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We present statistical methods for analyzing replicated ¢cDNA
microarray expression data and report the results of a controlled
experiment. The study was conducted to investigate inherent
variability in gene expression data and the extent to which repli-
cation in an experiment produces more consistent and reliable
findings. We introduce a statistical model to describe the proba-
bility that mRNA is contained in the target sample tissue, converted
to probe, and ultimately detected on the slide. We also introduce
a method to analyze the combined data from all replicates. Of the
288 genes considered in this controlled experiment, 32 would be
expected to produce strong hybridization signals because of the
known presence of repetitive sequences within them. Results
based on individual replicates, however, show that there are 55,
36, and 58 highly expressed genes in replicates 1, 2, and 3,
respectively. On the other hand, an analysis by using the combined
data from all 3 replicates reveals that only 2 of the 288 genes are
incorrectly classified as expressed. Our experiment shows that any
single microarray output is subject to substantial variability. By
pooling data from replicates, we can provide a more reliable
analysis of gene expression data. Therefore, we conclude that
designing experiments with replications will greatly reduce mis-
classification rates. We recommend that at least three replicates be
used in designing experiments by using cDNA microarrays, partic-
ularly when gene expression data from single specimens are being
analyzed.

Ithough the high-throughput technology now available en-

ables genetic researchers to study expression for thousands
of genes simultaneously, experiments by using microarrays may
be costly and time consuming. The manufacturers of microarray
equipment do not stress the need for replication of studies.
Production of arrays can be slow and the supply limited. As a
result, most current molecular genetic studies that use microar-
ray technology are sometimes done without replication. How-
ever, statistical analyses in many settings have demonstrated that
important insights into the nature of inherent variability are
obtained by the replication of experiments.

In Section 1, we report the design of a controlled experiment
involving replication of cDNA hybridizations. The study was
conducted to investigate inherent variability in gene expression
data and the extent to which replication in an experiment
produces more consistent and reliable findings. In Sections 2.1
and 2.2, we introduce statistical models to describe the proba-
bility that an mRNA is contained in the target sample tissue,
converted to probe, and ultimately detected on the slide as an
observed expression. We use a mixed normal distribution to
model the distribution of observed gene expressions. In Sections
2.3 and 2.4, we conduct a separate analysis for each replicate. In
Sections 2.5 and 2.6, we introduce a model to provide a joint
analysis based on the combined data collected from all repli-
cates. In Section 2.7, we consider the reliability of the classifi-
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cation of gene expression as a function of the number of
replicates.

Our results show that any single microarray output is subject
to substantial variability. By pooling data from replicates, we can
provide a more reliable classification of gene expression. There-
fore, we conclude that designing experiments with replications
will greatly reduce misclassification rates. We recommend that
at least three replicates be used in designing experiments using
cDNA microarrays. Although our results depend on specific
instruments and techniques, the statistical models and methods
that we propose in this article can be applied in general settings.

1. Materials and Methods

In this section, we provide a brief description of our experimen-
tal process. To check the consistency of microarray experiments,
we conducted a study to investigate whether the unevenness of
the surfaces of glass slides, the locations of cDNA spots on the
slides, and other aspects of a microarray experiment may pro-
duce variation in measurements of transcriptions. To test these
variables of cDNA microarrays generated in our facility, we
printed triplicates of 288 cDNA sets (288 elements per set) at 3
locations on the same slide and performed hybridization exper-
iments with probes from 1 source. By comparing the signals from
these triplicates, we hoped to learn about the reproducibility of
the array process and whether seemingly minor factors, such as
the location of the spots in the array, can affect the outcome of
analyses. Of the 288 genes considered in this experiment, 32
would be expected a priori to appear highly expressed because of
structural features within the genes, namely Alu repeats that
should crosshybridize to similar sequences widely distributed
among expressed and nonexpressed portions of the genome.

