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Abstract

This paper studies the equational theories of various exotic semirings presented in the literature.
Exotic semirings are semirings whose underlying carrier set is some subset of the set of real
numbers equipped with binary operations of minimum or maximum as sum, and addition as
product. Two prime examples of such structures are the (max;+) semiring and the tropical
semiring. It is shown that none of the exotic semirings commonly considered in the literature
has a 2nite basis for its equations, and that similar results hold for the commutative idempotent
weak semirings that underlie them. For each of these commutative idempotent weak semirings,
the paper o4ers characterizations of the equations that hold in them, decidability results for their
equational theories, explicit descriptions of the free algebras in the varieties they generate, and
relative axiomatization results.
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1. Introduction

Exotic semirings, i.e., semirings whose underlying carrier set is some subset of the
set of real numbers R equipped with binary operations of minimum or maximum
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as sum, and addition as product, have been invented and reinvented many times since
the late 1950s in various 2elds of research. This family of structures consists of
semirings whose sum operation is idempotent—two prime examples are the (max;+)
semiring

(R ∪ {−∞};max;+;−∞; 0)
(see [5, Chap. 3] for a general reference), and the tropical semiring

(N ∪ {∞};min;+;∞; 0)
introduced in [35]. (Henceforth, we shall write ∨ and ∧ for the binary maximum
and minimum operations, respectively.) Interest in idempotent semirings arose in the
1950s through the observation that some problems in discrete optimization could be lin-
earized over such structures (see, e.g., [10] for some of the early references and [40]
for a survey). Since then, the study of idempotent semirings has forged productive
connections with such diverse 2elds as, e.g., performance evaluation of manufactur-
ing systems, discrete event system theory, graph theory (path algebra), Markov deci-
sion processes, Hamilton-Jacobi theory, asymptotic analysis (low temperature asymp-
totics in statistical physics, large deviations), and automata and language theory (au-
tomata with multiplicities). The interested reader is referred to [14] for a survey of
these more recent developments, and to [12] for further applications of the (max;+)
semiring. Here we limit ourselves to mentioning some of the applications of vari-
ations on the tropical semiring in automata theory and the study of formal power
series.
The tropical semiring (N∪{∞};∧;+;∞; 0) was originally introduced by Simon

in his positive solution (see [35]) to Brzozowski’s celebrated 2nite power property
problem—i.e., whether it is decidable if a regular language L has the property that, for
some m¿0,

L∗ = 1 + L+ · · ·+ Lm:
The basic idea in Simon’s argument was to use automata with multiplicities in the
tropical semiring to reformulate the 2nite power property as a Burnside problem. (The
original Burnside problem asks if a 2nitely generated group must necessarily be 2nite if
each element has 2nite order [7].) The tropical semiring was also used by Hashiguchi
in his independent solution to the aforementioned problem [16], and in his study of
the star height of regular languages (see, e.g., [17–19]). (For a tutorial introduction
on how the tropical semiring is used to solve the 2nite power property problem, we
refer the reader to [32].) The tropical semiring also plays a key role in Simon’s study
of the nondeterministic complexity of a standard 2nite automaton [37]. In his thesis
[26], Leung introduced topological ideas into the study of the limitedness problem for
distance automata (see also [27]). For an improved treatment of his solutions, and
further references, we refer the reader to [28]. Further examples of applications of the
tropical semiring may be found in, e.g., [24,25,36].
The study of automata and regular expressions with multiplicities in the tropical

semiring is by now classic, and has yielded many beautiful and deep



L. Aceto et al. / Theoretical Computer Science 298 (2003) 417–469 419

results—whose proofs have relied on the study of further exotic semirings. For example,
Krob has shown that the equality problem for regular expressions with multiplicities
in the tropical semiring is undecidable [22] by introducing the equatorial semiring
(Z∪{∞};∧;+;∞; 0), showing that the equality problem for it is undecidable, and
2nally proving that the two decidability problems are equivalent. Partial decidability
results for certain kinds of equality problems over the tropical and equatorial semirings
are studied in [23].
Another classic question for the language of regular expressions, with or without

multiplicities, is the study of complete axiom systems for them (see, e.g., [9,21,33]).
Along this line of research, Bonnier-Rigny and Krob have o4ered a complete system of
identities for one-letter regular expressions with multiplicities in the tropical semiring
[6]. However, to the best of our knowledge, there has not been a systematic investiga-
tion of the equational theories of the di4erent exotic semirings studied in the literature.
This is the aim of this paper.
Our starting points are the results we obtained in [1,2]. In [1] we studied the equa-

tional theory of the max-plus algebra of the natural numbers N∨ =(N;∨;+; 0), and
proved that not only its equational theory is not 2nitely based, but, for every natural
number n, the equations in at most n variables that hold in it do not form an equational
basis. Another view of the non-existence of a 2nite basis for the variety generated by
this algebra is o4ered in [2], where we showed that the collection of equations in two
variables that hold in it has no 2nite equational axiomatization.
The algebra N∨ is an example of a structure that we call in this paper commuta-

