An Experimental Study about Diskless Checkpointing

Luis M. Silva

Jodo Gabriel Silva

Departamento Engenharia Informatica
Universidade de Coimbra - POLO II
Vila Franca - 3030 Coimbra
PORTUGAL
Email: luis@dei.uc.pt

Abstract

Checkpointing and rollback-recovery is a
very effective technique to tolerate the
occurrence of failures. Usually, the checkpoint
data is saved in some disk files. However, in
some situations the disk operation may result
in a considerable performance overhead.
Alternative solutions would make use of main-
memory to maintain the checkpoint data.

This paper presents two main-memory
checkpointing schemes that can be used in any
parallel machine without requiring any change
to the hardware: one scheme saves the
checkpoints in the memory of other processors,
while the other is based on a parity approach.
Both techniques have been implemented and
evaluated in a commercial parallel machine.
Some conclusions have been taken that clearly
show the superiority of one of those schemes.

1. Introduction

The execution of long-running programs in a
parallel machine has two sides of the same
coin: hopefully, the execution time of the
programs will be reduced. However, the
MTBF of a parallel machine is considerably
lower than a normal workstation, thereby
increasing the probability of occurring failures
and preventive shutdowns during the execution
of a paraliel program. Some fault-tolerance
support is thereby required.

Checkpointing allows long-running
applications to save their state at regular
intervals so that they may be restarted after
interruptions without unduly retarding their
progress. It is a feasible technique for
tolerating transient failures and to avoid total
loss of work. Each checkpoint is saved in some
medium that is designated by stable storage
[1]. By definition, the stable storage should be
resilient to hardware crashes, software failures
and should be immune to the phenomenon of

1089-6503/98 $10.00 © 1998 IEEE

395

memory decay. The write operations in stable
storage should be atomic to the occurrence of
failures. This means that every write operation
is made completely or not at all, since partial
writes are not allowed to occur.

Usually, stable storage is implemented on
disk. The main advantages of this approach are
the simplicity, the increased level of reliability
and the portability. In order to tolerate system
crashes two checkpoint files have to be
maintained: the last established file and the
working checkpoint file. If there is a failure
while saving the new checkpoint, there is
always the chance to recover from the old
established checkpoint file. There are several
ways to implement stable storage on disk

[11[21(31(4].

Disk-based stable storage is the mostly used
approach but in some applications that need to
be checkpointed more frequently the use of the
disk may result in a performance bottleneck. In
fact, several experimental studies presented in
[51[6][71[8] have shown that the main source
of performance overhead is the time of writing
the checkpoints to disk.

For this reason, other researchers have
developed alternative solutions for stable
storage based on the use of RAM. The schemes
described in [9](10]{11] use some special
memory boards or some additional hardware
mechanisms to prevent the erroneous accesses
to stable storage. These RAM-based stable
storage schemes provide a much faster access
than those schemes that made use of the disk.
Unfortunately, they require some changes in
hardware undermining their portability across
commercial computing systems. An alternative
solution is to use the available memory from
other processors to save the checkpoint data.
This approach would not require any additional
hardware and can be implemented in any

parallel machine provided there is enough
spare memory among the different processors.
It is not that reliable as disk-based stable
storage since it cannot tolerate the occurrence
of a global failure of the machine. Rather, it
can be mainly used to tolerate single processor
failures. At first sight, this approach for stable
storage is faster than using the disk.

The goal of our study was to evaluate the
feasibility of this approach for implementing
stable storage in parallel machines and to
compare the latency and the access bandwidth
with a disk-based stable storage approach.

The rest of the paper is organized as follows:
section 2 describes one scheme for main-
memory stable storage by writing the
checkpoints across the memory of neighbour
processors. Section 3 presents an alternative
solution based on the notion of parity block
calculation to merge the checkpoints of all
processors in some dedicated processor.
Section 4 briefly describes the system where
these schemes have been implemented while
section 5 presents the experimental results.
Section 6 compares this study with related
work and finally section 7 concludes the paper.

2. Neighbour-based Checkpointing

A possible technique that avoids the
checkpoint writing to disk is to use the main-
memory of neighbour processors. Processors of
the network are organized in a virtual ring.
Each processor saves its checkpoint into its
physical memory (srapshot area) and into the
neighbour processor that follows on the ring.
The degree of replication is only one (k=1),
thus the scheme can only tolerate single
failures. In practice, it is able to tolerate more
than one failure, provided the failures do not
occur in adjacent processors of the virtual ring.