1.1. Generation of Array-Ready cDNAs. Frozen glycerol stocks of
Escherichia coli containing individual ¢cDNA clones in the
IMAGE consortium distributed in 384-well plates were pur-
chased from Genome Systems, St. Louis. Individual bacterial
clones were selected and distributed into 96-well plates. Ampli-
fications of DNA by PCR with primers specific to the vector
sequences flanking the insert cDNA were performed in 96-well
PCR plates in a Perkin—-Elmer 9600 thermocycler in 50-pul
reactions containing X1 PCR buffer (Promega), 1.5 mM MgCl2,
0.2 mM dNTPs, 10 pmol of each primer, 5 units of Taq
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polymerase, and 0.5 ul of the bacterial culture. The annealing
was at 55°C for 20 sec, and the extension was at 72°C for 90 sec
for 30 cycles. Five microliters of the PCR reactions was analyzed
in a 1% agarose gel to verify the success of PCR. The DNA in
the remaining 45 ul was precipitated with addition of 45 ul of
isopropanol and resuspended in 15 ul of X3 SSC. Note that 32
of the 288 genes contained Alu repetitive sequences and there-
fore were expected to show a high level of signal because of
crosshybridization of Alu containing messages.

1.2. Printing of the cDNAs on Glass Slides. The array-ready cDNAs
in 96-well plates were loaded into a 417 arrayer manufactured by
Genetic Microsystems (Woburn, MA). Poly-L-lysine-coated
slides from Sigma were used as the solid support for construction
of the array. Triplicate arrays were placed on the slides at 6-mm
intervals. After printing, the slides were hydrated over a steam
bath and the DNA UV-crosslinked onto the slides. After block-
ing the slides with succinic anhydrate, the DNA was denatured
by boiling for 2 min, and the slides were dehydrated with ethanol.

1.3. Preparation of Fluorescently Labeled Probes and Hybridization to
Glass Slides. Total RNA was isolated with Trizol reagents (Life
Technologies, Grand Island, NY) from human tissue specimens
obtained during surgical procedure. Fifty micrograms of total
RNA was annealed to oligo(dT) and reverse transcribed in the
presence of Cy3-labeled dUTP. The resulting cDNA was pre-
cipitated with ethanol, resuspended in 20 ul of hybridization
solution [50% formamide/Xx5 SSC/0.5% SDS/1 ug of CoT1
DNA/10 ug of yeast tRNA/10 pmol of poly(dA)], heat dena-
tured, applied to the slide, and sealed under a coverslip. The slide
was placed in a humidified chamber at 42°C overnight. The
washing was in X0.5 SSC/0.2% SDS at room temperature twice
for 5 min each, followed by three washes with X0.2 SSC at room
temperature for 2 min each. The slide was dried and scanned
with a 418 array reader from Genetic Microsystems. The result-
ing image was quantified by using the software program
SCANALYZE (1). The fluorescence of the Cy3 label is carried on
Channel 1. Cy5 was not used in this experiment, and hence
Channel 2 carried only background noise.

2. Statistical Model and Analytical Approach

For gene g in experimental replicate j, whereg = 1,...,G,j =
1, ..., J, let X,; denote the median of the set of background-
corrected single pixel values of Channel 1 to Channel 2 fluo-
rescence for all pixels within the fluorescence spot. This measure
is denoted by MRAT in Eisen et al. (2) and Eisen (1). We take
the natural logarithm of MRAT as Y,; = In(X,;) and refer to Yy,
as a log-ratio. In this experiment, three replications of expression
measurements for 288 gene probes were obtained under the
same experimental conditions from the same human tissue
sample. Thus, G = 288 and J = 3.

2.1. The Probability of Observing Expressed Genes. Consider any one
replicate j among the three experimental replicates j = 1, 2, 3.
Let €, represent the event that mRNA for gene g in the array is
contained in the target sample tissue. In advance of observing
the gene expression data, we attach a prior probability Pr{€,} =
p to this event for each gene g that is under consideration. The
fact that p is not indexed by g implies that, in advance of
considering the experimental data, we are uniformly ignorant
about whether any particular gene is contained in_the sample
tissue. We denote the complement of event €g by €,.