tive idempotent weak semiring (abbreviated henceforth to ciw-semiring). Since ciw-
semirings underlie many of the exotic semirings studied in the literature, we begin
our investigations in this paper by systematically generalizing the results from [1] to
the structures Z∨ =(Z;∨;+; 0) and N∧ =(N;∧;+; 0). Our initial step in the study
of the equational theories of these ciw-semirings is the geometric characterization of
the (in)equations that hold in them (Propositions 17 and 19). These characterizations
pave the way to explicit descriptions of the free algebras in the varieties V(Z∨) and
V(N∧) generated by Z∨ and N∧, respectively, (Theorems 23 and 24) and yield 2nite
axiomatizations of the varieties V(N∨) and V(N∧) relative to V(Z∨) (Theorem 30).
We then show that, like V(N∨), the varieties V(Z∨) and V(N∧) are not 2nitely
based. The non-2nite axiomatizability of the variety V(Z∨) (Theorem 30) is a con-
sequence of the similar result for V(N∨) and of its 2nite axiomatizability relative to
V(Z∨).
The proof of the non-existence of a 2nite basis for the variety V(N∧) (Theorem 31)

is more challenging, and proceeds as follows. For each n¿3, we 2rst isolate an equation
e∧n in n variables which holds in V(N∧). We then prove that no 2nite collection of
equations that hold in V(N∧) can be used to deduce all of the equations of the form
e∧n . The proof of this technical result is model-theoretic in nature. More precisely, for
every natural number n¿3, we construct an algebra Bn satisfying all the equations
in at most n − 1 variables that hold in V(N∧), but in which e∧n fails. Hence, as for
V(N∨), for every natural number n, the equations in at most n variables that hold in
V(N∧) do not form an equational basis for this variety. A similar strengthening of
the non-2nite axiomatizability result holds for the variety V(Z∨).
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We then move on to study the equational theories of the exotic semirings presented in
the literature that are obtained by adding bottom elements to the above ciw-semirings.
More speci2cally, we examine the following semirings:

Z∨;−∞ = (Z ∪ {−∞};∨;+;−∞; 0);
N∨;−∞ = (N ∪ {−∞};∨;+;−∞; 0)

and

N−
∨;−∞ = (N− ∪ {−∞};∨;+;−∞; 0);

where N− stands for the set of non-positive integers. Since Z∨;−∞ and N−
∨;−∞ are

easily seen to be isomorphic to the semirings

Z∧;∞ = (Z ∪ {∞};∧;+;∞; 0)
and

N∧;∞ = (N ∪ {∞};∧;+;∞; 0);
respectively, the results that we obtain apply equally well to these algebras. (The
semirings Z∧;∞ and N∧;∞ are usually referred to as the equatorial semiring [22]
and the tropical semiring [35], respectively. The semiring N∨;−∞ is called the polar
semiring in [24].)
Our study of the equational theories of these algebras will proceed as follows. First,

we shall o4er some general facts relating the equational theory of a ciw-semiring A
to that of the free commutative idempotent semiring A⊥ it generates. In particular,
in Section 4.1 we shall relate the non-2nite axiomatizability of the variety V(A⊥)
generated by A⊥ to the non-2nite axiomatizability of the variety V(A) generated by A.
Then, in Section 4.2, we shall apply our general study to derive the facts that all of the
tropical semirings studied in this paper have exponential time decidable, but non-2nitely
based equational theories. Our general results, together with those proven in Section 3,
will also give geometric characterizations of the valid equations in the tropical semirings
Z∨;−∞ and N−

∨;−∞, but not in N∨;−∞. The task of providing a geometric description
of the valid equations for the semiring N∨;−∞ will be accomplished in Section 4.3,
where we shall also show that V(N∨;−∞) can be axiomatized over V(Z∨;−∞) by a
single equation.
Some semirings studied in the literature are obtained by adding a top element 	 to a

ciw-semiring A in lieu of a bottom element. We examine the general relationships that
exist between the equational theory of a ciw-semiring A and that of the semiring A�
so generated in Section 5. This general theory, together with the previously obtained
non-2nite axiomatizability results, is then applied to show that several semirings with
	 are not 2nitely based either.
We conclude our investigations by examining some variations on the aforementioned

semirings. These include, amongst others, structures whose carrier sets are the (non-
negative) rational or real numbers (Section 6.1), semirings whose product operation is
standard multiplication (Section 6.2), the semirings studied by Mascle and Leung in
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[30,26,27], respectively, (Section 6.3), and a min-plus algebra based on the ordinals
proposed by Mascle in [29] (Section 6.4). For all of these structures, we o4er results
to the e4ect that their equational theory is not 2nitely based, and has no axiomatization
in a bounded number of variables.
Throughout the paper, we shall use standard notions and notations from universal

algebra that can be found, e.g., in [8,13].
This paper collects, and improves upon, all of the results 2rst announced without

proof in [3,4]. In addition, the material in Sections 5 and 6 is new.

2. Preliminaries

We begin by introducing some notions that will be used in the technical develop-
ments to follow.
A commutative idempotent weak semiring (henceforth abbreviated to ciw-semiring)

is an algebra A=(A;∨;+; 0) such that (A;∨) is an idempotent commutative semigroup,
i.e., a semilattice, (A;+; 0) is a commutative monoid, and such that addition distributes
over the ∨ operation. Thus, the following equations hold in A:

x ∨ (y ∨ z) = (x ∨ y) ∨ z
x ∨ y= y ∨ x
x ∨ x= x

x + (y + z) = (x + y) + z

x + y= y + x

x + 0= x

x + (y ∨ z) = (x + y) ∨ (x + z):

A ciw-semiring A is positive if

x ∨ 0 = x

holds in A. It then follows that

x ∨ (x + y) = x + y (1)

also holds in A. A homomorphism of ciw-semirings is a function which preserves the
∨ and + operations and the constant 0.
A commutative idempotent semiring, or ci-semiring for short, is an algebra (A;∨;

+;⊥; 0) such that (A;∨;+; 0) is a ciw-semiring which satis2es the equations

x ∨ ⊥ = x

and

x +⊥ = ⊥:
A homomorphism of ci-semirings also preserves ⊥.
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Suppose that A=(A;∨;+; 0) is a structure equipped with binary operations ∨ and
+ and the constant 0. Assume that ⊥�∈A and let A⊥ =A∪{⊥}. Extend the operations
∨ and + given on A to A⊥ by de2ning

a ∨ ⊥ = ⊥ ∨ a = a
a+⊥ = ⊥+ a = ⊥;

for all a∈A⊥. We shall write A⊥ for the resulting algebra (A⊥;∨;+;⊥; 0), and A(⊥)
for the algebra (A⊥;∨;+; 0) obtained by adding ⊥ to the carrier set, but not to the
signature.

