
Parallel Programming
and MPI

CS717, Fall ’01

Tutorial on MPI: The
Message-Passing Interface

William Gropp

A
R

G
O

N
NE

NATIONAL LABORA

TO
R

Y

U
N

IVERSITY OF C
HIC

A
G

O

•

•

Mathematics and Computer Science Division

Argonne National Laboratory

Argonne, IL 60439

gropp@mcs.anl.gov

1

Hypernode Interconnect

Interface

: Hypernode

Hypernode Network of hypernodes

Architectural Issues in Parallel Processing

Convex Exemplar Architecture:

CPU

Agent

CPU

Agent

Cache

Memory

Cache

Memory Memory
Private

Global

Memory

Network
Cache

Locality of reference is extremely important!!

Processor cache 10 ns
CPU private memory 500 ns
Hypernode private memory 500 ns
Network cache 500 ns
Interhypernode shared memory 2 microsec

Within hypernode: SMP

Across hypernodes: NUMA

Memory latencies:

PA-RISC

P

P M

M
I

P

M

P

M

Static and dynamic locality of reference are critical for high performance.

Compiler support? Architectural support?

Bus-based symmetric multiprocessors (SMP’s): combine both aspects

Physical Organization

Early parallel processors like NYU Ultracomputer

Problem: why go across network for instructions? read-only data?

what about caches?

I

- Uniform memory access (UMA) machines

- Non-uniform memory access (NUMA) machines:

All memory is equally far away from all processors.

Access to local memory is usually 10-1000 times
faster than access to non-local memory

P

P

P
P

address space
single

x

I
P

M

P

M

I

M

M P

P

Logical Organization

- Shared Memory Model

(conceptual picture)

- Distributed Memory Model (Message Passing)

P

P P

P

(conceptual picture)

- hardware/systems software provide single address space model

 to applications programmer

- some systems: distinguish between local and remote

- each processor has its own address space

- communication between processors: messages (like e-mail)

- basic message-passing commands:

 references

send receive

put get- communication between processors: read/write shared memory locations:

Key difference: In SMM, P1 can access remote memory locations
w/o prearranged participation of application program on remote processor

Types of parallel computing

All use di�erent data for each worker

Data-parallel Same operations on di�erent

data. Also called SIMD

SPMD Same program, di�erent data

MIMD Di�erent programs, di�erent data

SPMD and MIMD are essentially the same

because any MIMD can be made SPMD

SIMD is also equivalent, but in a less

practical sense.

MPI is primarily for SPMD/MIMD. HPF is

an example of a SIMD interface.

5

Communicating with other processes

Data must be exchanged with other workers

� Cooperative | all parties agree to

transfer data

� One sided | one worker performs

transfer of data

6

Cooperative operations

Message-passing is an approach that makes

the exchange of data cooperative.

Data must both be explicitly sent and

received.

An advantage is that any change in the

receiver's memory is made with the receiver's

participation.

SEND(data)

Process 0 Process 1

RECV(data)

7

So far, we have looked at point-to-point communication

Collective communication:

- patterns of group communication that can be implemented more efficiently
 than through long sequences of send’s and receive’s

- important ones:

- all-to-one reduction

- all-to-all broadcast

- one-to-all personalized communication

- all-to-all personalized communication

every processor sends a piece of data to every other processor

(eg. adding a set of numbers distributed across all processors)

 (eg. A*x implemented by rowwise distribution: all processors need x)

each processor does a one-to-all communication

one processor sends a different piece of data to all other processors

- one-to-all broadcast

One-sided operations

One-sided operations between parallel

processes include remote memory reads and

writes.

An advantage is that data can be accessed

without waiting for another process

Process 0 Process 1

Process 0 Process 1

(Memory)

PUT(data)

(Memory)

GET(data)

8

What is MPI?

� A message-passing library speci�cation

{ message-passing model

{ not a compiler speci�cation

{ not a speci�c product

� For parallel computers, clusters, and heterogeneous

networks

� Full-featured

� Designed to permit (unleash?) the development of

parallel software libraries

� Designed to provide access to advanced parallel

hardware for

{ end users

{ library writers

{ tool developers

11

Features of MPI

� General

{ Communicators combine context and group for

message security

{ Thread safety

� Point-to-point communication

{ Structured bu�ers and derived datatypes,

heterogeneity

{ Modes: normal (blocking and non-blocking),

synchronous, ready (to allow access to fast

protocols), bu�ered

� Collective

{ Both built-in and user-de�ned collective

operations

{ Large number of data movement routines

{ Subgroups de�ned directly or by topology

16

Features of MPI (cont.)