Although being simple, this scheme is not
robust against failures that occur during the
checkpointing protocol. Two failure scenarios
should be considered:

(i) processor P; fails and its failure is detected
after processor P, has written its checkpoint
to its local smapshot area. Recovery is not
possible since processor P;., has kept the old
checkpoint of P; but has lost its own old
checkpoint.

(i1) processor P; fails while it was sending the
checkpoint to processor P;,;. Considering that
this has partially overwritten the checkpoint of
P; that is kept in P,,,, then there is no valid

396

checkpoint for that process and recovery would
not be possible.

In order to tolerate the occurrence of failures
during the checkpointing protocol, the old
checkpoints should also be kept. Each
processor has to allocate two checkpoint areas
in its physical memory: one to keep its own
checkpoint and another to maintain the
checkpoint of its preceding neighbour. The
first step is to save the application into the
local snapshot area of each processor. Then, it
sends the checkpoint to the next processor of
the ring. During the first step the application
process is blocked, while the second step can
be done concurrently with the computation. At
the end of each checkpoint operation the
system swaps the identity of the memory areas.
The extra memory space that is required by
neighbour-based checkpointing can be
considerable since this solution requires extra
memory twice the size of the application state.

This neighbour-based checkpointing scheme
should not be used alone, since it is not able to
recover from total failures of the system. In our
opinion, it would be more interesting to
integrate this approach with a disk-based
checkpointing scheme. Thus, the system should
take from time to time a global checkpoint to
disk (we call these as “hard” checkpoints), and
in the between, the application can be
checkpointed in a distributed way to the
memory of the processors (these are called as
“soft” checkpoints). Assuming this hybrid
approach it is possible to checkpoint the
application more often, being able to tolerate
single failures with a minor overhead and total
failures with a higher recovery latency. If there
is a failure during the neighbour-based
checkpointing protocol and it is not possible to
recover from the “soft” checkpoint then the
application can be restarted from the previous
“hard” checkpoint, that is kept on disk.

We have implemented a neighbour-based
scheme to compare with parity-based
checkpointing that will be described in the next
section.

3. Parity-based Checkpointing
Another possible way to implement diskless
checkpointing is to wuse a parity-based
approach. It was originally proposed in [12]
and evolves from the use of parity schemes in
the development of reliable disk arrays [13]. In
our case, it is not used to provide reliability on
disks, rather, it is used as a compressed way to
save distributed checkpoints in the main-

memory of the processors. The basic idea is to
avoid disk writing and maintain enough
redundant information about the checkpoint
data able to tolerate a single processor failure.
As a result, the application should be able to
checkpoint far more frequently than when
checkpoints are saved on disk.

In order to tolerate one single failure we
should use a (N+1) parity technique. There is
one processor in the network that we call parity
processor (PP). It keeps a parity checkpoint of
each global distributed checkpoint that is taken
by the application.

Each of the other processors will save its
checkpoint into a local srapshot area. The
checkpoint size of processor P; is called by S;.
This means that every processor should have at
least an amount of unused memory of the same
size of the local checkpoint.

After this local operation, all the checkpoint
contents are XORed and saved in the parity
checkpoint. The size of the parity checkpoint is
calculated as:

Sparity_chkp = Max (S;), i= 0...N-1.

The parity checkpoint is computed by using
the XOR operator. Let us assume that by
corresponds to the j™ byte of P;‘s checkpoint. If
j is higher than S; (but lower than Sy chip)
then it is set to 0. Then each byte of the parity
checkpoint (B) is computed in the following
way:

BJ = b]j XOR sz XOR XOR bnj;

I< J < Sparlty‘chkp

This checkpoint is then saved on that parity
processor, while every other processor
maintains a copy of its own checkpoint. If a
processor P; fails, the application can be
recovered from the previous checkpoint. All
the non-failed processors restore their state
from their local checkpoints, while the
checkpoint of P; can be retrieved from all the
other ones and the parity checkpoint, in the
following way:

bl_] = b]j XOR ... XOR b;_]j XOR bi+1j XOR ...

XOR bnj XOR Bj; 1< J < Si

If the parity processor fails then it can restore
its state from the backup copy (that can be kept
on disk or in main-memory) or by recalculating
the parity checkpoint from scratch.