For a gene to be detected on the slide, three hurdles must be
cleared. First, the mRNA must be part of the sample from which
the probe is prepared. Second, some of the mRNA in the sample
must be converted to probe. Third, some of the probe must be
detected by the cDNAs deposited on the slide. If any one of these
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Table 1. Separate analysis for each experimental replicate

Replicate
Parameter j=1 j=2 j=3
p 0.285 0.124 0.274
1y, 0.384 0.410 0.442
e, 0.968 2.203 1.233
o5, 0.070 0.076 0.062
ot 1.186 0.114 1.079

Parameter estimates of the mixed normal model (Eqg. 1).

hurdles is not cleared, the gene cannot be expressed in the
microarray data.

The log-ratio Y,; for gene g in replicate j will have two distinct
distributions, depending on whether gene g is contained in the
sample tissue. First, if mRNA from gene g is not in the sample
tissue (i.e., event é,), its measured expression should reflect only
experlmental error. In thls case, we assume that Yy; is normally
distributed as N(ugy;, crU) where subscript U; refers to the
anticipated outcome of belng unexpressed. We denote the cor-
responding probability density function of conditional variable
Yqilés by fui(y). Observe that the distribution parameter values
may vary with the replicate j that is under consideration. On the
other hand, if gene g is in the sample tissue (i.e., €,) and should
therefore be detected on the slide, we assume that Yj; is
distributed as N(uzj, aE) where subscript E; refers to the
anticipated outcome of belng expressed. We denote the corre-
sponding probability density function of the conditional variable
Yqil €. by f(v). Again, we note that the parameters may vary with
the replicate j. By definition, we require uy; < ;. For event €,
Y, is a measurement reflecting only background noise or
inherent experimental error. For event é,, measurement Y,;
reflects the actual expression of gene g in the sample tissue,
obscured to some degree by the presence of background noise.

2.2. A Mixture Model for the Distribution of Observed Log Ratios.
Given the complementary events €, and ¢, for any gene g, the
observed log-ratio Yy; for replicate j will be distributed according
to the following mixed normal probability density function.

fi0) = pfe ) + (1 = p)fu,»). (1

A simple manipulation of the two components of Eq. 1 gives
posterior probabilities for whether gene g is expressed in the
sample tissue based on a reading Y,; = y in replicate j. Specif-
ically, if the microarray reading for the log-ratio of gene g is Yy;
= y in replicate j, the posterior probability that the reading
reflects expression of gene g in the sample tissue (and not simply
background noise) is given by

PfE o)
i)

2.3. Separate Analysis for Each Replicate. We now examlne the
problems of estimating the parameters p, uy;, af, » ) and O'E for
model 1, interpreting the parameter estimates and using them to
estimate the posterior probabilities in Eq. 2.

First we solved for the maximum likelihood estimates of the
unknown parameters based on model 1.The estimates were
calculated separately for the three replications to see how stable
the results are from one replicate to another. The parameter
estimates appear in Table 1.

The estimates for replicate 2 in Table 1 are sharply different
from those for the other two replicates. The estimate of mean
parameter gz is much larger than for replicates 1 and 3, and the
estimates of variance parameter aé and probability p are much

Pr{%g| gj y} = [2]

PNAS | August29,2000 | vol.97 | no.18 | 9835

APPLIED
MATHEMATICS



Table 2. Posterior probability of expression in sample tissue

Replicate 1 Replicate 2 Replicate 3

Gene g Yo1 =y Pri€glYgr = y} Yoo = ¥ Pr{€g|Ye2 = v} Yos = ¥ Pr{€y|Ygs = y}
1 2.043 1.0000 1.6804 0.9993 2.6251 1.0000

2 0.6549 0.1356 0.5551 0.0000 0.6874 0.1134

3 0.4940 0.0877 0.3791 0.0000 0.5065 0.0682

17 0.6646 0.1404 0.2662 0.0000 1.7204 1.0000

18 2.4397 1.0000 2.3081 1.0000 2.2481 1.0000

19 2.2331 1.0000 2.0549 1.0000 2.5257 1.0000

Log ratios Yy; = y and estimates of posterior probabilities Pr{€,|Yy; = y} for a few illustrative genes g, for replicatesj = 1, 2, 3.

smaller. It is unclear why replicate 2 is so different from the
others, but it serves to remind us that replication does not ensure
duplication of results, a fact that cannot be quantified when
replication is not used. We also note in Table 1 that the estimate
of p varies greatly from one replicate to another. Recall in our
controlled experiment that only 32 of the 288 genes (fraction
0.111) should be classified as expressed. Thus, the estimates of
p provided by replicates 1 and 3 are much too large.

