation
and interaction throughout the simulation process.

A substance can be a substrate, product or catalyst of a
reaction. Typical substances include proteins, protein com-
plexes, DNA (genes), RNA and small molecules. The list of
substance concentrations is updated with the new values
computed by the simulator engine after each time interval.

In a single time interval, each rule in the rule list is called
upon by the simulator engine to compute the change in con-
centration of each substance. The net change in concentra-
tion for each substance is added to the present concentration
at the end of each time interval to update the set of state vari-
ables, i.e. to generate the next state of the cell. By encapsulat-
ing numerical integration methods into object classes, vir-
tually any integration algorithm can be used for simulation
of an E-CELL model. Furthermore, E-CELL allows the as-
signment of any numerical integration algorithm for each
compartment of the cell model, facilitating the optimization
of the simulation for the user’s purpose (e.g. simulation accu-
racy or speed). Different time intervals (∆t) can also be de-
fined for each spatial or functional compartment and they can
be redefined through the control panel at runtime by the user.
In the present version, the system defaults to 1 ms for ∆t and
the user can select between the first-order Euler [error is
O(∆t2)] or fourth-order Runge–Kutta [O(∆t5)] methods for
the numerical integration in each compartment. The Euler
method is used in compartments with discrete, stochastic re-
actions such as DNA–protein binding, and the Runge–Kutta
method is used for compartments with deterministic reac-
tions defined by continuous rate functions.

The simulation of our present whole-cell model runs at
∼1/20 of real time on a laptop computer with Pentium-II 200
MHz, and about four times faster on a DEC alpha 21264A
533 MHz with 1 ms integration step and monolithic integra-
tion model. A single pathway such as glycolysis runs ∼30
times faster under the same conditions.

User interfaces

The E-CELL system provides several graphical interfaces
which allow the user to observe the cell’s state and manipulate
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Fig. 1. A snapshot of user interfaces of the E-CELL system. The tracer window for ‘glycolysis1’ (upper right) shows dynamic changes in
quantities of glycolytic metabolites: D-glucose 6-phosphate (C00092), protein histidine (C00615), D-fructose 6-phosphate (C00085), D-fructose
1,6-biphosphate (C00354), D-glyceraldehyde 3-phosphate (C00118) and glycerone phosphate (C00111). The other tracer window (left) shows
changes in quantities of ATP (C00002), ADP (C00008), NADH (C00004), NAD+ (C00003) and CTP (C00063). Two reactor windows (lower
left) show activities of phosphopyruvate hydratase (EC 4.2.1.11) and fructose-biphosphate aldolase (EC 4.1.2.13). Two substance windows
(bottom left) show precise quantities of ATP (C00002) and D-glucose 6-phosphate (C00092). The GeneMapWindow (bottom right) shows
current activities (the number of mRNA molecules) of all genes in the cell. Different colors indicate an increase or decrease of activities.
Knocked-out genes are marked ‘OFF’.

Fig. 2. Metabolism overview of the model cell. It has pathways for glycolysis and phospholipid biosynthesis, as well as transcription and
translation metabolisms.
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Fig. 3. Ontology structure of the E-CELL system. There are three fundamental classes: Substance, Reactor and System. Reactors and
CellComponents are the user-definable classes. See our web site for more detailed information.

it interactively (Figure 1). The tracer interface is the most im-
portant interface which allows the user to select substances or
reactions of interest and observe dynamic changes in their quan-
tity or rate, respectively. Since the state of the cell in an E-CELL
simulation is defined as the list of all substance quantities, this
interface provides the most direct means of observing the cell.
Observing dynamical changes in reaction rates is equally im-
portant, as the systemic behavior of the cell is characterized by
the interaction of a large number of individual reactions. The
tracer interface is implemented as a window displaying a two-
dimensional plot in which animated line graphs represent
changes in the quantity of selected substances or reactions. Each
window can display up to six substances simultaneously, and
multiple tracers may be invoked to observe all substances of
interest. This interface can also produce a ‘dump file’ of traced
data for further analysis.