Lemma 1. For each ciw-semiring A, the algebra A⊥ is a ci-semiring.

Remark 2. In fact, A⊥ is the free ci-semiring generated by A.

Let Eciw denote the set of de2ning axioms of ciw-semirings, Eci the set of axioms
of ci-semirings, and E+ciw the set of axioms of positive ciw-semirings. Note that Eciw
is included in both Eci and E+ciw. Moreover, let Vciw denote the variety axiomatized by
Eciw ;Vci the variety axiomatized by Eci and V+

ciw the variety axiomatized by E+ciw. Thus,
Vci is the variety of all ci-semirings and V+

ciw the variety of all positive ciw-semirings.
Since Eciw ⊆Eci and Eciw ⊆E+ciw, it follows that Vciw includes both V+

ciw and the reduct
of any algebra in Vci obtained by forgetting about the constant ⊥.

Remark 3. If an equation t= u can be derived from Eciw or E+ciw, then the set of
variables occurring in t coincides with the set of variables occurring in u. In light of
axiom x +⊥=⊥, this does not hold true for the equations derivable from Eci.

Notation 4. In the remainder of this paper, we shall use nx to denote the n-fold addition
of x with itself, and we take advantage of the associativity and commutativity of the
operations. By convention, nx stands for 0 when n=0. In the same way, the empty
sum is de2ned to be 0.
For each integer n¿0, we use [n] to stand for the set {1; : : : ; n}, so that [0] is

another name for the empty set.
Finally, we sometimes write t(x1; : : : ; xn) to emphasize that the variables occurring

in the term t are amongst x1; : : : ; xn.

Lemma 5. With respect to the axiom system Eciw, every term t in the language of
ciw-semirings, in the variables x1; : : : ; xn, may be rewritten in the form

t =
∨
i∈[k]
ti

where k ¿ 0, each ti is a “linear combination”

ti =
∑
j∈[n]
cijxj

of the variables x1; : : : ; xn, and each cij is in N.
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Terms of the form
∨
i∈[k] ti, where each ti (i∈ [k]; k¿0) is a linear combination of

variables, will be referred to as simple terms. When k =0, the term
∨
i∈[k] ti is just ⊥.

(Note that k =0 is only allowed for ci-semirings.)

Lemma 6. With respect to the axiom system Eci, every term t in the language of
ci-semirings, in the variables x1; : : : ; xn, may be rewritten in the form

t =
∨
i∈[k]
ti

where k¿0, each ti is a “linear combination”

ti =
∑
j∈[n]
cijxj

of the variables x1; : : : ; xn, and each cij is in N.

For any commutative idempotent (weak) semiring A and a; b∈A, we write a6b
to mean a∨ b= b. In any such structure, the relation 6 so de2ned is a partial order,
and the + and ∨ operations are monotonic with respect to it. Similarly, we say that
an inequation t6t′ between terms t and t′ holds in A if the equation t ∨ t′ = t′ holds.
We shall write A |= t= t′ (respectively, A |= t6t′) if the equation t= t′ (resp., the
inequation t6t′) holds in A. (In that case, we say that A is a model of t= t′ or
t6t′, respectively.) If A is a class of ciw-semirings, we write A |= t= t′ (respectively,
A |= t6t′) if the equation t= t′ (resp., the inequation t6t′) holds in every A∈A. Note
that, if A is in the variety V+

ciw, then the inequation 06x holds in A.

De nition 7. A simple inequation (sometimes referred to as simple ∨-inequation for
the sake of clarity) in the variables x1; : : : ; xn is of the form

t 6
∨
i∈[k]
ti;

where k¿0, and t and the ti (i∈ [k]) are linear combinations of the variables x1; : : : ; xn.
We say that the left-hand side of the above simple inequation contains the variable xj,
or that xj appears on the left-hand side of the simple inequation, if the coeRcient of
xj in t is non-zero. Similarly, we say that the right-hand side of the above inequation
contains the variable xj if for some i∈ [k], the coeRcient of xj in ti is non-zero.

Note that, for every linear combination t over variables x1; : : : ; xn, the inequation
t6⊥ is not a simple inequation.