� Application-oriented process topologies

{ Built-in support for grids and graphs (uses

groups)

� Pro�ling

{ Hooks allow users to intercept MPI calls to

install their own tools

� Environmental

{ inquiry

{ error control

17

Features not in MPI

� Non-message-passing concepts not included:

{ process management

{ remote memory transfers

{ active messages

{ threads

{ virtual shared memory

� MPI does not address these issues, but has tried to

remain compatible with these ideas (e.g. thread

safety as a goal, intercommunicators)

18

A simple program

#include "mpi.h"

#include <stdio.h>

int main(argc, argv)

int argc;

char **argv;

{

int rank, size;

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

MPI_Comm_size(MPI_COMM_WORLD, &size);

printf("Hello world! I'm %d of %d\n",

rank, size);

MPI_Finalize();

return 0;

}

32

Sending and Receiving messages

Process 0 Process 1

A:

B:

Send Recv

Questions:

� To whom is data sent?

� What is sent?

� How does the receiver identify it?

35

Current Message-Passing

� A typical blocking send looks like

send(dest, type, address, length)

where

{ dest is an integer identi�er representing the

process to receive the message.

{ type is a nonnegative integer that the

destination can use to selectively screen

messages.

{ (address, length) describes a contiguous area in

memory containing the message to be sent.

and

� A typical global operation looks like:

broadcast(type, address, length)

� All of these speci�cations are a good match to

hardware, easy to understand, but too inexible.

36

Paul Stodghill

Paul Stodghill
"Primitive"

Limitations of Primitive
Message-Passing

• Data is not always contiguous
– data accessed by “stride”.

• heterogeneous environments
– word size
– endien

• “Classes” of message
– Library A: p1 sends int to p2

.

– Library B: p2 recvs int from p1.
– type doesn’t map to “semantics”.

• broadcast to whom?
– divide and conquer – communicate

within partition
– matrix computations – communicate

within rows and columns

Generalizing the Bu�er Description

� Speci�ed in MPI by starting address, datatype, and

count, where datatype is:

{ elementary (all C and Fortran datatypes)

{ contiguous array of datatypes

{ strided blocks of datatypes

{ indexed array of blocks of datatypes

{ general structure

� Datatypes are constructed recursively.

� Speci�cations of elementary datatypes allows

heterogeneous communication.

� Elimination of length in favor of count is clearer.

� Specifying application-oriented layout of data

allows maximal use of special hardware.

38

Generalizing the Type

� A single type �eld is too constraining. Often

overloaded to provide needed exibility.

� Problems:

{ under user control

{ wild cards allowed (MPI_ANY_TAG)

{ library use conicts with user and with other

libraries

39

Sample Program using Library Calls

Sub1 and Sub2 are from di�erent libraries.

Sub1();

Sub2();

Sub1a and Sub1b are from the same library

Sub1a();

Sub2();

Sub1b();

Thanks to Marc Snir for the following four examples

40

Correct Execution of Library Calls

Process 0 Process 1 Process 2

recv(any) send(1)

recv(any) send(0)

recv(1) send(0)

recv(2) send(1)

send(2) recv(0)

Sub1

Sub2

41

Incorrect Execution of Library Calls

Process 0 Process 1 Process 2

recv(any) send(1)

recv(any) send(0)

recv(1) send(0)

recv(2) send(1)

send(2) recv(0)

Sub1

Sub2

42

Correct Execution of Library Calls with Pending

Communcication

Process 0 Process 1 Process 2

recv(any) send(1)

send(0)

send(0)

recv(0)

recv(any)

send(1)

send(2) recv(1)

recv(2)

Sub1a

Sub2

Sub1b

43

Incorrect Execution of Library Calls with Pending

Communication

Process 0 Process 1 Process 2

recv(any) send(1)

send(0)

send(0)

recv(0)

recv(any)

send(1)

send(2) recv(1)

recv(2)

Sub1a

Sub2

Sub1b

44

Solution to the type problem

� A separate communication context for each family

of messages, used for queueing and matching.

(This has often been simulated in the past by

overloading the tag �eld.)

� No wild cards allowed, for security

� Allocated by the system, for security

� Types (tags, in MPI) retained for normal use (wild

cards OK)

45

Delimiting Scope of Communication

� Separate groups of processes working on

subproblems

{ Merging of process name space interferes with

modularity

{ \Local" process identi�ers desirable

� Parallel invocation of parallel libraries

{ Messages from application must be kept

separate from messages internal to library.