The substance window shows the exact quantity of a selected
substance. It also allows the user to alter the quantity at will
during the simulation process. The reactor window displays the
activity of a selected reaction. The activity of a reaction is de-
fined as the amount of product produced in the reaction per sec-
ond. The gene map window provides the user with a means of
monitoring the expression level of all genes at a glance by
graphically displaying the quantity of mRNA transcripts for
each gene. The gene map window also allows the user to knock
out a selected gene or group of genes by a click of the mouse.

Modeling the cell

In constructing E-CELL, the primary focus of our interest is to
develop a framework for constructing simulatable cell models
based on gene sets derived from completed genomes. As a first

step, we are constructing a model of a hypothetical, minimal
cell, based on the gene set of Mycoplasma genitalium, the self-
replicating organism having the smallest known genome, whose
complete 580 kb genome sequence was determined in 1995
(Fraser et al., 1995). We have reduced M.genitalium’s gene set
to accommodate only those genes required for what we have
defined, for our purpose here, as a minimal cellular metabolism.

This model cell takes up glucose from the culture medium
using a phosphotransferase system, generates ATP by cataboliz-
ing glucose to lactate through glycolysis and fermentation, and
exports lactate out of the cell. Since enzymes and other proteins
are modeled to degrade spontaneously over time, they must be
constantly synthesized in order for the cell to sustain ‘life’. The
protein synthesis is implemented by modeling the molecules
necessary for transcription and translation, namely RNA poly-
merase, ribosomal subunits, rRNAs, tRNAs and tRNA ligases.
The cell also takes up glycerol and fatty acid, and produces
phosphatidyl glycerol for membrane structure using a phos-
pholipid biosynthesis pathway (Figure 2). The model cell is
‘self-supporting’, but not capable of proliferating; the cell does
not have pathways for DNA replication or the cell cycle.

The cell model is basically constructed with three classes of
objects: Substances, Genes and reaction rules. The reactions
rules are internally represented as Reactor objects. The entire
ontology structure of the system is shown in Figure 3.

Substances

All molecular species within the cell are defined as Sub-
stances. The same molecule in different states (e.g. phospho-
rylation) is defined as separate molecular species, and each
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spatial compartment of the model retains a list of all of the
substance objects it may contain.

All of the enzymes in our hypothetical model cell are listed
in Table 3 and the other small-molecule Substances present
in the cell, such as intermediate metabolites, amino acids,
nucleotides and cations, are listed in Table 4. Multi-protein
complexes, protein–DNA complexes, protein–RNA com-
plexes and other multi-molecule complexes are also defined
as Substances, although they are not listed in the table.

Genes

DNA sequences in chromosomes are modeled as a doubly
linked list of GenomicElements. The GenomicElement class
can have fragments of sequence such as coding sequences, pro-
tein binding sites and intergenic spacers. The Gene class is de-
fined as a GenomicElement which has a transcribed sequence.

The genome of the cell consists of 127 genes including 20
tRNA genes and two rRNA genes. Out of the 127 genes, 120
have been identified in the genome of M.genitalium (Table
1 and 2). Four of the seven genes which have not been identi-
fied in M.genitalium are for the phospholipid biosynthesis
pathway (acylglycerol lipase, glycerol-1-phosphatase, phos-
phatidylglycerophosphatase and diacylglycerol kinase). The
phospholipid biosynthesis pathway of M.genitalium is not
well characterized and it is not clear how the functions of
these genes are substituted for. Nucleoside-phosphate kinase
and nucleoside-diphosphate kinase have also not been
identified in M.genitalium, but we have added them to the
cell model in order to compensate for the lack of a nucleotide
biosynthesis pathway; these enzymes provide a recycling
mechanism for degraded DNA/RNA in the model cell, ac-
counting for the lack of nucleotide biosynthesis. The last of
the seven E-CELL genes not found in M.genitalium is gluta-
mine–tRNA ligase, whose function is probably substituted
for by glutamate–tRNA ligase in M.genitalium, as it is in
Gram-positive bacteria (Fraser et al., 1995).