Corollary 8. With respect to the axiom system Eciw, any equation in the language
of ciw-semirings is equivalent to a @nite set of simple inequations. Similarly, with
respect to Eci, any equation in the language of ci-semirings is equivalent to a @nite
set of simple inequations or to an inequation of the form x6⊥ (in which case the
equation has, in conjunction with Eci, only trivial models).
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Proof. Let t= u be an equation in the language of ciw-semirings. By Lemma 5, using
Eciw we can rewrite t and u to simple terms

∨
i∈[k] ti and

∨
j∈[l] uj (k; l¿0), respec-

tively. It is now immediate to see that the equation t= u is equivalent to the family
of simple inequations{

ti 6
∨
j∈[l]
uj; uj 6

∨
i∈[k]
ti: i ∈ [k]; j ∈ [l]

}
:

Assume now that t= u is an equation in the language of ci-semirings. By Lemma
6, using Eci we can rewrite t and u to simple terms

∨
i∈[k] ti and

∨
j∈[l] uj (k; l¿0),

respectively. If k; l are both positive or both equal to zero, then the equation t= u is
equivalent to the 2nite set of simple inequations given above. (Note that, if k and l
are both 0, then this set is empty, and the original equation is equivalent to ⊥=⊥.)
If k =0 and l¿0, say, then the equation is equivalent, modulo Eci, to x6⊥. Indeed,
in this case, the set of simple inequations given above becomes

{uj 6 ⊥: j ∈ [l]}:

Substituting 0 for every variable occurring in u1, we derive, using Eci, that

06 ⊥:

Thus any ci-semiring satisfying this equation is positive. By adding x to both sides of
the above inequation, we can infer, again using Eci, the inequation

x 6 ⊥;

which was to be shown.

Notation 9. Henceforth in this study, we shall often abbreviate a simple inequation∑
j∈[n]
djxj 6

∨
i∈[k]

∑
j∈[n]
cijxj;

in the variables Sx=(x1; : : : ; xn), as Sd6{ Sc1; : : : ; Sck}, where Sd=(d1; : : : ; dn) and Sci=(ci1;
: : : ; cin), for i∈ [k]. We shall sometimes refer to these inequations as simple ∨-inequa-
tions. Moreover, we shall often use Sd · Sx as a shorthand for

d1x1 + · · ·+ dnxn:

The · will often be omitted from Sd · Sx.

In the main body of the paper, we shall also study some ciw-semirings that, like
the structure N∧ =(N;∧;+; 0), have the minimum operation in lieu of maximum.
The preliminary results that we have developed in this section apply equally well
to these structures. In particular, the axioms for ciw-semirings dealing with ∨ become
the standard ones describing the obvious identities for the minimum operation, and its
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interplay with +, i.e.,

x ∧ (y ∧ z) = (x ∧ y) ∧ z
x ∧ y= y ∧ x
x ∧ x= x

x + (y ∧ z) = (x + y) ∧ (x + z):

Note that, for ciw-semirings of the form (A;∧;+; 0), the partial order ¿ is de2ned by
b¿a i4 a∧ b= a. In De2nition 7, we introduced the notion of simple ∨-inequation.
Dually, we say that a simple ∧-inequation in the variables Sx=(x1; : : : ; xn) is an in-
equation of the form

Sd · Sx ¿ ∧
i∈[k]

Sci · Sx;

where Sd and the Sci (i∈ [k]) are vectors in Nn. We shall often write

Sd¿ { Sc1; : : : ; Sck}
as a shorthand for this inequation.

3. Min-max-plus weak semirings

Our aim in this section will be to study the equational theories of the ciw-semirings
that underlie most of the tropical semirings studied in the literature. More speci2cally,
we shall study the following ciw-semirings:

Z∨ = (Z;∨;+; 0);
N∨ = (N;∨;+; 0);
N∧ = (N;∧;+; 0);

equipped with the usual addition operation +, constant 0 and one of the operations ∨
(for the maximum of two numbers) and ∧ (for the minimum of two numbers), i.e.,

x ∨ y = max{x; y}
and

x ∧ y = min{x; y}:
We shall sometimes use the fact that Z∨ and N∧ are isomorphic to the ciw-semirings

Z∧ = (Z;∧;+; 0)
and

N−
∨ = (N−;∨;+; 0);

respectively, where N− stands for the set of non-positive integers.
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Our study of the equational theories of these algebras will be based on the following
uniform pattern. First, we o4er geometric characterizations of the simple inequations
that hold in these ciw-semirings (Section 3.2). These characterizations pave the way to
concrete descriptions of the free algebras in the varieties generated by the algebras we
study, and yield relative axiomatization and decidability results (Section 3.3). Finally
we show that none of the ciw-semirings we study is 2nitely based (Section 3.4). All
of these technical results rely on a study of properties of convex sets, 2lters and ideals
in Zn and Nn presented in the following section.

3.1. Convex sets, @lters and ideals

Suppose that Sv1; : : : ; Svk (k¿0) are vectors in Zn or, more generally, in Rn. A convex
linear combination of the Svi (i∈ [k]) is any vector Sv∈Rn which can be written as

Sv = �1 Sv1 + · · ·+ �k Svk ;

where �i¿0; i∈ [k], are real numbers with
∑k
i=1 �i=1.

De nition 10. Suppose that U is any subset of Zn. We call U a convex set if every
vector in Zn that is a convex linear combination of vectors in U is also contained
in U .
Suppose that U ⊆Nn. We call U an (order) ideal if for all Su; Sv in Nn, whenever

Su6Sv, with respect to the pointwise order over Nn, and Sv∈U then Su∈U . Moreover,
we call U a @lter, if for all Su and Sv as above, if Su∈U and Su6Sv then Sv∈U . A convex
ideal (respectively, convex @lter) in Nn is any ideal (resp., 2lter) which is a convex
set.

Note that order ideals and 2lters are sometimes referred to as lower and upper sets,
respectively.
The following fact is easy to prove:

Proposition 11. The intersection of any number of convex sets in Zn is convex. More-
over, the intersection of any number of convex ideals (convex @lters) in Nn is a convex
ideal (convex @lter, respectively).