{ Knowledge of library message types interferes

with modularity.

{ Synchronizing before and after library calls is

undesirable.

46

Generalizing the Process Identi�er

� Collective operations typically operated on all

processes (although some systems provide

subgroups).

� This is too restrictive (e.g., need minimum over a

column or a sum across a row, of processes)

� MPI provides groups of processes

{ initial \all" group

{ group management routines (build, delete

groups)

� All communication (not just collective operations)

takes place in groups.

� A group and a context are combined in a

communicator.

� Source/destination in send/receive operations refer

to rank in group associated with a given

communicator. MPI_ANY_SOURCE permitted in a

receive.

47

MPI Basic Send/Receive

Thus the basic (blocking) send has become:

MPI_Send(start, count, datatype, dest, tag,

comm)

and the receive:

MPI_Recv(start, count, datatype, source, tag,

comm, status)

The source, tag, and count of the message actually

received can be retrieved from status.

Two simple collective operations:

MPI_Bcast(start, count, datatype, root, comm)

MPI_Reduce(start, result, count, datatype,

operation, root, comm)

48

Getting information about a message

MPI_Status status;

MPI_Recv(..., &status);

... status.MPI_TAG;

... status.MPI_SOURCE;

MPI_Get_count(&status, datatype, &count);

MPI_TAG and MPI_SOURCE primarily of use when

MPI_ANY_TAG and/or MPI_ANY_SOURCE in the receive.

MPI_Get_count may be used to determine how much

data of a particular type was received.

49

Simple Fortran example

program main

include 'mpif.h'

integer rank, size, to, from, tag, count, i, ierr

integer src, dest

integer st_source, st_tag, st_count

integer status(MPI_STATUS_SIZE)

double precision data(100)

call MPI_INIT(ierr)

call MPI_COMM_RANK(MPI_COMM_WORLD, rank, ierr)

call MPI_COMM_SIZE(MPI_COMM_WORLD, size, ierr)

print *, 'Process ', rank, ' of ', size, ' is alive'

dest = size - 1

src = 0

C

if (rank .eq. src) then

to = dest

count = 10

tag = 2001

do 10 i=1, 10

10 data(i) = i

call MPI_SEND(data, count, MPI_DOUBLE_PRECISION, to,

+ tag, MPI_COMM_WORLD, ierr)

else if (rank .eq. dest) then

tag = MPI_ANY_TAG

count = 10

from = MPI_ANY_SOURCE

call MPI_RECV(data, count, MPI_DOUBLE_PRECISION, from,

+ tag, MPI_COMM_WORLD, status, ierr)

50

Simple Fortran example (cont.)

call MPI_GET_COUNT(status, MPI_DOUBLE_PRECISION,

+ st_count, ierr)

st_source = status(MPI_SOURCE)

st_tag = status(MPI_TAG)

C

print *, 'Status info: source = ', st_source,

+ ' tag = ', st_tag, ' count = ', st_count

print *, rank, ' received', (data(i),i=1,10)

endif

call MPI_FINALIZE(ierr)

end

51

FIFO revisited

• MPI guarantees that
messages are between
“matching” sends and
receives are delivered in
order.

• Does this mean that a
program always receives
messages in order?

FIFO revisited (cont.)

NO! For instance -
Processors p1:
MPI_ISEND(data,count,MPI_INT,p2,tag1,

MPI_COMM_WORLD);

MPI_ISEND(data,count,MPI_INT,p2,tag2,
MPI_COMM_WORLD);

Processor p2:
MPI_RECV(data,count,MPI_INT,p1,tag2,

MPI_COMM_WORLD);

MPI_RECV(data,count,MPI_INT,p1,tag1,
MPI_COMM_WORLD);

p1

p2

Broadcast and Reduction

The routine MPI_Bcast sends data from one

process to all others.

The routine MPI_Reduce combines data from

all processes (by adding them in this case),

and returning the result to a single process.