We turn next to estimates of the posterior probabilities (Eq.
2). Table 2 summarizes a representative fragment of the results.
We see generally that the posterior probability clearly indicates
whether a gene is expressed in the sample tissue and that the
results are quite uniform across the three replications. There are
occasions, however, as illustrated by the results for gene no. 17,
where the three replications do not give uniform results. Rep-
licate 3 for this gene gives a very large posterior probability
(1.0000) to the expression event €,|Y,s = y, whereas the other
two replicates give smaller probabilities (0.1404 and 0.0000).

2.4. Checking the Consistency of Results from the Three Replicates.
We next study the extent to which the three replications,
analyzed separately, provide consistent classification with re-
spect to gene expression. Using the posterior expression prob-
abilities (such as those in Table 2) for each replicate j, we will
classify a gene g as being expressed if Pr{€,|Yy; =y} is larger than
0.5 and as not being expressed otherwise. This classification is
done independently for each replicate.

Table 3 contains the results of this classification process. Table
3 Left shows a three-way crossclassification, whereas, for ease of
interpretation, Table 3 Right shows the three two-way crossclas-
sifications corresponding to the three pairs of replicates. If the
replicates were perfectly consistent, only two cells of Table 3 Left
would have counts, namely, the cell counting unexpressed genes
in all three replicates and the cell counting expressed genes in all
three replicates. In fact, however, all of the cells in the table have
counts, and four of these are sizeable. This is evidence that the
replicates are not perfectly consistent. As one illustration of
inconsistency, we note in Table 3 Left that 23 genes classified as

Table 3. Comparing results of a separate analysis for each replicate

Three-way crossclassification

expressed in replication 3 are classified as unexpressed in
replications 1 and 2. As another illustration, we note in Table 3
Right that the numbers of genes classified as expressed in the
three replicates are 55, 36, and 58, respectively. As 32 of the 288
genes should be classified as expressed, we are again reminded
by these results that replicates 1 and 3 are providing a large
number of false positives.

To model the count data in Table 3, we again postulate a prior
probability p that any given gene is expressed in the sample
tissue. As discussed earlier, mRNA in the tissue must clear two
further hurdles to appear “expressed” on the microarray slide. It
must be converted to probe and hybridized to the cDNAs that
are deposited on the slide. The stochastic behavior of this
mechanical process can cause replications to differ. We let r;
denote the conditional probability that a gene will be classified
as “expressed” in replicate j, wherej = 1, . . .,J, and assume that
the corresponding conditional events are independent from one
replicate to another. We also postulate that, by chance, a gene
that is not expressed in the sample tissue may appear expressed
on the slide because of background noise or other experimental
artifacts. The conditional probability of such a spurious indica-
tion will be denoted by s; for the jth replicate,j = 1, .. .,J. Again,
we assume that these conditional events are independent among
the replicates. We can now estimate these probabilities from the
count data in Table 3 using the method of maximum likelihood
applied to the following likelihood function

nf(wgla e >WgJ) = H {pPg+ (1 _p)Qg’}r
4

4

[3]

where

J
Po= [T i =yt ],

j=1

J
0, =[] syt = s)' ],

j=1

Three two-way crossclassifications

Replicate 3
u E

Replicate 2 Replicate 2

Replicate 1 u E u E Total Replicate1 U

Replicate 2

Replicate 3
Replicate 1 U E

Replicate 3

E Total Total Replicate2 U E Total

U 207 2 23 1
E 19 2 3 31
Total 226 4 26 32

233 u
55 E
288 Total

230

22 33
252 36

3 233 U
55 E
288 Total

209 24
21 34
230 58

233 U
55 E
288 Total

226 26
4 32
230 58

252
36
288

Crossclassification of the log-ratio for three replicates analyzed separately. A gene is classified as expressed if its posterior probability Pr{€,|Yy; = y} exceeds

0.5 and as unexpressed otherwise.
U, unexpressed; E, expressed.
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and w,; denotes the indicator variable for whether gene g is
classified as expressed in replicate j = 1, , J. For our
experiment, the number of replicates isJ = 3, and the maximum
likelihood estimates based on the data in Table 3 are p = 0.117,
71 = 1.000, 7 = 0.974, 73 = 0.946, §; = 0.084, §, = 0.013, and 53
= 0.103. We note that #; was numerically so close to the value
1 that it was set to 1 for the computation.