Reaction rules

A typical reaction in a metabolic pathway is transformation of
one molecular species into another, catalyzed by an enzyme
which remains unaltered. For example, the enzyme 6-phos-
phofructasokinase (EC 2.7.1.11) catalyzes the transformation
of D-fructose 6-phosphate (C00085) into D-fructose 1,6-bi-
phosphate (C00354), consuming ATP (C00002) and generat-
ing ADP (C00008) and H+ (C00080) (E-CELL Substance
IDs shown in parentheses). Schematically, such a reaction can
be defined in an E-CELL reaction rule as follows:
C00085 + C00002 → C00354 + C00008 + C00080

[EC 2.7.1.11]
Pathways can then be implemented by defining a series of

reactions which use the products of another reaction as par-
ticipating reactants.

Table 1. The number of genes in important pathways of the hypothetical cell

The binding reaction of two or more molecules to form a
complex can be expressed in a similar way, where the result-
ing complex would be defined as a separate molecular
species. For example, the reaction in which a GTP (C00044)
molecule binds to elongation factor Tu (GXtleftu) can be de-
fined as follows:
GXtleftu + C00044 ↔ GXtleftu+GTP

[none]
where ‘GXtleftu+GTP’ is a Substance object representing
the complex. Other molecular binding phenomena, such as
protein–DNA interaction and ribosome formation from ribo-
somal proteins, can be modeled in a similar fashion.

Besides quantitative information for each substance,
information concerning the location of a substance is often
important. We have defined the same molecular species at
two different locations as two different objects. For example,
the uptake of glycerol (C00116) into the cytoplasm catalyzed
by the membrane protein GlycerolUptake PassiveTransport
(Egu001) is defined as:
ENVIRONMENT:C00116 → CYTOPLASM:C00116

[Egu001]
where ENVIRONMENT:C00116 and CYTOPLASM:C00116
represent glycerol in the environment (culture medium) and
cytoplasm, respectively.

Using biological knowledgebases for model construction

In order to obtain efficiently the necessary information to
implement the pathways in our cell model, we have been
utilizing knowledgebases such as EcoCyc (Karp et al., 1996)
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Table 2. Protein coding genes in the hypothetical cell.

and KEGG (Kanehisa, 1996). Both of these knowledgebases
provide links between information on genes, enzymes and

metabolic pathways which proved essential in our effort to
construct a model cell.
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Table 3. Enzymes in the hypothetical cell

KEGG was first used to construct the overall structure of
the model cell’s metabolism based on the gene set of M.geni-
talium as determined by Fraser et al. (1995). KEGG has a
large collection of species-non-specific metabolic pathway
diagrams, and provides the utility of highlighting the
enzymes which are known/thought to be present in a species
of interest. We retrieved diagrams for all of the metabolic
pathways which are present in M.genitalium according to
KEGG, and manually constructed a single comprehensive
network diagram of M.genitalium (not shown).

For our purpose, EcoCyc proved highly useful in obtaining
more detailed information about the enzymes and pathways.

Although EcoCyc itself does not include kinetic information,
its rich references to the literature enabled us to obtain much
of the further information we required to build the model.

Transcription and translation

Complex reactions such as transcription and translation are
modeled in detail as a series of reactions, part of which is
illustrated in Figure 4.

Since our present model cell does not need to switch the
genes on and off, it does not have any regulatory factors, such
as repressors and enhancers. We have therefore not implem-
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Table 4. Small molecules in the hypothetical cell

ented gene regulatory reaction rules, although the software
itself allows the user to write rules for sophisticated gene
regulatory reactions such as repressor proteins binding to
DNA regulatory regions.