We have used a basic scheme with one
checkpoint per processor and one parity
checkpoint. Although this scheme does not

397

assure any checkpoint atomicity it requires the
minimum amount of extra memory.

Next section describes the system where we
have implemented these two checkpointing
schemes.

4. The Parix CHK-LIB

Those previous schemes of parity and
neighbour-based checkpointing were
implemented in a checkpointing library, called
CHK-LIB. The CHK-LIB is a system library
that runs on top of the Parix Operating System
[14]. It works primarily as a communication
library and provides support for checkpointing.
Any user that is not interested in the fault-
tolerance facilities can use CHK-LIB as a
normal communication library instead of using
the Parix system interface. The programming
interface of CHK- LIB was inspired in the MPI
standard [15] to facilitate the porting of
existing MPI programs to Parix. However, it
was not a full implementation of MPI: only a
small sub-set of the numerous MPI routines
can be found in CHK- LIB.

The library implements several mechanisms
of checkpointing and message logging. It was
not meant to be a commercial or production
tool. It was rather developed to provide the
support for our study about checkpointing in
the parallel systems that were available in our
Department (i.e. Parsytec machines).

The use of parity and neighbour-based
requires a semi-transparent approach that has
the following programming interface:

int CHK_Pack_chkp(void *ptr,int size):
int CHK_Restart(void);
int CHK_Checkpoint (void) ;

Figure 1: Fault-Tolerant Primitives of the CHK-LIB.

The CHK_Pack_chkp () routine is used to
specify the critical data of the application. The
checkpoint routine -CHK_Checkpoint ()-
saves the relevant data of the application. That
is, those variables and data-structures that have
been indicated by the programmer through the
use of the previous routine. The placement of
checkpoints is under control of the user: she
can make use of the global synchronization
points already existing in the application. It is
the programmer’s responsibility to place the
checkpoint routines in some points of the
application that correspond to a consistent
global state. Finally, the CHK_Restart ()

routine is used at the beginning of the
application: if it is a restart from a previous
checkpoint the program can skip the
initialization part, since the library will restore
the values of the critical data structure from the
last checkpoint.

5. Implementation Results

In our experiments, we used an Xplorer
Parsytec machine with 8 transputers (T805).
Each processor had 4 Mbytes of main memory.
All the processors can read and write directly
to the file-system of the host machine, that is a
Sun Sparc 2 Workstation. This I/O system may
introduce some bottleneck during the
checkpoint operation, but each processor was
able to write into a different file without
requiring collective synchronization.

5.1 Applications
To evaluate the checkpointing schemes we

have used the following application
benchmarks:
e ISING: This program simulates the

behaviour of Spin-glasses. Each particle has a
spin, and it can change its spin from time to
time depending on the state of its direct 4
neighbours and the temperature of the system.
Above a critical temperature the system is in
complete disarray. Below this temperature the
system has the tendency to establish clusters of
particles with the same spin. Each element of
the grid.is represented by an integer , and we
executed this application for several grid sizes.

e SOR: successive overrelaxation is an
iterative method to solve Laplace’s equation on
a regular grid. The grid is partitioned into
regions, each containing a band of rows of the
global grid. Each region is assigned to a
process. The update of the points in the grid is
done by a Red/Black scheme. This requires
two phases per iteration: one for black points
and other for red points. During each iteration
the slave processes have to exchange the
boundaries of their data blocks with two other
neighbours, and at the end of the iteration all
the processes perform a global synchronization
and evaluate a global test of convergence. Each
element of the grid is represented in double
precision, and we executed this application for
several grid sizes.

e ASP: solves the All-pairs Shortest Paths
problem i.e. it finds the length of the shortest
path from any node i to any other node j in a
given graph with N nodes by using Floyd’s
algorithm. The distances between the nodes of
the graph are represented in a matrix and each

398

worker computes part of the matrix. It is an
iterative algorithm. In each iteration there is
one of the workers that has the pivot row. It
broadcasts its value to all the other slaves. We
will solve the problem with two graphs of 512
and 1024 nodes:

e NBODY: this program simulates the
evolution of a system of bodies under the
influence of gravitational forces. Every body is
modelled as a point mass that exerts forces on
all other bodies in the system and the algorithm
calculates the forces in a three-dimensional
dimension. We ran this application for 4000

particles.