Thus each set U ⊆Zn is contained in a smallest convex set [U ] which is the inter-
section of all convex subsets of Zn containing U . We call [U ] the convex set generated
by U , or the convex hull of U . When Su∈Zn, below we shall sometimes write [ Su] for
[{ Su}]. Observe that { Su} is convex, so that [ Su] = [{ Su}] = { Su}.
Note that we have [U ]⊆Nn whenever U ⊆Nn.
The following proposition provides an explicit description of [U ], for any given

U ⊆Zn. It relies on the well-known fact that any convex linear combination of convex
linear combinations of some vectors Sv1; : : : ; Svk ∈Zn is itself a convex linear combination
of Sv1; : : : ; Svk .
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Proposition 12. Suppose that U ⊆Zn and Sv∈Zn. We have Sv∈ [U ] iA Sv is a convex
linear combination of some non-zero number of vectors in U.

Suppose now that U ⊆Nn. By Proposition 11, there are a smallest convex ideal
ci(U ) and a smallest convex 2lter cf(U ) in Nn containing U . We call ci(U ) and
cf(U ) the convex ideal and the convex 2lter generated by U , respectively.
For each set U ⊆Rn, de2ne the ideal (U ] generated by U thus

(U ] = { Sd ∈ Nn: ∃ Sc ∈ U: Sd6 Sc}:
Similarly, the 2lter [U ) generated by U is de2ned as

[U ) = { Sd ∈ Nn: ∃ Sc ∈ U: Sd¿ Sc}:
The following proposition will be useful in what follows. In its proof, and throughout
this study, we shall use Spi (i∈ [n]) to denote the ith unit vector in Rn, i.e., the vector
whose only non-zero component is a 1 in the ith position; S0 will denote the vector in
Rn whose entries are all zero. When Su∈Nn, below we shall sometimes write ( Su] and
[ Su) for ({ Su}] and [{ Su}), respectively.
In the following proposition, and in its proof, we write [U ]Rn for the convex hull

in Rn of a set U included in Nn.

Proposition 13. Suppose that U ⊆Nn. Then:
(1) ci(U )= [(U ]] = ([U ]Rn ] and
(2) cf(U )= [[U )]= [[U ]Rn).

Proof. We prove the two claims separately.
(1) Note, 2rst of all, that

[(U ]] ⊆ ci(U )

holds, as U is included in ci(U ), and ci(U ) is a convex ideal. Moreover, any convex
linear combination of vectors in ([U ]Rn ] is below a convex linear combination of
elements of U . It follows that ([U ]Rn ] is convex, and thus

ci(U ) ⊆ ([U ]Rn ]:

To complete the proof, it is therefore suRcient to show that ([U ]Rn ] is included in
[(U ]]. This is obvious if n=1. In order to proceed with the proof of this claim,
suppose now that

Sd6 �1 Sc1 + · · ·+ �k Sck
for some k¿0; Sd∈Nn; Sc1; : : : ; Sck ∈ U and �1; : : : ; �k¿0 with

∑
i∈[k] �i = 1. It suRces

to show that Sd is in the convex hull of the set (V ], where V = { Sc1; : : : ; Sck}. We shall
prove this by induction on

r = n+ w;

where w is the sum of all of the entries of the vectors Sc1; : : : ; Sck .
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The base case is when r=1. Then n=1 and we are done.
For the inductive step, suppose that r¿1. We proceed with the proof by distinguish-

ing two cases.
Case 1: If there exists some j∈ [n] with dj =0, then since we aim at showing that

Sd∈ [(V ]], without loss of generality, we may assume that, for this j, the jth component
of each Sci is 0—i.e., cij =0 for all i∈ [k]. We can then remove the jth components of
all the vectors to obtain Sd′ and Sc′1; : : : ; Sc

′
k of dimension n−1 with Sd′6�1 Sc′1+ · · ·+�k Sc′k .

Let W = { Sc′1; : : : ; Sc′k}. By induction, Sd′ is in the convex hull of (W ], so that Sd is in the
convex hull of (V ]. The case that n=1 is trivial.

Case 2: If the previous case does not apply, then dj¿0 for all j∈ [n]. In this case,
for each j∈ [n] there is some ij ∈ [k] with cijj¿1. Let Se= �1 Sc1 + · · · + �k Sck . If for
some j∈ [n]

Sd6 �1 Sc1 + · · ·+ �ij−1 Scij−1 + �ij ( Scij − Spj) + �ij+1 Scij+1 + · · ·+ �k Sck
= Se − �ij Spj;

where Spj denotes the jth unit vector in Nn, then, by induction, Sd is contained in the
convex hull of (W ], where W is the set

{ Sc1; : : : ; Scij−1; Scij − Spj; Scij+1; : : : Sck} ⊆ (V ]:

It follows that Sd is in the convex hull of (V ]. Otherwise, we have that

ej − �ij 6 dj 6 ej;

for all j∈ [n]. This means that Sd is inside the n-dimensional cube determined by the
vectors

SvK = Se − ∑
j∈K
�ij Spj;

where K ranges over all subsets of [n]. Since these vectors SvK are all in the convex
hull in Rn of (V ], it follows that Sd belongs to the convex hull of (V ], which was to
be shown.
(2) As in the proof of the 2rst claim, we can argue that

[[U )] ⊆ cf(U ) ⊆ [[U ]Rn):

To complete the proof, we show that [[U ]Rn) is included in [[U )].
To this end, let Sd∈ [[U ]Rn). This means that there is a convex linear combination

Sc= �1 Sc1 + · · ·+ �k Sck with Sd¿ Sc and { Sc1; : : : ; Sck}⊆U . Let Se be a vector in Nn which
is maximal with respect to the pointwise order such that

