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We describe the use of singular value decomposition in transform-
ing genome-wide expression data from genes 3 arrays space to
reduced diagonalized ‘‘eigengenes’’ 3 ‘‘eigenarrays’’ space, where
the eigengenes (or eigenarrays) are unique orthonormal superpo-
sitions of the genes (or arrays). Normalizing the data by filtering
out the eigengenes (and eigenarrays) that are inferred to represent
noise or experimental artifacts enables meaningful comparison of
the expression of different genes across different arrays in differ-
ent experiments. Sorting the data according to the eigengenes and
eigenarrays gives a global picture of the dynamics of gene expres-
sion, in which individual genes and arrays appear to be classified
into groups of similar regulation and function, or similar cellular
state and biological phenotype, respectively. After normalization
and sorting, the significant eigengenes and eigenarrays can be
associated with observed genome-wide effects of regulators, or
with measured samples, in which these regulators are overactive
or underactive, respectively.

DNA microarray technology (1, 2) and genome sequencing
have advanced to the point that it is now possible to monitor

gene expression levels on a genomic scale (3). These new data
promise to enhance fundamental understanding of life on the
molecular level, from regulation of gene expression and gene
function to cellular mechanisms, and may prove useful in medical
diagnosis, treatment, and drug design. Analysis of these new data
requires mathematical tools that are adaptable to the large
quantities of data, while reducing the complexity of the data to
make them comprehensible. Analysis so far has been limited to
identification of genes and arrays with similar expression pat-
terns by using clustering methods (4–9).

We describe the use of singular value decomposition (SVD)
(10) in analyzing genome-wide expression data. SVD is also
known as Karhunen–Loève expansion in pattern recognition
(11) and as principal-component analysis in statistics (12). SVD
is a linear transformation of the expression data from the
genes 3 arrays space to the reduced ‘‘eigengenes’’ 3 ‘‘eigen-
arrays’’ space. In this space the data are diagonalized, such that
each eigengene is expressed only in the corresponding eigen-
array, with the corresponding ‘‘eigenexpression’’ level indicating
their relative significance. The eigengenes and eigenarrays are
unique, and therefore also data-driven, orthonormal superpo-
sitions of the genes and arrays, respectively.

We show that several significant eigengenes and the corre-
sponding eigenarrays capture most of the expression informa-
tion. Normalizing the data by filtering out the eigengenes (and
the corresponding eigenarrays) that are inferred to represent
noise or experimental artifacts enables meaningful comparison
of the expression of different genes across different arrays in
different experiments. Such normalization may improve any
further analysis of the expression data. Sorting the data accord-
ing to the correlations of the genes (and arrays) with eigengenes
(and eigenarrays) gives a global picture of the dynamics of gene
expression, in which individual genes and arrays appear to be
classified into groups of similar regulation and function, or
similar cellular state and biological phenotype, respectively.
These groups of genes (or arrays) are not defined by overall
similarity in expression, but only by similarity in the expression

of any chosen subset of eigengenes (or eigenarrays). Upon
comparing two or more similar experiments, with a regulator
being overactive or underactive in one but normally expressed in
the others, the expression pattern of one of the significant
eigengenes may be correlated with the expression patterns of this
regulator and its targets. This eigengene, therefore, can be
associated with the observed genome-wide effect of the regu-
lator. The expression pattern of the corresponding eigenarray is
correlated with the expression patterns observed in samples in
which the regulator is overactive or underactive. This eigenarray,
therefore, can be associated with these samples.

We conclude that SVD provides a useful mathematical frame-
work for processing and modeling genome-wide expression data,
in which both the mathematical variables and operations may be
assigned biological meaning.

Mathematical Framework: Singular Value Decomposition
The relative expression levels of N genes of a model organism,
which may constitute almost the entire genome of this organism,
in a single sample, are probed simultaneously by a single
microarray. A series of M arrays, which are almost identical
physically, probe the genome-wide expression levels in M dif-
ferent samples—i.e., under M different experimental conditions.
Let the matrix ê, of size N-genes 3 M-arrays, tabulate the full
expression data. Each element of ê satisfies ^nuêum& [ enm for all
1 # n # N and 1 # m # M, where enm is the relative expression
level of the nth gene in the mth sample as measured by the mth
array.§ The vector in the nth row of the matrix ê, ^gnu [ ^nuê, lists
the relative expression of the nth gene across the different
samples which correspond to the different arrays. The vector in
the mth column of the matrix ê, uam& [ êum&, lists the genome-
wide relative expression measured by the mth array.