o GAUSS: solves a system of linear
equations using the method of Gauss-
elimination. The algorithm wuses partial

pivoting and distributes the columns of the
input matrix among the processes in an
interleaved way to avoid imbalance problems.
In each iteration, one of the processes finds the
pivot element and sends the pivot column to all
the other processes. We will solve two systems
of 512 and 1024 equations.

e TSP: solves the travelling salesman
problem for a dense map of 16 cities. using a
branch and bound algorithm. The jobs were
divided by using the possible combinations of
the first 3 cities.

e NQUEENS: counts the number of
solutions to the N-queens problem. The
problem is distributed by several jobs assigning
to each job a possible placement of the first
two queens. We solved this algorithm with 13
queens.

5.2 Parity versus Neighbour-based
Checkpointing

In this section, we compare these two
checkpointing approaches and evaluate their
performance overhead. The neighbour-based
checkpointing is herein referred as NBC, while
the parity checkpointing approach is referred
by PBC.

The NBC technique, with a single degree of
replication (k=1), is able to tolerate single
processor failures. In some cases it can tolerate
more than one failure provided they occur in
non-adjacent processors of the virtual ring. On
the other hand, the PBC approach is only able
to tolerate single processor failures. In order to
tolerate total or multiple failures any of those
schemes (PBC or NBC) should be integrated
with a disk-based checkpointing mechanism.

If we compare the two approaches in a pair
basis, we can say that PBC always presents a

lower memory overhead than NBC. However,
it remains to be seen what is the performance
overhead of both approaches. Next, we will
present a quantitative comparison between the
NBC and PBC techniques. The five
applications have been used, and the overhead
per checkpoint is presented in the Table 1.

“Application Size of Overhead Overhead
Chkp per Chkp per Chip PBC / NBC
(Kbwies) NBC PBC

| SOR 256x256 540 0.123 2.923 23.7
OR 512x512 2104 0832 12.625 15.1
OR 768x768 4692 2207 29108 131
[_SOR 1024x1024 3304 3.761 52,008 138
1SING 256:256 269 050 1430 286
1SING S12x512 04 XiNl 5497 4.5
ISING 768x768 3 156 2316 783
1SING 1024x1024 14 430 171 504
ISING 1280x1280 546 670 4216 S
ASP312 004 202 5.820 28,
ASP 1024 4096 584 24,298 X

GAUSS 512 2052 0.437 10.065 X
GAUSS 1024 8200 1447 44247 X
NBODY 4000 312 0.057 1817 1.8

Table 1: Overhead per checkpoint in seconds
(NBC versus PBC).

The overhead per checkpoint is presented in
seconds. As can be seen, the overhead
introduced by the parity checkpointing scheme
is much higher than the one incurred by
neighbour-based checkpointing. The last
column represents the relationship between the
overhead of PBC over NBC. If we take the
mean average, we can say that parity
checkpointing performs 34 times worse than
neighbour-based checkpointing.

Parity checkpointing performed even worse
than disk-based checkpointing. In Figure 2 we
present a comparison between PBC, NBC, and
disk-based checkpointing (DBC). This last
scheme refers to the use of non-blocking disk-
based checkpointing scheme: it uses the central
disk to save the checkpoint data but the remote
write operation is done concurrently with the
execution of the application. The state of the
application is firstly saved into a memory
buffer and then there is a checkpointer thread
that sends this buffer to a remote disk file.

Overhead per Chkp (sec)
s 8 &8 & g 2

>

256x256

A
4

S12x512

768x768
Size of the Grid

1024x1024

Figure 2: Overhead per checkpoint of NBC, PBC and
DBC (SOR 1024x1024).

399

Neighbour-based checkpoint presents the
lower overhead per checkpoint, but the DBC
scheme incurs in a comparable overhead. On
the other hand, the overhead of the PBC
technique is much higher than the two other
schemes. Take for instance, the case with a
grid size of 1024x1024: while the overhead per
checkpoint introduced by NBC and DBC was
3.7 and 7.2 seconds, respectively, the overhead
of PBC was around 52 seconds.

For a grid size of 1024x1024, the time to
complete a checkpoint with the PBC technique
was around 109 seconds. Fortunately, the
parity checkpoint is taken in background
otherwise the overhead per checkpoint would
be even higher. This is the advantage of using
the concurrent checkpointing technique.