Sd¿ �1( Sc1 + Se) + · · ·+ �k Sck :
Then Sd∈ [[{ Sc1 + Se; : : : ; Sck}]Rn). As

[{ Sc1 + Se; : : : ; Sck}) ⊆ [{ Sc1; : : : ; Sck}) ⊆ [U );
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to prove the claim it is suRcient to show that Sd∈ [[{ Sc1+ Se; : : : ; Sck})]. Therefore, without
loss of generality, we may assume that Se= S0. Now we proceed with the proof as
follows. Let j∈ [n]. Since Sd is not greater than or equal to a convex linear combination
of Sc1 + Spj; Sc2; : : : ; Sck , where Spj denotes the jth unit vector in Nn, we have

Sd �¿ Sc + �1 Spj = �1( Sc1 + Spj) + �2 Sc2 + · · ·+ �k Sck :

Thus, for dj, viz. the jth component of Sd, it holds that

k∑
i=1
�jcij 6 dj ¡ �1 +

k∑
i=1
�jcij:

As before, for any i∈ [k]; cij denotes the jth component of Sci. For each K ⊆ [n], de2ne

ScK = Sc +
∑
j∈K
�1 Spj = �1

(
Sc1 +

∑
j∈K

Spj

)
+ �2 Sc2 + · · ·+ �k Sck ;

so that Sc∅ = Sc and each ScK is a convex linear combination of vectors in [{ Sc1; : : : ; Sck}).
The vectors ScK determine an n-dimensional cube, and, by the above reasoning, Sd is in
this cube. Therefore, Sd is a convex linear combination of the ScK . In conclusion, Sd is a
convex linear combination of vectors in [{ Sc1; : : : ; Sck})⊆ [U ), which was to be shown.

Remark 14. It is interesting to note that the equalities ci(U )= ([U ]] and cf(U )= [[U ])
fail. In fact, the ideal and the 2lter generated by a convex set are, in general, not convex.
Consider, for example, the case n=2 and U = {(0; 2); (3; 0)}. Then U is convex (cf.
De2nition 10) since no non-trivial convex combination of the two vectors in U yields a
point in N2. Hence ([U ]] = (U ] which contains (0; 2) and (2; 0). However, the convex
combination

1
2
(0; 2) +

1
2
(2; 0) = (1; 1)

does not belong to (U ]. Similarly, the 2lter [[U ])= [U ) contains (1; 2) and (3; 0), but
not

1
2
(1; 2) +

1
2
(3; 0) = (2; 1):

Thus, it is not convex and cannot be equal to cf(U ) or to [[U )].

Henceforth, we shall use [(U ]] and [[U )] to denote the convex ideal and the convex
2lter generated by U , respectively. This notation is justi2ed by the above proposition.

Corollary 15. A set U ⊆Nn is a convex ideal (respectively, convex @lter) iA for
every Sd∈Nn, whenever Sd6�1 Sc1 + · · · + �k Sck (resp., Sd¿�1 Sc1 + · · · + �k Sck) where
k¿0; �i¿0; Sci ∈U (i∈ [k]) and

∑k
i=1 �i=1, it follows that Sd∈U .
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Remark 16. Each 2lter in Nn, be it convex or not, is 2nitely generated. Indeed, the
set of minimal elements, with respect to the pointwise partial order, in any 2lter in
Nn is 2nite, since any antichain in Nn is 2nite. Moreover, it is easy to see that it
generates the 2lter, and is, in fact, its unique minimal set of generators with respect to
set inclusion.
Each 2nite convex set in Zn has a unique minimal generating set. Indeed, the col-

lection of vertices of such a set is its only minimal set of generators [39, Section 3.1].
(We recall that a vertex of a convex set is a point that cannot be expressed as a con-
vex linear combination of other points in the set—see, e.g., [39, p. 80].) Each 2nite
(convex) ideal in Nn also has a unique minimal generating set.

3.2. Characterization of valid inequations

Recall that a simple ∨-inequation in the variables Sx=(x1; : : : ; xn) is an inequation of
the form

Sd Sx 6 Sc1 Sx ∨ · · · ∨ Sck Sx; (2)

where k¿0, and Sd; Sc1; : : : ; Sck ∈Nn. Similarly, a simple ∧-inequation is of the form

Sd Sx ¿ Sc1 Sx ∧ · · · ∧ Sck Sx; (3)

where k; Sd, and Sci (i∈ [k]) are as above. We recall that (2) holds in a ciw-semiring
A∨ =(A;∨;+; 0) if the equation

Sd Sx ∨ Sc1 Sx ∨ · · · ∨ Sck Sx = Sc1 Sx ∨ · · · ∨ Sck Sx

does, i.e., when for all Sv∈An,
Sd Sv6 Sc1 Sv ∨ · · · ∨ Sck Sv:

Similarly, we say that (3) holds in a ciw-semiring A∧ =(A;∧;+; 0) if the equation

Sd Sx ∧ Sc1 Sx ∧ · · · ∧ Sck Sx = Sc1 Sx ∧ · · · ∧ Sck Sx

does. Let U denote the set { Sc1; : : : ; Sck}. We recall that we shall sometimes abbreviate
(2) as Sd6U and (3) as Sd¿U . For some structures, such as Z∨, it also makes sense to
de2ne when a simple inequation Sd6U holds in Z∨, where Sd∈Zn and U = { Sc1; : : : ; Sck}
is a 2nite non-empty set of vectors in Zn.
We now proceed to characterize the collection of simple inequations (possibly with

negative coeRcients) that hold in the algebra Z∨ (and, thus, in its isomorphic version
Z∧).