SVD (10) is then linear transformation of the expression data
from the N-genes 3 M-arrays space to the reduced L-
‘‘eigenarrays’’ 3 L-‘‘eigengenes’’ space, where L 5 min{M, N}
(see Fig. 7 in supplemental material at www.pnas.org),

ê 5 û«̂ v̂T. [1]

In this space the data are represented by the diagonal nonnega-
tive matrix ê, of size L-eigengenes 3 L-eigenarrays, which
satisfies ^ku«̂ul& [ «ldkl $ 0 for all 1 # k,l # L, such that the lth
eigengene is expressed only in the corresponding lth eigenarray,
with the corresponding ‘‘eigenexpression’’ level «l. Therefore,
the expression of each eigengene (or eigenarray) is decoupled

Abbreviation: SVD, singular value decomposition.

†To whom reprint requests should be addressed. E-mail: orly@genome.stanford.edu.

§In this report, m̂ denotes a matrix, uv& denotes a column vector, and ^uu denotes a row
vector, such that m̂uv&, ^uum̂, and ^uuv& all denote inner products and uv&^uu denotes an outer
product.

The publication costs of this article were defrayed in part by page charge payment. This
article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C.
§1734 solely to indicate this fact.

PNAS u August 29, 2000 u vol. 97 u no. 18 u 10101–10106

G
EN

ET
IC

S



from that of all other eigengenes (or eigenarrays). The “fraction
of eigenexpression,’’

pl 5 «l
2y O

k 5 1

L

«k
2, [2]

indicates the relative significance of the lth eigengene and
eigenarray in terms of the fraction of the overall expression that
they capture. Assume also that the eigenexpression levels are
arranged in decreasing order of significance, such that «1 $ «2 $
. . . $ «L $ 0. “Shannon entropy” of a dataset,

0 # d 5
21

log~L!
O

k 5 1

L

pklog~pk! # 1, [3]

measures the complexity of the data from the distribution of the
overall expression between the different eigengenes (and eigen-
arrays), where d 5 0 corresponds to an ordered and redundant
dataset in which all expression is captured by a single eigengene
(and eigenarray), and d 5 1 corresponds to a disordered and
random dataset where all eigengenes (and eigenarrays) are
equally expressed.

The transformation matrices û and v̂T define the N-genes 3
L-eigenarrays and the L-eigengenes 3 M-arrays basis sets, respec-
tively. The vector in the lth row of the matrix v̂T, ^glu [ ^luv̂T, lists the
expression of the lth eigengene across the different arrays. The
vector in the lth column of the matrix û, ual& [ ûul&, lists the
genome-wide expression in the lth eigenarray. The eigengenes and
eigenarrays are orthonormal superpositions of the genes and arrays,
such that the transformation matrices û and v̂ are both orthogonal

ûTû 5 v̂Tv̂ 5 Î , [4]

where Î is the identity matrix. Therefore, the expression of each
eigengene (or eigenarray) is not only decoupled but also decorre-
lated from that of all other eigengenes (or eigenarrays). The
eigengenes and eigenarrays are unique, except in degenerate sub-
spaces, defined by subsets of equal eigenexpression levels, and
except for a phase factor of 61, such that each eigengene (or
eigenarray) captures both parallel and antiparallel gene (or array)
expression patterns. Therefore, SVD is data-driven, except in
degenerate subspaces.

SVD Calculation. According to Eqs. 1 and 4, the M-arrays 3
M-arrays symmetric correlation matrix â 5 êTê 5 v̂«̂2v̂T is
represented in the L-eigengenes 3 L-eigengenes space by the
diagonal matrix «̂2. The N-genes 3 N-genes correlation matrix
ĝ 5 êêT 5 û«̂2ûT is represented in the L-eigenarrays 3 L-
eigenarrays space also by «̂2, where for L 5 min{M, N} 5 M, ĝ
has a null subspace of at least N 2 M null eigenvalues. We,
therefore, calculate the SVD of a dataset ê, with M ,, N, by
diagonalizing â, and then projecting the resulting v̂ and «̂ onto
ê to obtain û 5 êv̂«̂21.