Thé main reason why PBC performs really
worse than NBC is due to the bottleneck that is
caused by the centralized parity operation.
Processor O takes the role of the parity
processor, but it also runs a process from the
application. The execution of the PBC scheme
leads to a high congestion on that processor
which results in a slower parity computation.
This is the clear disadvantage of a centralized
approach over a distributed one that is taken by
the NBC.

To improve the performance of parity
checkpointing we could allocate a dedicated
processor for the parity computation. It would
certainly reduce the congestion on the parity
processor.

We have an experiment in this line: only 7
processors of the machine were used by the
application, while the 8" one was allocated
exclusively as the parity processor. The
application data have to be distributed by the 7
available processors, which means that each
individual processor will take a bigger block of
data to compute with, than with 8 processors.
Consequently, it should be expected some
increase in the total execution of the
application.

The performance results with this new
configuration are presented in Table 2. They
refer to the SOR benchmark with a grid size of
768x768, and 1024x1024. The NBC scheme
was not able to run with a grid size of
1024x1024 for lack of memory. All the timing
values are presented in seconds. We compare
the overhead per checkpoint and the
checkpoint latency when using NBC, PBC or
DBC. In the last two rows, we also compared

two versions of the PBC scheme: non-blocking
(PBC) and blocking (PBC-B).

Grid Scheme Overhead Overhead Latency | Latency
Size with 7proc | with 8 proc with 7 with &
proc proc
768x768% NBC 115 2.20 1.47 2.29
768x768 PBC [.75 29.10 36.73 61.39
T6RXTO DBC 3.17 3.65 9.31 8.93
10241024 PBC 0.27 52.0 64.94 109.10
1024x1024 PBC-B 58.05 56.43 59.74 54.47

Table 2: Comparing the checkpointing schemes
with 7 and 8 processors.

This Table presents some interesting results.
First of all, lets examine the results with a size
of 768x768. With 8 processors the overhead
per checkpoint introduced by the PBC scheme
was 13 times worse than with the NBC scheme
(i.e. 29.1 against 2.2 seconds). It is even worse
than the disk-based checkpointing scheme that
presented an overhead of 3.65 seconds.

With a dedicated parity processor and 7
processors for the application the performance
of PBC was really improved: an overhead of
1.75 seconds per checkpoint. Compared with
the overhead of the NBC scheme (1.15
seconds) we see the difference is quite small.
This time, the overhead of PBC is better than
the overhead of DBC, that is 3.17 seconds.

The price to pay for this improvement is the
allocation of a dedicated processor that cannot
be used to do any useful computation. If the
user is willing to give up of one processor for
the sake of fault-tolerance, then the parity
checkpointing scheme performs better.

Nevertheless, even in this configuration the
NBC scheme incurred in a smaller overhead
and presented a lower checkpoint latency than
the PBC technique (1.47 against 36.73
seconds). An interesting aspect is the fact that
the checkpoint latency of parity checkpointing
is always higher than the time taken by the
disk-based checkpointing scheme, regardless
the number of processors: 36.73 seconds with
7 processors and 61.39 seconds with 8
processors, against 9.31 and 8.93 seconds,
respectively. This is clearly an unexpected
result: it takes less time to complete a
checkpoint that is saved on disk than to
compute and save a parity checkpoint in the
memory of some processor.

In the two last rows, we present results for a
grid size of 1024x1024 and we compare the
performance of non-blocking with blocking
parity checkpointing. As expected, with 8 or 7
processors the non-blocking PBC scheme takes
always more time to complete a checkpoint

400

than the blocking PBC technique. Since the
checkpoint operation is distributed over the
time it is always expected that a non-blocking
algorithm take more time to complete than a
blocking one. However, what is more relevant
is the overhead per checkpoint. With 8§
processors, the difference in the overhead is
only marginal: 52 seconds for the non-blocking
approach and 56.43 seconds for the blocking
one. With a dedicated parity processor the
difference in the overhead is quite significant:
0.27 seconds for the non-blocking algorithm
against 58.05 for the blocking approach. This
result emphasizes once more the importance of
exploiting the concurrent checkpointing
principle.