54

C example: PI

#include "mpi.h"

#include <math.h>

int main(argc,argv)

int argc;

char *argv[];

{

int done = 0, n, myid, numprocs, i, rc;

double PI25DT = 3.141592653589793238462643;

double mypi, pi, h, sum, x, a;

MPI_Init(&argc,&argv);

MPI_Comm_size(MPI_COMM_WORLD,&numprocs);

MPI_Comm_rank(MPI_COMM_WORLD,&myid);

57

C example (cont.)

while (!done)

{

if (myid == 0) {

printf("Enter the number of intervals: (0 quits) ");

scanf("%d",&n);

}

MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);

if (n == 0) break;

h = 1.0 / (double) n;

sum = 0.0;

for (i = myid + 1; i <= n; i += numprocs) {

x = h * ((double)i - 0.5);

sum += 4.0 / (1.0 + x*x);

}

mypi = h * sum;

MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0,

MPI_COMM_WORLD);

if (myid == 0)

printf("pi is approximately %.16f, Error is %.16f\n",

pi, fabs(pi - PI25DT));

}

MPI_Finalize();

}

58

Bu�ering issues

Where does data go when you send it? One

possibility is:

Local Buffer

Local Buffer

A:

B:

Process 1 Process 2

The Network

85

Better bu�ering

This is not very e�cient. There are three

copies in addition to the exchange of data

between processes. We prefer

B:

A:

Process 1 Process 2

But this requires that either that MPI_Send

not return until the data has been delivered

or that we allow a send operation to return

before completing the transfer. In this case,

we need to test for completion later.

86

Blocking and Non-Blocking communication

� So far we have used blocking communication:

{ MPI Send does not complete until bu�er is empty

(available for reuse).

{ MPI Recv does not complete until bu�er is full

(available for use).

� Simple, but can be \unsafe":

Process 0 Process 1

Send(1) Send(0)

Recv(1) Recv(0)

Completion depends in general on size of message

and amount of system bu�ering.

� Send works for small enough messages but fails

when messages get too large. Too large ranges from

zero bytes to 100's of Megabytes.

87

Some Solutions to the \Unsafe" Problem

� Order the operations more carefully:

Process 0 Process 1

Send(1) Recv(0)

Recv(1) Send(0)

� Supply receive bu�er at same time as send, with

MPI Sendrecv:

Process 0 Process 1

Sendrecv(1) Sendrecv(0)

� Use non-blocking operations:

Process 0 Process 1

Isend(1) Isend(0)

Irecv(1) Irecv(0)

Waitall Waitall

� Use MPI_Bsend

88

MPI's Non-Blocking Operations

Non-blocking operations return (immediately)

\request handles" that can be waited on and queried:

� MPI Isend(start, count, datatype, dest, tag, comm,

request)

� MPI Irecv(start, count, datatype, dest, tag, comm,

request)

� MPI Wait(request, status)

One can also test without waiting: MPI_Test(request,

flag, status)

89

Multiple completions

It is often desirable to wait on multiple requests. An

example is a master/slave program, where the master

waits for one or more slaves to send it a message.

� MPI Waitall(count, array of requests,

array of statuses)

� MPI Waitany(count, array of requests, index,

status)

� MPI Waitsome(incount, array of requests, outcount,

array of indices, array of statuses)

There are corresponding versions of test for each of

these.

� The MPI WAITSOME and MPI TESTSOME may be used to

implement master/slave algorithms that provide fair

access to the master by the slaves.

90

More on nonblocking communication

In applications where the time to send data between

processes is large, it is often helpful to cause

communication and computation to overlap. This can

easily be done with MPI's non-blocking routines.

For example, in a 2-D �nite di�erence mesh, moving

data needed for the boundaries can be done at the

same time as computation on the interior.

MPI_Irecv(... each ghost edge ...);

MPI_Isend(... data for each ghost edge ...);

... compute on interior

while (still some uncompleted requests) {

MPI_Waitany(... requests ...)

if (request is a receive)

... compute on that edge ...

}

Note that we call MPI_Waitany several times. This

exploits the fact that after a request is satis�ed, it

is set to MPI_REQUEST_NULL, and that this is a valid

request object to the wait and test routines.

96

Communication Modes

MPI provides mulitple modes for sending messages:

� Synchronous mode (MPI Ssend): the send does not

complete until a matching receive has begun.

(Unsafe programs become incorrect and usually

deadlock within an MPI_Ssend.)

� Bu�ered mode (MPI Bsend): the user supplies the

bu�er to system for its use. (User supplies enough

memory to make unsafe program safe).

� Ready mode (MPI Rsend): user guarantees that

matching receive has been posted.

{ allows access to fast protocols

{ unde�ned behavior if the matching receive is not

posted

Non-blocking versions:

MPI Issend, MPI Irsend, MPI Ibsend

Note that an MPI_Recv may receive messages sent with

any send mode.