The probability estimates reveal several points of interest for
microarray studies. First, the experimental design purposely
selected 32 of 288 genes to be expressed, which is the exact
fraction p = 0.111. Hence, the statistical analysis has reliably
reproduced this fraction in the estimate of p. Second, the
estimates of r; show that (i) it is not a certainty that an expressed
gene will be classified as “expressed” on the slide, and (ii) the
probability of doing so can vary from one experimental execu-
tion to another. Third, the estimates of s; show that “ghost”
indications of genes (i.e., false positives) can occur with a
frequency as large as 10% in a single experiment.

2.5. A Model for Analyzing the Combined Data from All Replicates. We
now seek to describe the microarray data from the three
replications by a single model that will support a joint analysis.
We use the following two-way linear model as a general statis-
tical model for log-ratio data.

Yo=m+ g+ B+ v+ g forg=1

Here E(Yy) = w + ag + Bj + v, is the mean log-ratio for gene
g under experimental condition . The component w is the overall
mean log-ratio for all genes and experimental conditions, o is
the main effect for gene g, B is the main effect for experimental
conditionj, and y,; is an interaction term that reflects differential
gene expression for gene g under experimental condition j. In
this particular context, the experimental condition j refers to
replicate j. The term &, is a random error which, by definition,
has a mean of zero. We assume that the error terms are
independent, but we have no need in this study to make any
assumption about their distributional form.

Following our earlier assumption for individual replicates, we
define the main effect o, for gene g in model 4 as a random effect
that follows one of two distinct distributions according to
whether gene g is expressed in the sample tissue (event €,). The
distribution of a, therefore follows a mixed normal model

fla) = pfea) + (1 — p)fyla) [5]

where we now use symbol a in place of y for the variable notation
in model 1. We assume that the o, are independent effects for
different genes g. We start our study by estimating the overall
mean, the main effects for genes, and the main effects for
experimental replicates in model 4, as follows.

p=Y. [6a]
&y =Y, - Y. [6b]
Bi=Y,-Y., [6¢c]

where Y, Y}, and Y. denote average log-ratios for all j, all g, and
all pairs (g, ]) respectlvely

It is conceivable that all of the effects in model 4 are random.
The estimates in Eq. 6, however, are standard fixed-effect
estimates. We choose these estimators because they are inher-
ently free of any distributional assumption. In particular, the
estimates &, provided by Eq. 6b are fixed-effect estimates that do
not depend on the assumption of a normal mixture distribution.
We now use these &, to estimate the parameters of the mixture
distribution in Eq. 5 and subsequently use them again to examine
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Table 4. Analysis of the combined data from all three replicates

Parameter Estimate Est. Std. Err.
p 0.118 0.013
nu —0.204 0.009
HE 1.524 0.058
o} 0.044 0.003
s 0.126 0.036

Parameter estimates of the mixed normal model (Eq. 5) derived from the
estimated main effects for genes d,.

the assumption of a normal mixture distribution. The parameter
estimates of the mixed normal model 5 appear in Table 4,
together with estimated standard errors. The standard errors are
calculated from 100 bootstrap samples.

2.6. Analysis Results for the Combined Data. As the main effects for
genes are now estimated from three replications, the results are
more sharply delineated than they are in Table 1, where the
parameter estimates are calculated separately for each replicate.
First, we see that the estimate of p = 0.118 is very close to the
known proportion of expressed genes in the sample tissue (32 of
288) and almost identical to the corresponding estimate derived
from the count data in Table 3. Second, the estimates of the
mean parameters pu and JE are well separated. Third, the
variance estimates ¢, and o7, are smaller than those obtained in
separate analyses as listed 1n Table 1. In fact, they would be
expected to be smaller by a factor of about 3. Fourth the
estimate of variance parameter o7, is smaller than that of o%. This
difference is expected by the fact that, in the event of no
expression (i.e., event €,), variance parameter o7, reflects the
variability of the log-ratio of background noise on two channels.
In the event of gene expression (i.e., event €,), variance param-
eter of reflects two sources of variability: (/) the log-ratio of
background noise on two channels, and (if) the logarithm of gene
expression itself.