The PBC scheme is only able to tolerate
single processor failures. In our particular
implementation, it does not assure any
checkpoint atomicity: if there is a failure
during the checkpoint operation the parity
checkpoint can be partially overwritten which
is not valid for recovery. One way is to keep a
copy of the old checkpoint in main memory or
in disk. We have done some experiments with
an extended version of the PBC scheme: after
computing the current parity checkpoint it is
saved into a disk file. This disk writing
operation is done in a “lazy” way, concurrently
with the execution of the application.
Compared with the previous PBC scheme, the
difference in the overhead per checkpoint was
absolutely negligible. Thus, we can provide a
backup copy of the parity checkpoint with no
additional overhead.

As we have seen before, the NBC and DBC
schemes present a similar overhead per
checkpoint. Per se, this is a very impressive
result. However, we have to measure as well
the time that is taken to complete a single
checkpoint. In Figure 3 we compare the
overhead and the checkpoint latency of both
schemes for the ISING application. The
overhead per checkpoint is represented by
columns and is relative to the left y-axis, while
the checkpoint latency is depicted by lines and
relative to the right y-axis.

The NBC scheme always presented a lower
overhead than disk-based checkpointing, but
the difference is lower than 0.3 seconds. On the
other side, the checkpoint latency of DBC is
much higher than the latency of NBC, and the
difference can be more than 10 seconds.

Overhead per Chkp (sec)

09
0.8
0.7
0.6
0.5
0.4
03
02
0.1

[Overhead NBC
N Overhead DBC
Qe Latency NBC
=—0—ILatency DBC

o
Checkpoint Latency (sec)

256x256

768x768
Size of the Grid

1280x1280

Figure 3: Checkpoint overhead and latency for the
ISING application (NBC vs DBC).

Similar results were taken with the SOR
benchmark (1024x1024): the difference in the
overhead of NBC and DBC was almost
insignificant, but there was some clear
difference in the checkpoint latency: the time
to complete a checkpoint in NBC was 2.3
seconds while the DBC scheme took around 16
seconds.

Disk-based checkpointing can have a similar
overhead than NBC but presents a higher
checkpoint latency. However, the NBC scheme
does not provide checkpoint atomicity if some
failore occurs during the checkpointing
protocol. Thus, we recommend the use of the
NBC scheme together with disk checkpointing
(DBC) in order to tolerate this sort of failures.

6. Comparison with Related Work

Parity checkpointing was firstly presented by
Jim Plank in [12]. The first real
implementation was reported in [16]. It
required two extra processors: the parity
checkpoint processor and a backup processor.
These ones were dedicated to the
checkpointing mechanism and did not run any
application process. The backup processor was
used to keep a copy of the parity checkpoint
when the checkpoint processor needs to update
its copy. To assure the atomicity in the
occurrence of failures, each processor has to
maintain two in-memory copies of the local
checkpoint (the current and the old one). This
scheme used a hybrid approach that combined
parity with incremental checkpoint.

Parity checkpointing was later integrated in
four subroutines of ScaLAPACK [17]:
Cholesky factorization, LU decomposition, QR
factorization and Pre-conditioned Conjugate
Gradient. The checkpointing scheme was

401

“hard-wired” into any of those programs.
Depending on the size of the program and the
frequency of checkpointing, the total overhead
reported could go from less than 1% up to
220%.

Recently, it was reported in [18] an
implementation of neighbour-based, parity, and
partial parity checkpointing. Partial parity
checkpointing refers to the combined use of
parity with incremental checkpointing. That
implementation was performed on a SIMD
machine (DECmpp 12000). The schemes of
neighbour and parity-based checkpointing were
implemented in a different way than with our
study. Both schemes stop the application
during the whole checkpoint operation and do
not make use of any concurrent activity.

It was shown that neighbour-based
checkpointing was an order of magnitude faster
than parity checkpointing, but takes twice as
much storage overhead. Partial parity
checkpointing is able to reduce the storage
overhead but can lead to unpredictable
execution performance. This can be also
concluded from the results of Jim Plank.

7. Conclusions and Future Work

In this study, we have presented and
evaluated two schemes for diskless
checkpointing: parity and neighbour-based
checkpointing. While the first scheme
introduces less memory overhead it incurs in a
higher performance overhead than the second
technique.