Our current model does not utilize actual nucleotide or
amino acid sequence information. Although the length of
each gene, mRNA and protein is represented, we have made
the assumption that each contains equal proportions of nu-
cleotides and amino acids, respectively. In the current cell
model, these simplified reaction rules have produced satis-

factory results in simulation, and we plan to sustain this level
of abstraction until necessary.

Reaction kinetics

Generalizing chemical reactions as:

ν1S1 + ν2S2 + … → νjSj  + … + νnSn
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Fig. 4. The transcription metabolism in the model cell.

where Sn is a concentration of the nth substance and νn is a
stoichiometric coefficient for the substance, the velocity of
each reaction can be expressed as a function of Ss and νs.

Most non-enzymatic reactions are first-order reactions.
Their velocities directly depend on concentrations of the sub-
strates and can be expressed as:

�� k��
j�1

i

[Si] �i

where v is the velocity of the reaction and k is the rate con-
stant.

Enzymatic reaction with a substrate and a product can be
expressed as the Michaelis–Menten equation:

��
Vmax� [S]
[S] � Km

where [S] is the substrate concentration, Vmax is the maximal
velocity of the reaction and Km is the Michaelis constant.
One can easily derive equations for reactions involving more
than one substrate or product, and incorporate the effects of
inhibitor(s) and activator(s) under this Henri–Michaelis–

Menten model. For example, the rate equation for a random
bi bi reversible enzymatic reaction with an inhibitor and an
activator (each product is competitive with each substrate)
would be:
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where Kn is the dissociation constant for Sn, Vf and Vr are
forward and reverse maximal velocity, α, β, γ and δ are the
ratios of dissociation constants of complexes (Kcomplex):
α = K[ES1S2]�K[ES1] � K[ES1S2]�K[ES2],

β = K[ES3S4]�K[ES3] � K[ES3S4]�K[ES4],

γ = K[ES2S4]�K[ES2] � K[ES2S4]�K[ES4],

δ = K[ES1S3]�K[ES1] � K[ES1S3]�K[ES1].
Given a reaction mechanism, such equations can be mechan-
ically derived by hand or with the assistance of computer
programs. For more complex enzymatic reactions for which
rapid equilibrium assumptions are not inadequate, methods
such as the King–Altman method can be used (Segel, 1975).

Some reactions, such as dimer formation and DNA–pro-
tein binding, reach equilibrium within a millisecond, which
is the default single time unit of the system. For a rapid equi-
librium such as:

ν1S1 + ν2S2 + … + νnSn ⇔ C

where C is a complex, the following equation holds at equi-
librium:

Kd � [C] ��
n

i

[Si] vi

where Kd is the dissociation constant of the reaction. This
equation provides a simple way to compute directly the con-
centration of each molecular species at equilibrium by only
one dissociation constant, i.e. it assumes the binding of more
than two Substances to occur simultaneously. However, in
reality, the formation of molecular complexes with many
components occurs in a stepwise fashion, and in some cellu-
lar processes, such as protein signaling, a more detailed
representation may be necessary for accurate simulation
(Bray et al., 1997). Since we have not implemented any com-
plex signaling pathways in our present cell model, we feel
that the use of the simple equation above is justified.

Although some kinetic parameter values can be derived
from information available in existing databases, many are
unknown. We have assigned values for these parameters by
estimations based on available information. Barkai and
Leibler (1997) have recently argued that cellular processes
are ‘robust’ in many of their properties, in the sense that con-
siderable variation in kinetic parameters often does not affect
the behavior of the system as a whole. Many of our simula-
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Fig. 5. The quantity of ATP increases temporarily and then decreases rapidly when glucose in the culture medium is completely drained at 20
s. The y-axis is the number of ATP molecules (×1000) in the cytoplasm and the x-axis is the elapsed time in seconds.

tion results are consistent with their argument; increasing or
decreasing a particular parameter by one order of magnitude
seldom changes the qualitative behavior of our model cell.