The posterior probability that gene g is expressed, given the
value of &g, can be calculated for each gene by using Eq. 2 with
Y, replaced by &, These posterior probabilities are all either
close to 1 or close to zero. In fact, classifying the genes according
to whether this probability is greater than 0.5, it is found that only
2 of the 288 genes are incorrectly classified as to whether they are
expressed. Hence, based on the combined data, the classification
gives only two false positives and no false negatives. Specifically,
genes nos. 75 and 185 are classified as expressed when they were
not included in the experimental set of genes. In contrast, recall
from Table 3 that the individual replicates were far from perfect
in their ability to classify genes.

Fig. 1 a and b show normal probability plots of the &, for the
genes classified as expressed and unexpressed, respectively.
According to the mixed normal model, these two plots should
both be normal if the classification were perfect. The evidence
seems quite supportive of the normality assumption in both
plots. For the genes classified as expressed, there is some
evidence of values being clustered. For those classified as
unexpressed, there may be a little contamination of the normal
distribution, leading to a few outlying observations relative to a
pure normal distribution. Fig. 2 shows an overlay of a histogram
of the &, and the mixed normal probability density function, as
described in Eq. 5, based on the parameter estimates in Table 4.
A comparison of the histogram and the density function shows
that the mixed normal model is quite reasonable. Both the
histogram and density function show that the expressed and
unexpressed genes occupy well-separated locations on the scale.
Note, however, the sharp difference in variability of the two
component distributions.
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Fig. 1. (a), Normal probability plot of main effect estimates for expressed

genes. (b), Normal probability plot of main effect estimates for unexpressed.
genes.

The interaction terms vyg; in model 4 reflect differential gene
expression among the experimental conditions and can be
estimated as fixed effects, as follows.

Yoj =Yy — Yo — YV + 7. (71

As the experimental conditions here represent replicates, the
estimates in Eq. 7 should reflect simply the random noise
contributed by the error terms &,;. We have discovered, however,
that the replicates are not true duplicates and that some genes

Relative
frequency
(density)

1 0 1 2 3
a

Fig. 2. Overlay of a histogram and mixed normal p.d.f. for gene expression
main effect.
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may be classified as expressed in one or two replicates but not
in all three. The estimates of ¥,; in these cases therefore indicate
a differential expression of the genes. We do not need to study
these estimates further because Table 3 describes the patterns of
inconsistent expression among the three replicates. We note,
however, that in microarray investigations of multiple tissues (or
other varying experimental conditions), the estimates of differ-
ential expression in Eq. 7 are of central scientific interest in
determining which genes are truly present in some tissues but not
in others.

2.7. Reliability as a Function of the Number of Replicates. How does
the reliability of gene classification vary with the number of
replicates? For this experiment, a partial answer is provided by
Table 5, which shows the percentages of the 288 genes that are
misclassified by this methodology for each possible combination
of one, two, and three replicates in the experiment. The false-
positive and false-negative components of the misclassification
percentage are also shown in the table. First, we note that false
positives dominate. This result could be anticipated from our
earlier findings and suggests that false indications of expression
may be prevalent in microarray studies. Second, the table shows
how classification precision varies with the number of replicates.
A single replicate, such as replicate 2, may happen to have a low
misclassification percentage (1.4%) relative to other replicates
but, unfortunately, this reliability cannot be anticipated in ad-
vance. For example, replicate 3 alone misclassified 9.0% of
genes. As expected, Table 5 confirms that average reliability and
the certainty of that reliability increase with the number of
replicates. We might surmise that the maximum attainable
precision has been achieved with three replicates in our exper-
iment, because the error rate appears to be leveling out at 0.7%.
We note that there is no assurance the error rate will go to zero
with increasing replication unless all sources of experimental
variability are replicated, which is not the case in this experiment.