97

Bu�ered Send

MPI provides a send routine that may be used when

MPI_Isend is awkward to use (e.g., lots of small

messages).

MPI_Bsend makes use of a user-provided bu�er to save

any messages that can not be immediately sent.

int bufsize;

char *buf = malloc(bufsize);

MPI_Buffer_attach(buf, bufsize);

...

MPI_Bsend(... same as MPI_Send ...);

...

MPI_Buffer_detach(&buf, &bufsize);

The MPI_Buffer_detach call does not complete until all

messages are sent.

� The performance of MPI Bsend depends on the

implementation of MPI and may also depend on

the size of the message. For example, making a

message one byte longer may cause a signi�cant drop

in performance.

98

Reusing the same bu�er

Consider a loop

MPI_Buffer_attach(buf, bufsize);

while (!done) {

...

MPI_Bsend(...);

}

where the buf is large enough to hold the message in

the MPI_Bsend. This code may fail because the

{

void *buf; int bufsize;

MPI_Buffer_detach(&buf, &bufsize);

MPI_Buffer_attach(buf, bufsize);

}

99

Other Point-to-Point Features

� MPI_SENDRECV, MPI_SENDRECV_REPLACE

� MPI_CANCEL

� Persistent communication requests

100

Collective Communications in MPI

� Communication is coordinated among a group of

processes.

� Groups can be constructed \by hand" with MPI

group-manipulation routines or by using MPI

topology-de�nition routines.

� Message tags are not used. Di�erent

communicators are used instead.

� No non-blocking collective operations.

� Three classes of collective operations:

{ synchronization

{ data movement

{ collective computation

72

Synchronization

� MPI_Barrier(comm)

� Function blocks untill all processes in

comm call it.

73

Available Collective Patterns

P0

P1

P2

P3

P0

P1

P2

P3

P0

P1

P2

P3

P0

P1

P2

P3

P0

P1

P2

P3

P0

P1

P2

P3

P0

P1

P2

P3

P0

P1

P2

P3

A A

A

A

A

A B C D A

B

C

D

A

B

C

D

A B C D

A B C D

A B C D

A B C D

A0 A1 A2 A3

B0 B1 B2 B3

C0 C1 C2 C3

D0 D1 D2 D3

A0 B0 C0 D0

A1 B1 C1 D1

A2 B2 C2 D2

A3 B3 C3 D3

All to All

All gather

Scatter

Gather

Broadcast

Schematic representation of collective data

movement in MPI

74

Available Collective Computation Patterns

ABC

ABCD

AB

A

ABCD

Reduce

Scan

P3

P3

P0

P1

P2

P0

P1

P2

A

B

C

DP3

A

B

C

DP3

P0

P1

P2

P0

P1

P2

Schematic representation of collective data

movement in MPI

75

MPI Collective Routines

� Many routines:

Allgather Allgatherv Allreduce

Alltoall Alltoallv Bcast

Gather Gatherv Reduce

ReduceScatter Scan Scatter

Scatterv

� All versions deliver results to all participating

processes.

� V versions allow the chunks to have di�erent sizes.

� Allreduce, Reduce, ReduceScatter, and Scan take

both built-in and user-de�ned combination

functions.

76

De�ning groups

All MPI communication is relative to a

communicator which contains a context

and a group. The group is just a set of

processes.

80

Private communicators

One of the �rst thing that a library should

normally do is create private communicator.

This allows the library to send and receive

messages that are known only to the library.

MPI_Comm_dup(old_comm, &new_comm);

116

Subdividing a communicator

The easiest way to create communicators with new

groups is with MPI_COMM_SPLIT.

For example, to form groups of rows of processes

1

2

0

0 1 2 3 4
Column

Row

use

MPI_Comm_split(oldcomm, row, 0, &newcomm);

To maintain the order by rank, use

MPI_Comm_rank(oldcomm, &rank);

MPI_Comm_split(oldcomm, row, rank, &newcomm);

81

Subdividing (con't)

Similarly, to form groups of columns,

1

2

0

0 1 2 3 4
Column

Row

use

MPI_Comm_split(oldcomm, column, 0, &newcomm2);

To maintain the order by rank, use

MPI_Comm_rank(oldcomm, &rank);

MPI_Comm_split(oldcomm, column, rank, &newcomm2);

82

Manipulating Groups

Another way to create a communicator with speci�c

members is to use MPI_Comm_create.

MPI_Comm_create(oldcomm, group, &newcomm);

The group can be created in many ways:

83

Creating Groups

All group creation routines create a group by

specifying the members to take from an existing

group.