Virtual experiments

The E-CELL interfaces provide a means of conducting ‘ex-
periments in silico’. For example, we can ‘starve’ the cell by
draining glucose from the culture medium. The cell would
eventually ‘die’, running out of ATP. If glucose is added
back, it may or may not recover, depending on the duration
of starvation. We can also ‘kill’ the cell by knocking out an
essential gene for, for example, protein synthesis. The cell
would become unable to synthesize proteins, and all en-
zymes would eventually disappear due to spontaneous
degradation.

Figure 5 is a trace of the quantity of ATP in the starving
cell. Glucose in the culture medium was drained at 20 s. It is
interesting that the quantity of ATP temporarily increases at
the initiation of starvation. This is explained by the fact that
some ATP is consumed in the glycolysis pathway before it
produces enough ATP for a net increase. The shortage of glu-
cose to fuel glycolysis arrests the ATP consumption at the
beginning of the pathway before the intermediates for ATP
production are completely consumed. This results in a tem-
porary increase of net ATP in the cytoplasm. After a short
period, however, the quantity of ATP falls sharply.

Figure 6 is a trace of the quantity of mRNA, in which the
cell was starved at 1000 s. Messenger RNA levels are usually
close to steady state due to continuing transcription and
degradation. When the cell runs out of ATP after starvation,
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Fig. 6. A trace of mRNA levels before and after starvation of the cell. Before starvation at 1000 s, synthesis by transcription and spontaneous
degradation are close to equilibrium. The loss of ATP following starvation causes transcription to stop, and mRNA levels decrease rapidly.

transcription can no longer continue and mRNAs are rapidly
lost by degradation.

Application to genome engineering

One of our ultimate goals is to model the real cell of M.geni-
talium, the organism having the smallest known chromo-
some. Because of the small number of genes (470 proteins,
37 RNAs), M.genitalium is a prime candidate for exhaustive
functional (proteome) analysis. Because there are still many
genes whose functions are not yet known, it will probably be
necessary to hypothesize putative proteins to complement
missing metabolic functions, in order for the model cell to
work in silico.

Metabolic requirements

The assessment of the metabolic requirements of the cell is
an excellent example of a potential application for E-CELL.
At present, M.genitalium is grown in a complex medium
containing several chemically undefined components in-
cluding fetal bovine serum, and also extracts of yeast and
beef. The problem of designing a chemically defined growth
medium could be addressed through a purely empirical ap-
proach. However, a more interesting approach is one that is
informed by knowledge of the complete genome sequence.
By combining knowledge of the metabolic enzymes present
in the cell with information concerning protein transporters
of metabolites across the cell membrane, it should be poss-
ible to evaluate whether a particular defined medium can
support growth, by using the E-CELL model. The main diffi-
culty in this approach is that identification of gene function
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solely on the basis of sequence is uncertain. Comparison of
laboratory results with E-CELL predictions should help to
overcome this difficulty. Agreement between the model and
laboratory growth experiments will be evaluated for a large
number of different chemically defined media. Differences
between experimental observations and the E-CELL predic-
tions will be used to refine the model. This could lead to the
identification of new enzymes or transporters among genes
with previously unassigned roles, or to the removal of a ques-
tionable role assignment based on a marginal level of se-
quence similarity.

Gene expression

Another area in which we plan to apply the E-CELL software
is in the deciphering of gene regulatory networks. Gene ex-
pression patterns of M.genitalium are currently being deter-
mined at TIGR under a variety of growth conditions. We ex-
pect that these results will suggest specific mechanisms for
control of transcript levels which can be modeled by rules in
the E-CELL system. We will conduct parallel experiments in
the laboratory and in silico with the E-CELL system; given
an appropriate model of the cell, we can change initial values
of ingredients of the culture medium and observe increases
and decreases of mRNA levels. The results of those in silico
experiments should be consistent with results of biological
and biochemical experiments. The computer model will then
be refined as necessary.