Pattern Inference. The decorrelation of the eigengenes (and
eigenarrays) suggests the possibility that some of the eigengenes
(and the corresponding eigenarrays) represent independent
regulatory programs or processes (and corresponding cellular
states). We infer that an eigengene ugl& represents a regulatory
program or process from its expression pattern across all arrays,
when this pattern is biologically interpretable. This inference
may be supported by a corresponding coherent biological theme
reflected in the functions of the genes, whose expression patterns
correlate or anticorrelate with the pattern of this eigengene.
With this we assume that the corresponding eigenarray ual&
(which lists the amplitude of this eigengene pattern in the

expression of each gene ugn& relative to all other genes ^nual& 5
^gnugl&y«l) represents the cellular state which corresponds to this
process. We infer that the eigenarray ual& represents a cellular
state from the arrays whose expression patterns correlate or
anticorrelate with the pattern of this eigenarray. Upon sorting of
the genes, this inference may be supported by the expression
pattern of this eigenarray across all genes, when this pattern is
biologically interpretable.

Data Normalization. The decoupling of the eigengenes and eigen-
arrays allows filtering the data without eliminating genes or
arrays from the dataset. We filter any of the eigengenes ugl& (and
the corresponding eigenarray ual&) ê 3 ê 2 «lual& ^glu, by
substituting zero for the eigenexpression level «l 5 0 in the
diagonal matrix «̂ and reconstructing the data according to Eq.
1. We normalize the data by filtering out those eigengenes (and
eigenarrays) that are inferred to represent noise or experimental
artifacts.

Degenerate Subspace Rotation. The uniqueness of the eigengenes
and eigenarrays does not hold in a degenerate subspace, defined
by equal eigenexpression levels. We approximate significant
similar eigenexpression levels «l ' «l11 ' . . . ' «m with «l 5 . . .
5 «m 5 =¥k51

m «k
2y(m 2 l 1 1). Therefore, Eqs. 1–4 remain

valid upon rotation of the corresponding eigengenes {(ugl&, . . . ,
ugm&) 3 R̂(ugl&, . . . , ugm&)}, and eigenarrays {(ual&, . . . , uam&)
3 R̂(ual&, . . . , uam&)}, for all orthogonal R̂, R̂TR̂ 5 Î. We choose
a unique rotation R̂ by subjecting the rotated eigengenes to m 2
l constraints, such that these constrained eigengenes may be
advantageous in interpreting and presenting the expression data.

Data Sorting. Inferring that eigengenes (and eigen-
arrays) represent independent processes (and cellular states)
allows sorting the data by similarity in the expression of any
chosen subset of these eigengenes (and eigenarrays), rather than
by overall similarity in expression. Given two eigengenes ugk&
and ugl& (or eigenarrays uak& and ual&), we plot the correlation
of ugk& with each gene ugn&, ^gkugn&y^gnugn& (or uak& with each
array uam&) along the y-axis, vs. that of ugl& (or ual&) along the
x-axis. In this plot, the distance of each gene (or array)
from the origin is its amplitude of expression in the sub-
space spanned by ugk& and ugl& (or uak& and ual&), relative to
its overall expression rn [ ^gnugn&21 =u^gkugn&u2 1 u^glugn&u2 (or
rm [ ^amuam&21 =u^akuam&u2 1 u^aluam&u2). The angular distance
of each gene (or array) from the x-axis is its phase in the
transition from the expression pattern ugl& to ugk& and back to ugl&
(or ual& to uak& and back to ual&) tan fn [ ^gkugn&y^glugn&, (or tan
fm [ ^akuan&y^aluam&). We sort the genes (or arrays) according
to fn (or fm).