Proposition 17. Suppose that Sd∈Zn and U = { Sc1; : : : ; Sck} is a non-empty, @nite set
of vectors in Zn. Then the simple inequation Sd6U holds in Z∨ iA Sd belongs to the
set [U ].

Proof. It is suRcient to prove this claim when Sd= S0, for otherwise we can replace Sd
by S0, the vector in Zn whose components are all 0, and U by U − Sd= { Su− Sd: Su∈U},
respectively.
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Suppose that S0∈ [U ], i.e., that there exist real numbers �1; : : : ; �k¿0 with
∑k
i=1 �i=1

such that

S0 = �1 Sc1 + · · ·+ �k Sck :

Thus, 0= �1 Sc1 Su+ · · ·+ �k Sck Su for all Su∈Zn. Since the �i are non-negative and at least
one of them is non-zero, this is possible only if for each Su∈Zn there exists some
i0 ∈ [k] with 06 Sci0 Su. It thus follows that S06U holds in Z∨.
To prove the other direction, suppose that S0 �∈ [U ]. We proceed to prove that S06U

does not hold in Z∨. To this end, we shall 2rst exhibit a vector Su∈Rn such that
Sci Su¡0, for all i∈ [k], i.e., such that for every i∈ [k], the vectors Sci and Sv= − Su make
an acute angle. But such a Su is easy to 2nd: let Su be a vector in the convex hull in
Rn of U whose endpoint is closest to the origin. (This exists, since the convex hull in
Rn of U is a closed set.)
Let S denote the hyperplane passing through Su and perpendicular to it. Let H stand

for the halfspace determined by S which contains S0. If Sw is any point in the convex
hull in Rn of U contained in H other than Su, then the line segment determined by
Sw and Su would contain a point in the convex hull in Rn of U closer to S0 than Su,
contradicting our assumption about the vector Su. Hence the vectors Sci (i ∈ [k]) and
Su make an obtuse angle. It thus follows that the vectors Sci (i ∈ [k]) and Sv make an
acute angle, as claimed.
Next we note that, for all i∈ [k], the function Sx �→ Sci · Sx is continuous. Therefore, for

each such i, there is a positive real number #i such that Sci · Sx¡0 whenever | Su− Sx|¡#i
(where we use | Su − Sx| to denote the length of the vector Su − Sx). Now take # to be
smallest amongst the #i (i∈ [k]). Then, for all i∈ [k], it holds that Sci · Sx¡0 whenever
| Su − Sx|¡#. In particular there must be a vector Sx with rational coeRcients with this
property. From this we derive easily that there must be a Sw∈Zn with Sci · Sw¡0 for all
i∈ [k]. This shows that S06U does not hold in Z∨, which was to be shown.

Our order of business now will be to o4er characterizations of the collections of
simple inequations that hold in the algebras N∨ and N∧. The following result con-
nects the simple inequations that hold in these algebras, and will be useful to this
e4ect.

Lemma 18. For any Sd; Sc1; : : : ; Sck in Nn, where k¿0,

Sd6 { Sc1; : : : ; Sck} (4)

holds in N∨ iA

Se − Sd¿ { Se − Sc1; : : : ; Se − Sck} (5)

holds in N∧, where for each i∈ [n], the ith component of Se∈Nn is the maximum of
the ith components of Sd and the Scj (j∈ [k]). In the same way,

Sd¿ { Sc1; : : : ; Sck}
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holds in N∧ iA

Se − Sd6 { Se − Sc1; : : : ; Se − Sck}
holds in N∨, where Se is de@ned as above.

Proof. We only prove the 2rst statement of the lemma. Eq. (4) holds in N∨ i4

∀ Sx ∈ Nn: Sd Sx 6 Sc1 Sx ∨ · · · ∨ Sck Sx

⇔∀ Sx ∈ Nn∃j ∈ [k]: Sd Sx 6 Scj Sx

⇔∀ Sx ∈ Nn∃j ∈ [k]: ( Se − Sd) Sx ¿ ( Se − Scj) Sx

⇔∀ Sx ∈ Nn: ( Se − Sd) Sx ¿ ( Se − Sc1) Sx ∧ · · · ∧ ( Se − Sck) Sx;

viz. i4 (5) holds in N∧.

The above lemma expresses a “duality” between the equational theories of N∨ and
N∧. Note, however, that the equational theory of N∧ is not the formal dual of the
theory of N∨, since the equations

x ∨ 0 = x

and

x ∧ 0 = 0

are not formal duals of each other.
Using Lemma 18 and results from [1], we are now in a position to o4er the promised

characterizations of the valid simple inequations in N∨ and N∧.

Proposition 19. Suppose that Sd∈Nn and U is a @nite non-empty set of vectors
in Nn.
(1) The simple inequation Sd6U holds in N∨ iA Sd belongs to the set [(U ]].
(2) The simple inequation Sd¿U holds in N∧ iA Sd belongs to the set [[U )].

Proof. The 2rst claim is proved in [1]. The second follows from the 2rst and
Lemma 18. Let U = { Sc1; : : : ; Sck}, say. Let Se∈Nn denote the vector whose jth compo-
nent is the maximum of the jth components of Sd and the Sci, for each i∈ [k]. We know
that Sd¿{ Sc1; : : : ; Sck} holds in N∧ i4 Se − Sd6{ Se − Sc1; : : : ; Se − Sck} holds in N∨. But by
the 2rst claim in the lemma this holds i4 there exist real numbers �j¿0; j∈ [k], with∑k
j=1 �j =1 and

Se − Sd6 �1( Se − Sc1) + · · ·+ �k( Se − Sck);

i.e., when

Sd¿ �1 Sc1 + · · ·+ �k Sck ;
which was to be shown.
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As a corollary of Propositions 17 and 19, we obtain decidability results for the
equational theories of the algebras Z∨;N∨ and N∧.