Minimal gene set

We expect that the E-CELL system will be useful in defining
the minimal set of genes required for a self-replicating cell
under a specific set of laboratory conditions. At TIGR, work
is under way to identify the genes of M.genitalium which are
non-essential, by gene disruption experiments using transpo-
sons. If the E-CELL model is sufficiently detailed and accu-
rate, then these gene disruption experiments can be modeled
in silico to predict a minimal gene set. The laboratory experi-
ments will lead to the prediction of a reduced gene set which
should be a close approximation to the truly minimal Myco-
plasma genome. Alternative predictions of a minimal gene
set can also be proposed on theoretical grounds, or by deduc-
ing a core set of genes conserved between M.genitalium and
other microbial genomes. The E-CELL system should be
useful in modeling cells based on these alternative proposals
for a minimal cellular genome.

We expect that a combination of laboratory experiments
and in silico modeling using the E-CELL system will lead to
a more reliable prediction of the minimal gene complement
for a self-replicating cell than could be obtained by either
method alone.

Concluding remarks

We have constructed a hypothetical cell using the first ver-
sion of E-CELL, and have developed hundreds of reaction
rules for a partial set of metabolic pathways of M.genitalium,
including glycolysis, lactate fermentation, glycose uptake,
glycerol and fatty acid uptake, phospholipid biosynthesis,
gene transcription, protein synthesis, polymerase and ribo-
some assembly, protein degradation and mRNA degrada-
tion.

Our model cell’s gene set of 127 genes is much smaller
than the ‘minimal gene set’ derived through sequence com-
parison of the first two sequenced genomes (Fleischman et
al., 1995; Fraser et al., 1995) by Musheginan and Koonin
(1996). This is not surprising since our model lacks several
important features present in all real living cells. The model
cell does not proliferate; we are currently modeling cell
growth, DNA replication, chromosome segregation and cell
division. (The next version of the E-CELL system will have
features to support modeling cell division, including dy-
namic compartment creation/deletion, programmable com-
partment volume, dynamic reactor/substance creation/dele-
tion, and dynamic DNA sequence representation.)

Furthermore, the present cell model relies on unrealisti-
cally favorable environmental conditions. All of the amino
acids and nucleotides must exist, and pH and osmolarity
must be kept at physiologically stable levels at all times. The
model also lacks cell structure proteins, which would be in-
dispensable in any natural environment.

To address these problems, we are currently modeling
amino acid and nucleotide biosynthesis pathways. We also
plan to model homeostasis of pH and osmolarity, as well as
proteins for membrane and cell structure.

An additional point which is worth mentioning is that al-
though simulation is the primary focus of this research, the
modeling process has involved much knowledge integration.
Although our efforts to gather extensive information on a
single organism, M. genitalium, involved much manual
methods (e.g. creating diagrams of metabolic networks) and
are not, of course, completely automated, we have derived
many routine protocols for modeling pathways. We would
like to integrate E-CELL’s knowledge representation scheme
with the schemes of knowledgebases such as EcoCyc and
KEGG to facilitate and, where applicable, automate informa-
tion retrieval, which has proven to be a largely time-consum-
ing part of the modeling process.

The applications of E-CELL, such as genome engineering,
have only just begun. The approaches to defining a minimal
gene set, described in ‘User interfaces’, are testable in prin-
ciple. At TIGR a longer term goal of this work is the engin-
eering of the genome to produce living cells with substan-
tially reduced genomes. This will allow us to test proposals
for minimal gene sets directly. It will be interesting to com-
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pare real cells so created with their computer models. Com-
parison of the models with the results of laboratory experi-
ments will allow further refinement of the computer models.
This, in turn, will lead to a better understanding of the experi-
mental results, and hence a better understanding of the essen-
tial requirements of a minimal living cell.
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