Biological Data Analysis: Elutriation-Synchronized Cell Cycle
Spellman et al. (3) monitored genome-wide mRNA levels, for
6,108 ORFs of the budding yeast Saccharomyces cerevisiae
simultaneously, over approximately one cell cycle period,
T ' 390 min, in a yeast culture synchronized by elutriation,
relative to a reference mRNA from an asynchronous yeast
culture, at 30-min intervals. The elutriation dataset we analyze
(see supplemental data and Mathematica notebook at www.
pnas.org and at http:yygenome-www.stanford.eduySVDy) tab-
ulates the measured ratios of gene expression levels for the N 5
5,981 genes, 784 of which were classified by Spellman et al. as cell
cycle regulated, with no missing data in the M 5 14 arrays.

Pattern Inference. Consider the 14 eigengenes of the elutriation
dataset. The first and most significant eigengene ug1&, which
describes time invariant relative expression during the cell cycle
(Fig. 8a at www.pnas.org), captures more than 90% of the overall
relative expression in this experiment (Fig. 8b). The entropy of
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the dataset, therefore, is low d 5 0.14 ,, 1. This suggests that
the underlying processes are manifested by weak perturbations
of a steady state of expression. This also suggests that time-
invariant additive constants due to uncontrolled experimental
variables may be superimposed on the data. We infer that ug1&
represents experimental additive constants superimposed on a
steady gene expression state, and assume that ua1& represents the
corresponding steady cellular state. The second, third, and
fourth eigengenes, which show oscillations during the cell cycle
(Fig. 8c), capture about 3%, 1%, and 0.5% of the overall relative
expression, respectively. The time variation of ug3& fits a normal-
ized sine function of period T, =2yT sin(2ptyT). We infer that
ug3& represents expression oscillation, which is consistent with
gene expression oscillations during a cell cycle. The time vari-
ations of the second and fourth eigengenes fit a cosine function
of period T with =1y2 the amplitude of a normalized cosine with
this period, =1yT cos 2ptyT. However, while ug2& shows de-
creasing expression on transition from t 5 0 to 30 min, ug4& shows
increasing expression. We infer that ug2& and ug4& represent initial
transient increase and decrease in expression in response to the
elutriation, respectively, superimposed on expression oscillation
during the cell cycle.

Data Normalization. We filter out the first eigengene and eigen-
array of the elutriation dataset, ê 3 êC 5 ê 2 «1ua1& ^g1u,
removing the steady state of expression. Each of the elements of
the dataset êC, ^nuêCum& [ eC,nm, is the difference of the

measured expression of the nth gene in the mth array from the
steady-state levels of expression for these gene and array as
calculated by SVD. Therefore, eC,nm

2 is the variance in the
measured expression of the nth gene in the mth array. Let êLV
tabulate the natural logarithm of the variances in elutriation
expression, such that each element of êLV satisfies ^nuêLVum& [
log(eC,nm

2 ) for all 1 # n # N and 1 # m # M, and consider the
eigengenes of êLV (Fig. 9a in supplemental material at www.
pnas.org). The first eigengene ug1&LV, which captures more than
80% of the overall information in this dataset (Fig. 9b), describes
a weak initial transient increase superimposed on a time-
invariant scale of expression variance. The initial transient
increase in the scale of expression variance may be a response to
the elutriation. The time-invariant scale of expression variance
suggests that a steady scale of experimental as well as biological
uncertainty is associated with the expression data. This also
suggests that time-invariant multiplicative constants due to
uncontrolled experimental variables may be superimposed on
the data. We filter out ug1&LV, removing the steady scale of
expression variance, êLV 3 êCLV 5 êLV 2 «1,LVua1&LV LV^g1u.

The normalized elutriation dataset êN, where each of its elements
satisfies ^nuêNum& [ sign(eC,nm)=exp(eCLV,nm), tabulates for each
gene and array expression patterns that are approximately centered
at the steady-state expression level (i.e., of approximately zero
arithmetic means), with variances which are approximately nor-
malized by the steady scale of expression variance (i.e., of approx-
imately unit geometric means). The first and second eigengenes,

Fig. 1. Normalized elutriation eigengenes. (a) Raster display of v̂N
T , the expression of 14 eigengenes in 14 arrays. (b) Bar chart of the fractions of eigenexpression,

showing that ug1&N and ug2&N capture about 20% of the overall normalized expression each, and a high entropy d 5 0.88. (c) Line-joined graphs of the expression
levels of ug1&N (red) and ug2&N (blue) in the 14 arrays fit dashed graphs of normalized sine (red) and cosine (blue) of period T 5 390 min and phase u 5 2py13,
respectively.