� MPI_Group_incl speci�es speci�c members

� MPI_Group_excl excludes speci�c members

� MPI_Group_range_incl and MPI_Group_range_excl

use ranges of members

� MPI_Group_union and MPI_Group_intersection

creates a new group from two existing groups.

To get an existing group, use

MPI_Comm_group(oldcomm, &group);

Free a group with

MPI_Group_free(&group);

84

Datatypes and Heterogenity

MPI datatypes have two main purposes

� Heterogenity | parallel programs

between di�erent processors

� Noncontiguous data | structures,

vectors with non-unit stride, etc.

Basic datatype, corresponding to the

underlying language, are prede�ned.

The user can construct new datatypes at run

time; these are called derived datatypes.

101

Datatypes in MPI

Elementary: Language-de�ned types (e.g.,

MPI_INT or MPI_DOUBLE_PRECISION)

Vector: Separated by constant \stride"

Contiguous: Vector with stride of one

Hvector: Vector, with stride in bytes

Indexed: Array of indices (for

scatter/gather)

Hindexed: Indexed, with indices in bytes

Struct: General mixed types (for C structs

etc.)

102

The MPI Timer

The elapsed (wall-clock) time between two

points in an MPI program can be computed

using MPI_Wtime:

double t1, t2;

t1 = MPI_Wtime();

...

t2 = MPI_Wtime();

printf("Elapsed time is %f\n", t2 - t1);

The value returned by a single call to

MPI_Wtime has little value.

� The times are local; the attribute

MPI WTIME IS GLOBAL may be used to determine

if the times are also synchronized with each

other for all processes in MPI COMM WORLD.

139

Sharable MPI Resources

� The Standard itself:

{ As a Technical report: U. of Tennessee.

report

{ As postscript for ftp: at info.mcs.anl.gov in

pub/mpi/mpi-report.ps.

{ As hypertext on the World Wide Web:

http://www.mcs.anl.gov/mpi

{ As a journal article: in the Fall issue of the

Journal of Supercomputing Applications

� MPI Forum discussions

{ The MPI Forum email discussions and both

current and earlier versions of the Standard

are available from netlib.

� Books:

{ Using MPI: Portable Parallel Programming

with the Message-Passing Interface, by

Gropp, Lusk, and Skjellum, MIT Press, 1994

{ MPI Annotated Reference Manual, by Otto,

et al., in preparation.

151

Sharable MPI Resources, continued

� Newsgroup:

{ comp.parallel.mpi

� Mailing lists:

{ mpi-comm@mcs.anl.gov: the MPI Forum

discussion list.

{ mpi-impl@mcs.anl.gov: the implementors'

discussion list.

� Implementations available by ftp:

{ MPICH is available by anonymous ftp from

info.mcs.anl.gov in the directory

pub/mpi/mpich, �le mpich.tar.Z.

{ LAM is available by anonymous ftp from

tbag.osc.edu in the directory pub/lam.

{ The CHIMP version of MPI is available by

anonymous ftp from ftp.epcc.ed.ac.uk in the

directory pub/chimp/release.

� Test code repository:

{ ftp://info.mcs.anl.gov/pub/mpi/mpi-test

152

MPI-2

� The MPI Forum (with old and new participants)

has begun a follow-on series of meetings.

� Goals

{ clarify existing draft

{ provide features users have requested

{ make extensions, not changes

� Major Topics being considered

{ dynamic process management

{ client/server

{ real-time extensions

{ \one-sided" communication (put/get, active

messages)

{ portable access to MPI system state (for

debuggers)

{ language bindings for C++ and Fortran-90

� Schedule

{ Dynamic processes, client/server by SC '95

{ MPI-2 complete by SC '96

153

Providing Transparent
FT within MPI

1. Modify an existing MPI
implementation.

2. Write a “thin” layer on top of
MPI

– Lack of FIFO properties.
– After failure, reposting send

and receive buffers.
– No process management in

MPI-1.
– A lot of bookkeeping has to

be recovered…

The MPI Objects

MPI Request Handle for nonblocking

communication, normally freed by MPI in

a test or wait

MPI Datatype MPI datatype. Free with

MPI_Type_free.

MPI Op User-de�ned operation. Free with

MPI_Op_free.

MPI Comm Communicator. Free with

MPI_Comm_free.

MPI Group Group of processes. Free with

MPI_Group_free.

MPI Errhandler MPI errorhandler. Free with

MPI_Errhandler_free.

134