The optimal number of replicates in a general microarray
study will depend on many factors, including the type of array
equipment, laboratory technique, and the condition and prep-
aration of samples. If experimental resources and time permit,
we see potential benefit from using a minimum of three repli-
cates because three or more classification outcomes offer the
possibility of triangulation of results. A comparison of classifi-
cation outcomes for all possible combinations of replicates, as is
done for pairs of replicates in Table 3 Right, for example, might
show whether one or more replicates are rogues. A judgment
might then be made whether such replicates should be discarded.
Replicates might also be used with a majority voting rule to
decide whether a gene is expressed. Such a rule is not beneficial
in this experiment but might be useful in some applications.

Concluding Discussion

The findings of our simple experiment have three important
implications for the generation, analysis, and interpretation of
microarray data. First, we have shown that any single microarray
output is subject to substantial variability even under the rela-
tively controlled conditions of an experiment. By design, we have
introduced only one potential source of variability, namely the
location of spots on the slide. Variability from other sources,
such as multiple preparations of probe, arrays on different slides,
or arrays generated at different times, has not been admitted.
Thus, our experiment is evaluating the minimum variability that
is likely to be inherent in this system. Still the variation from this
one source is considerable. A single output yields numerous
misclassifications and, especially, numerous false positives. Rep-
lications of the experiment are not consistent and therefore
produce different lists of expressed genes.

Lee et al.



Table 5. Misclassification percentages for different combinations of replicates

Classification

Combination of Replicates

Outcome (1 (2) (3) (1,2) (1,3) (2,3) (1,2,3)
False positive, % 8.3 1.4 9.0 1.0 2.1 0.7 0.7
False negative, % 0.3 0.0 0.0 0.3 0.3 0.0 0.0
Misclassified, % 8.7 1.4 9.0 1.4 2.4 0.7 0.7

Second, in modeling the random variation in gene expres-
sion, we have found in any single replicate the probability may
be as large as 5% that mRNA in the sample tissue either fails
to be represented as probe or, if it is represented as probe, fails
to be hybridized to the cDNAs that are deposited on the slide
(false negatives). Also, the probability may be as large as 10%
that ghost genes are expressed (false positives). When mi-
croarray data from several replications are combined, we have
shown that, quite reasonably, a more accurate genetic picture
is produced with a reduction of false positives and false
negatives. Third, in the process of analyzing these experimen-
tal data, we introduced statistical methodology for microarray
data. We have modeled gene expression measurements by
using a mixture of normal distributions. From this mixture
distribution, a posterior probability is calculated from the
microarray reading that quantifies the likelihood that the gene
is truly expressed in the tissue. This probability can be used to
classify whether a gene transcript is present. A two-way linear
statistical model is proposed for microarray data that can span
a range of experimental conditions.

Although our results depend on specific instruments and
techniques (e.g., RNA extraction method, probe synthesis and
labeling, hybridization, array construction, use of glass slide as
solid support, and use of only one channel Cy3), the statistical
methods we propose can be extended to accommodate more
general settings. For example, the methods can be used for
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Ver. 2.32.
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experiments that use both channels Cy3 and Cy5. If the two-
channel system is used in the standard way with mRNA from a
test sample and a reference sample, differential gene expression
becomes relevant (i.e., the interaction term of the two-way linear
model). As there are then three states of expression (unex-
pressed, differentially expressed in favor of the test sample, and
differentially expressed in favor of the reference sample), a
three-component mixture model applies. The statistical methods
also extend to data sets from experimental designs that involve
additional sources of variability, such as variability introduced by
multiple preparations of probes.

The main lesson to be learned from the study is that replication
in microarray studies is not equivalent to duplication and hence
is not a waste of scientific resources. Experimental replication is
essential to reliable scientific discovery in genetic research.
Understanding the sources of noise in the process, controlling it,
and, if possible, eliminating it, are essential to drawing reliable
inferences. By pooling data from replicates, we can provide a
more reliable analysis of gene expression data.
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