Fig. 2. Normalized elutriation expression in the subspace
associated with the cell cycle. (a) Array correlation with ua1&N

along the y-axis vs. that with ua2&N along the x-axis, color-
coded according to the classification of the arrays into the
five cell cycle stages, MyG1 (yellow), G1 (green), S (blue), SyG2

(red), and G2yM (orange). The dashed unit and half-unit
circles outline 100% and 25% of overall normalized array
expression in the ua1&N and ua2&N subspace. (b) Correlation of
each gene with ug1&N vs. that with ug2&N, for 784 cell cycle
regulated genes, color-coded according to the classification
by Spellman et al. (3).
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ug1&N and ug2&N, of êN (Fig. 1a), which are of similar significance,
capture together more than 40% of the overall normalized expres-
sion (Fig. 1b). The time variations of ug1&N and ug2&N fit normalized
sine and cosine functions of period T and initial phase u ' 2py13,
=2yT sin(2p tyT 2 u) and =2yT cos(2p tyT 2 u), respectively (Fig.
1c). We infer that ug1&N and ug2&N represent cell cycle expression
oscillations, and assume that the corresponding eigenarrays ua1&N

and ua2&N represent the corresponding cell cycle cellular states.
Upon sorting of the genes (and arrays) according to ug1&N and ug2&N

(and ua1&N and ua2&N), the initial phase u ' 2py13 can be interpreted
as a delay of 30 min between the start of the experiment and that
of the cell cycle stage G1. The decay to zero in the time variation
of ug2&N at t 5 360 and 390 min can be interpreted as dephasing in
time of the initially synchronized yeast culture.

Data Sorting. Consider the normalized expression of the 14
elutriation arrays {uam&} in the subspace spanned by ua1&N and
ua2&N, which is assumed to approximately represent all cell cycle
cellular states (Fig. 2a). All arrays have at least 25% of their
normalized expression in this subspace, with their distances from
the origin satisfying 0.5 # rm , 1, except for the eleventh array
ua11&. This suggests that ua1&N and ua2&N are sufficient to approx-
imate the elutriation array expression. The sorting of the arrays
according to their phases {fm}, which describes the transition
from the expression pattern ua2&N to ua1&N and back to ua2&N,
gives an array order which is similar to that of the cell cycle time
points measured by the arrays, an order that describes the
progress of the cell cycle expression from the MyG1 stage
through G1, S, SyG2, and G2yM and back to MyG1.

Because ua1&N is correlated with the arrays ua4&, ua5&, ua6&, and ua7&
and is anticorrelated with ua13& and ua14&, we associate ua1&N with the
cell cycle cellular state of transition from G1 to S, and 2ua1&N with
the transition from G2yM to MyG1. Similarly, ua2&N is correlated
with ua2& and ua3&, and therefore we associate ua2&N with the

transition from MyG1 to G1. Also, ua2&N is anticorrelated with ua8&
and ua10&, and therefore we associate 2ua2&N with the transition from
S to SyG2. With these associations the phase of ua1&, f1 5 2u '
22py13, corresponds to the 30-min delay between the start of the
experiment and that of the cell cycle stage G1, which is also present
in the inferred cell cycle expression oscillations ug1&N and ug2&N.

Consider also the expression of the 5,981 genes {ugn&} in the
subspace spanned by ug1&N and ug2&N, which is inferred to approx-
imately represent all cell cycle expression oscillations (Fig. 10 in
supplemental material at www.pnas.org). One may expect that
genes that have almost all of their normalized expression in this
subspace with rn ' 1 are cell cycle regulated, and that genes that
have almost no expression in this subspace with rn ' 0, are not
regulated by the cell cycle at all. Indeed, of the 784 genes that were
classified by Spellman et al. (3) as cell cycle regulated, 641 have
more than 25% of their normalized expression in this subspace (Fig.
2b). We sort all 5,981 genes according to their phases {fn}, to
describe the transition from the expression pattern ug2&N to that of
ug1&N and back to ug2&N, starting at f1 ' 22py13. One may expect
this to order the genes according to the stages in the cell cycle in
which their expression patterns peak. However, for the 784 cell cycle
regulated genes this sorting gives a classification of the genes into
the five cell cycle stages, which is somewhat different than the
classification by Spellman et al. This may be due to the poor quality
of the elutriation expression data, as synchronization by elutriation
was not very effective in this experiment. For the a factor-
synchronized cell cycle expression there is much better agreement
between the two classifications (Fig. 5b).