The overhead of parity checkpointing is only
comparable to the other scheme if we use a
dedicated processor of the network to compute
and maintain the parity checkpoint. Otherwise,
if we allocate the parity checkpoint into some
application processor then the overhead of
parity checkpointing is about 30 times worse
than neighbour-based checkpointing and much
higher than disk-based checkpointing, which
makes that scheme completely useless. It only
performs in an acceptable way if the user is
willing to give up of one processor to be used
as a dedicated parity processor. Neighbour
checkpointing tolerates multiple failures as
long as they do not occur in adjacent
processors, while parity checkpointing is only
able to tolerate single processor failures.

Another interesting result we have achieved
was that it is possible to implement disk-based
checkpointing with a similar overhead of

neighbour-based checkpointing, although with
a higher checkpoint latency.

As future work, it would be interesting to
repeat all these experiments in a cluster of
workstations, connected by a 10/100 Mbit/sec
Ethernet switch and then compare the overall
results.

References

[1] B.W.Lampson, H.E.Sturgis. “Crash Discovery
in a Distributed Data Storage System”, Technical
Report XEROX Parc, April 1979

[2] J.Bartlett, J.Gray, B.Horst. “Fault Tolerance in
Tandem Computing Systems”, in Dependable
Computing and Fault-Tolerance Systems,
Springer-Verlag, 1987

(31 D.B.Johnson. “Distributed System Fault-
Tolerance using Message Logging and
Checkpointing”, PhD Thesis, TR-89-101, Rice
University, Houston, Texas, December 1989

[4] J.Wilkes, R.Stata. “Specifying Data Availability
in Multi-Device File Systems”, Operating Systems
Review, Vol. 25 (1), pp. 56-59, January 1991

[5S] E.N.Elnozahy, D.B.Johnson, W.Zwaenepoel.
“The Performance of Consistent Checkpointing”,
Proc. 11th Symposium on Reliable Distributed
Systems, pp. 39-47, 1992

[6] E.N.EInozahy, W.Zwaenepoel. “On the Use and
Implementation of Message Logging”, Proc. 24th
Fault-Tolerant Computing Symposium, FTCS-24,
pp. 298-307, June 1994

{71 J.S.Plank, K.Li. “ickp - A Consistent
Checkpointer for Multicomputers”, IEEE Parallel
and Distributed Technology, Vol. 2 (2), pp. 62-
67, 1994

[8] L.M.Silva. “Checkpointing Mechanisms for
Scientific Parallel Applications”, PhD Thesis,
University of Coimbra, March 1997

402

[9] M.Banatre, G.Muller, J.P.Banatre. “Ensuring
Data Security and Integrity with a Fast Stable
Storage”, Proc. 4th Conference on Data
Engineering, pp. 285-293, February 1988

[10] C.Horn, B.Coghlan, N.Harris, J.Jones. “Stable
Memory - Another Look”, Int. Workshop on
Operating Systems of the 90’s and Beyond,
Lecture Notes on Computer Science, 563, pp.
171-177, 1991

{111 M.Baker, M.Sullivan. “The Recovery Box:
Using Fast Recovery to Provide High Availability
in the UNIX Environment”, Proc. Summer’92
USENIX, pp. 31-42, June 1992

[12] J.S.Plank. “Efficient Checkpointing on MIMD
Architectures”, PhD Thesis, Department of
Computer Science, Princeton University, June
1993

[13] G.A.Gibson. “Redundant Disk Arrays:
Reliable, Parallel Secondary Storage”, PhD
Thesis, University of California at Berkeley,
December 1990

[14] “Parix 1.2: Software Documentation”, Parsytec
Computer GmbH, 1993

[15] MPI Forum. “Message Passing Interface
Standard”, March 1994, available at:
http://www.netlib.org/mpi/

{161 J.S.Plank, K.Li. “Faster Checkpointing with
N+1 Parity”, Proc. 24th Fault-Tolerant
Computing Symposium, FTCS-24, pp. 288-297,
June 1994

[17] J.S.Plank, Y.Kim, J.Dongarra. *“Algorithm-
Based Diskless Checkpointing for Fault-Tolerant
Matrix Computations”, Proc. 25th Fault-Tolerant
Computing Symposium, FTCS-25, pp. 351-360.
June 1995

[18] T.Chiueh, P.Deng. “Evaluation of Checkpoint
Mechanisms for Massively Parallel Machines”,
Proc. 26th Fault-Tolerant Computing Symposium,
FTCS-26, Japan, pp. 370-379. June 1996

