Microarrays in Three Easy Steps

Priti Hegde

Microarray Analysis Stages

- Array Fabrication
- Probe Preparation and Hybridization
- Data Collection, Normalization, and Analysis

Array Fabrication

The TIGR Gene Indices http://www.tigr.org.tdb/tdb/tgi.html

Development of the TIGR "30k cDNA Gene Set"

Goal:

Array 30,000 genes and study gene expression in human cancer to develop stage and tissue specific expression fingerprints.

Progress:

- Nearly 48,000 cDNA clones have been selected using the EST Assemblies (THCs) in the TIGR Human Gene Index*; 40,000 have been amplified by PCR and are ready for use in array studies. Funding has been secured to expand to 60,000 clones.
- Priority has been given to arraying known genes and genes with mapping information.
- Additional clones have been chosen representing genes of unknown function.
- Pilot studies are underway with 7,200 and 19,200 clone arrays.

*Human Gene Index: < http://www.tigr.org/hgi/hgi.html>

PCR Amplify Them

- Grow clones overnight
- Dilute 1:20 (5ml:95ml) in water
- "Pop" the cells, spin out debris
- Amplify in 50 ml reaction with Platinum Taq (Life Technologies)

Purify the PCR products

- 96-well Millipore multiscreen glass filter plate
- Bind products in high salt (1:5 5.3M Guanidine-HCl/150 m M KAc)
- Elute in water/TE

PCR Amplification

Microarray PCR Scoring Tool

88% Good **6% Questionable** 6% Bad

The Beast: Microarray Robot from Intelligent Automation

Array The Clones

The Beast in Action: #1

The Beast in Action: #2

The Glass is Crucial! Corning CMT-GAPS Slide

Another Slide

The Effects of Spotting Buffer and PCR Clean-up Spotting 'Ink' and Clean-up matter **50% DMSO** 3xSSC **50% DMSO** 3xSSC **50% DMSO** 3xSSC **Ethanol Precipitation/DMSO** Glass Filter Cleanup/DMSO **50% DMSO** 3xSSC 50% **DMSO** 3xSSC **50% DMSO** 3xSSC **Ethanol Precipitation/DMSO Glass Filter Cleanup/DMSO** The Institute for Genomic Research

When Temperature and Humidity Go Bad

Laboratory Conditions Matter

Arraying Conditions

- 72°F (22.2°C), 40-45% Relative Humidity
- 50% dimethyl-sulfoxide (DMSO), 20mM Tris HCl, 50mM KCl, pH 6.5 (Thanks to Robin Cline, Erik Snesrud, Karen Ketchum)
- Corning CMT-GAPS silane coated slides
- UV Cross-link at 90 mJ, bake at 80 ° C for 2 hours

Comparison of Labeling Protocols

Preparing Labeled Probe

Total and Poly(A) RNA give equivalent results

Labeling Protocols

- Oligo(dT) primed labeling using SuperScript II (Life Technologies) and 4-8 mg total RNA
- Clean Probes using Pharmacia GFX Columns
- Hybridization
 - Prehybridize slides with 5´SSC, 0.1% SDS and 1% BSA to block free amine groups
 - Combine probes with 10 'SSC, 0.2% SDS, 50% formamide and hybridize at 42°C O/N

Confocal Laser Scanner: ScanArray 3000

• Data Collection, Normalization, and Analysis
General Scanning http://www.genscan.com

Image Processing Issues

- Spot Finding
- Background Subtraction
- Reproducibility
- Measure median vs. mean (integrated intensity)
- Quality measures

TIGR Spotfinder

Data Analysis Issues

- Presentation
- Multiple Views
- Normalization
- Identification of Differentially Expressed Genes
- Multiple Experiments

Microarray Data Display Software

Software displays array data with links to database information about the underlying genes Differentially expressed clones can be selectively displayed

Microarray Data Display Software

Pseudo-false color display allows assessment of hybridization signal strength

Microarray Data Display Software

Relative Red/Green areas represent relative expression levels

Setting expression ratios show only over/under expressed genes

Data Display/Analysis Software

Normalization Approaches

- Total Intensity
- Linear Regression
- Ratio statistics described by Chen et al.,
 - J. Biomed. Optics (1997) 2(4) 364-374

Any of these using:

- Entire Data Set
- User-defined Data Set/Controls

Normalization Approaches (II)

Entire Data Set

- Probe Quantification less important
- No assumption on which genes constitute "housekeeping" set
- Uses all the data
- No independent confirmation **User-defined Data Set/Controls**
- Requires definition of "housekeeping" set or good added controls
- Requires good RNA quantitation
- Ignores much data

Normalization Approaches (III)

Solution(?)

- Experiment dependent
- Use a combination of techniques

TIGR MultiExpriment Viewer: Data Mining

TIGR MultiExpriment Viewer: Self Organizing Maps

TIGR MultiExpriment Viewer: Self Organizing Map Views

TIGR MultiExpriment Viewer: Principal Component Analysis

TIGR Human Expression Team

Kristie Abernathy*

Sonia Dharap

Julie Earle-Hughes

Renee Gaspard

Cheryl Gay

Priti Hegde

John Quackenbush

Alex Saeed

Vasily Sharov

H. Lee Moffitt Center/USF

Tim Yeatman

TIGR Collaborator

Norman Lee

Funding provided by the National Cancer Institute: (R01 CA77049-01; PI: J. Quackenbush)

CMT-GAPS Slides supplied by Corning