With all 5,981 genes sorted, the gene variations of ua1&N and
ua2&N fit normalized sine and cosine functions of period Z [ N 2
1 5 5,980 and initial phase u ' 2py13, 2=2yZ sin(2pzyZ 2
u) and =2yZ cos(2pzyZ 2 u), respectively, where z [ n 2 1
(Fig. 3 b and c). The sorted and normalized elutriation expres-
sion fit approximately a traveling wave of expression, varying

Fig. 3. Genes sorted by relative correlation with ug1&N and ug2&N of normalized elutriation. (a) Normalized elutriation expression of the sorted 5,981 genes in
the 14 arrays, showing traveling wave of expression. (b) Eigenarrays expression; the expression of ua1&N and ua2&N, the eigenarrays corresponding to ug1&N and ug2&N,
displays the sorting. (c) Expression levels of ua1&N (red) and ua2&N (green) fit normalized sine and cosine functions of period Z ; N 2 1 5 5,980 and phase
u ' 2py13 (blue), respectively.
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sinusoidally across both genes and arrays, such that the expres-
sion of the nth gene in the mth array satisfies ^nuêNum& } 22
cos[2p(tyT 2 zyZ)]y=ZT (Fig. 3a).

Biological Data Analysis: a Factor-Synchronized Cell
Cycle and CLB2 and CLN3 Overactivations
Spellman et al. (3) also monitored genome-wide mRNA levels,
for 6,108 yeast ORFs simultaneously, over approximately two
cell cycle periods, in a yeast culture synchronized by a factor,
relative to a reference mRNA from an asynchronous yeast
culture, at 7-min intervals for 119 min. They also measured, in
two independent experiments, mRNA levels of yeast strain
cultures with overactivated CLB2, which encodes a G2yM cyclin,
both at t 5 40 min relative to their levels at the start of
overactivation at t 5 0. Two additional independent experiments
measured mRNA levels of strain cultures with overactivated
CLN3, which encodes a G1yS cyclin, at t 5 30 and 40 min relative
to their levels at the start of overactivation at t 5 0. The dataset
for the a factor, CLB2, and CLN3 experiments we analyze (see
supplemental data and Mathematica notebook at www.pnas.org)
tabulates the ratios of gene expression levels for the N 5 4,579
genes, 638 of which were classified by Spellman et al. as cell cycle
regulated, with no missing data in the M 5 22 arrays.

After data normalization and degenerate subspace rotation
(see Appendix in supplemental material at www.pnas.org), the

time variations of ug1&RN and ug2&RN fit normalized sine and
cosine functions of two 66-min periods during the cell cycle, from
t 5 7 to 119 min, and initial phase u ' py4, respectively (Fig. 4c).
While ug2&RN describes steady-state expression in the CLB2- and
CLN3-overactive arrays, ug1&RN describes underexpression in the
CLB2-overactive arrays and overexpression in the CLN3-
overactive arrays.

Upon sorting the 4,579 genes in the subspace spanned by
ug1&RN and ug2&RN (Fig. 5b), ug1&RN is correlated with genes that
peak late in the cell cycle stage G1 and early in S, among them
CLN3, and we associate ug1&RN with the cell cycle expression
oscillations that start at the transition from G1 to S and are
dependent on CLN3, which encodes a G1yS cyclin. Also, ug1&RN
is anticorrelated with genes that peak late in G2yM and early in
MyG1, among them CLB2, and therefore we associate 2ug1&RN
with the oscillations that start at the transition from G2yM to
MyG1 and are dependent on CLB2, which encodes a G2yM
cyclin. Similarly, ug2&RN is correlated with genes that peak late in
MyG1 and early in G1, anticorrelated with genes that peak late
in S and early in SyG2, and uncorrelated with CLB2 and CLN3.
We, therefore, associate ug2&RN with the oscillations that start at
the transition from MyG1 to G1 (and appear to be CLB2- and
CLN3-independent), and 2ug2&RN with the oscillations that start
at the transition from S to SyG2 (and appear to be CLB2- and
CLN3-independent).

Fig. 4. Rotated normalized a factor, CLB2, and CLN3 eigengenes. (a) Raster display of v̂RN
T , where ug1&RN 5 R̂2R̂1ug1&N, ug2&RN 5 R̂1ug2&N, and ug3&RN 5 R̂2ug3&N. (b)

ug1&RN, ug2&RN and ug3&RN capture 20% of the overall normalized expression each. (c) Expression levels of ug1&RN (red) and ug2&RN (blue) fit dashed graphs of normalized
sine (red) and cosine (blue) of period Ty2 5 66 min and phase py4, respectively, and ug3&RN (green) fits dashed graph of normalized sine of period T 5 112 min
and phase 2py8, from t 5 7 to t 5 119 min during the cell cycle.

Fig. 5. Rotated normalized a factor, CLB2, and CLN3 ex-
pression in the subspace associated with the cell cycle. (a)
Array correlation with ua1&RN along the y-axis vs. that with
ua2&RN along the x-axis, color-coded according to the classi-
fication of the arrays into the five cell cycle stages, MyG1

(yellow), G1 (green), S (blue), SyG2 (red), and G2yM (orange).
The dashed unit and half-unit circles outline 100% and 25%
of overall normalized array expression in the ua1&RN and
ua2&RN subspace. (b) Correlation of each gene with ug1&RN vs.
that with ug2&RN, for 638 cell cycle regulated genes, color-
coded according to the classification by Spellman et al. (3).
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Upon sorting the 22 arrays in the subspace spanned by ua1&RN and
ua2&RN (Fig. 5a), ua1&RN is correlated with the arrays ua13& and ua14&,
as well as with ua21& and ua22&, which measure the CLN3-overactive
samples. We therefore associate ua1&RN with the cell cycle cellular
state of transition from G1 to S, which is simulated by CLN3
overactivation. Also, ua1&RN is anticorrelated with the arrays ua9& and
ua10&, as well as with ua19& and ua20&, which measure the CLB2-
overactive samples. We associate 2ua1&RN with the cellular transi-
tion from G2yM to MyG1, which is simulated by CLB2 overacti-
vation. Similarly, ua2&RN appears to be correlated with ua2&, ua3&, ua11&,
and ua12&, anticorrelated with ua6&, ua7&, ua16&, and ua17&, and uncor-
related with ua19&, ua20&, ua21&, or ua22&. We therefore associate ua2&RN
with the cellular transition from MyG1 to G1 (which appears to be
CLB2- and CLN3-independent), and 2ua2&RN with the cellular
transition from S to SyG2 (which also appears to be CLB2- and
CLN3-independent).

With all 4,579 genes sorted the gene variations of ua1&RN and
ua2&RN fit normalized sine and cosine functions of period Z [ N 2
1 5 4,578 and initial phase py8, respectively (Fig. 6 b and c). The
normalized and sorted cell cycle expression approximately fits a
traveling wave, varying sinusoidally across both genes and arrays.

The normalized and sorted expression in the CLB2- and CLN3-
overactive arrays approximately fits standing waves, constant across
the arrays and varying sinusoidally across genes only, which appear
similar to 2ua1&RN and ua1&RN, respectively (Fig. 6a).

Conclusions
We have shown that SVD provides a useful mathematical
framework for processing and modeling genome-wide expres-
sion data, in which both the mathematical variables and opera-
tions may be assigned biological meaning.
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genes in the 22 arrays, showing traveling wave of expression from t 5 0 to 119 min during the cell cycle and standing waves of expression in the CLB2- and
CLN3-overactive arrays. (b) Eigenarrays expression; the expression of ua1&RN and ua2&RN, the eigenarrays corresponding to ug1&RN and ug2&RN, displays the sorting. (c)
Expression levels of ua1&RN (red) and ua2&RN (green) fit normalized sine and cosine functions of period Z ; N 2 1 5 4,578 and phase py8 (blue), respectively.
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