Corollary 20. There exists an exponential time algorithm to decide whether an equa-
tion holds in the structures Z∨;N∨ and N∧. Moreover, it is decidable in polynomial
time whether a simple inequation holds in these structures.

Proof. The problem of deciding whether an equation holds in Z∨; N∨ and N∧, can
be reduced to deciding whether a 2nite set of simple inequations holds (Corollary 8).
The obvious reduction may result in a number of simple inequations that is exponential
in the number of variables, and where each simple inequation has size that is linear
in that of the original equation. However, the validity of a simple inequation can be
tested in polynomial time by using linear programming (see, e.g., [34]). The interested
reader is referred to [1] for more information.

Remark 21. The decidability of the equational theories of the structures Z∨; N∨ and
N∧ also follows from well-known results in logic on the decidability of Presburger
arithmetic—the 2rst-order theory of addition on the natural numbers—and related the-
ories. For example, it is well known (see, e.g., [31, Chap. 13] for a classic presentation)
that the 2rst-order theory with equality of the structure

(Z;+;¡; 0; 1;−)

is decidable, and the validity of any simple inequation in Z∨ can easily be reduced to
the validity of a 2rst-order sentence over the language of the above structure.

It is interesting to compare the above result on the complexity of the equational the-
ory of N∨ and N∧ with the classic results by Fischer and Rabin [11] on the complexity
of the 2rst-order theory of the real numbers under addition, and of Presburger arith-
metic. There is a 2xed constant c¿0 such that for every (non-deterministic) decision
procedure for determining the truth of sentences of real addition and for all suRciently
large n, there is a sentence of length n for which the decision procedure runs for more
than 2cn steps. In the case of Presburger arithmetic, the corresponding lower bound is
22
cn
. The lower bound 22

cn
applies mutatis mutandis to the 2rst-order theory of the

algebras N∨ and N∧.

3.3. Free algebras and relative axiomatizations

Let C(Nn); CI(Nn) and CF(Nn) denote the sets of all 2nite non-empty convex
sets, 2nite non-empty convex ideals, and non-empty convex 2lters in Nn, respec-
tively. We turn each of these sets into a ciw-semiring. Suppose that U; V ∈C(Nn).
First of all, recall that the complex sum of U and V , notation U⊕V , is de2ned
thus:

U ⊕ V = { Su+ Sv: Su ∈ U; Sv ∈ V}:
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We de2ne

U ∨ V = [U ∪ V ];
U + V = [U ⊕ V ];

0 = [ S0] = { S0}:
We de2ne the operations in CI(Nn) and CF(Nn) in a similar fashion. Suppose that
U; V ∈CI(Nn) and U ′; V ′ ∈CF(Nn). We set

U ∨ V = [(U ∪ V ]];
U + V = [(U ⊕ V ]];
U ′ ∧ V ′ = [[U ′ ∪ V ′)];

U ′ + V ′ = [[U ′ ⊕ V ′)]:

Moreover, we de2ne 0= (S0]= {S0} in CI(Nn), and 0= [S0)=Nn in CF(Nn).

Proposition 22. Each of the structures

C(Nn) = (C(Nn);∨;+; 0);
CI(Nn) = (CI(Nn);∨;+; 0)

and

CF(Nn) = (CF(Nn);∧;+; 0)
is a ciw-semiring. In addition, CI(Nn) satis@es the equation

x ∨ 0 = x (6)

and CF(Nn) the equation

x ∧ 0 = 0: (7)

Proof. The only non-trivial cases of the proof are the associativity for + and ∨ together
with the distributivity law. We only give the details of the proofs for the structure
C(Nn) as similar arguments apply for the remaining ones. The proof is based on the
following observations.
Let A; B; C ⊆Nn. It can easily be checked that

[A] ∪ B ⊆ [A ∪ B] ⊆ [[A] ∪ B]
and therefore that

[[A] ∪ B] = [A ∪ B]: (8)

Similarly it is not diRcult to see that

[A]⊕ B ⊆ [A⊕ B] ⊆ [[A]⊕ B]
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and hence that

[[A]⊕ B] = [A⊕ B]: (9)

Towards proving the associativity law for +, assume that U; V;W ∈C(Nn). By (9) and
the associativity and commutativity of the operation ⊕ we get:

(U + V ) +W = [[U ⊕ V ]⊕W ] = [(U ⊕ V )⊕W ]

= [U ⊕ (V ⊕W )] = [U ⊕ [V ⊕W ]] = U + (V +W ):

The associativity for ∨ and the distributivity law can be proven in a similar way using
(8) as well as (9).

Note that (6) can be rephrased, with respect to Eciw, as the inequation 06x, and
(7) as x¿0. Also, writing ∨ for ∧, Eq. (7) takes the form x∨ 0=0 that one should
have if ∨ is considered to be the signature symbol instead of ∧.
For any structure A, we use V(A) to denote the variety generated by A, i.e., the

class of algebras that satisfy the equations that hold in A. Our order of business will
now be to o4er concrete descriptions of the 2nitely generated free algebras in the
varieties generated by Z∨, N∨ and N∧.

Theorem 23. For each n¿0, C(Nn) is freely generated in V(Z∨) by the sets [ Spi],
i∈ [n].

Proof. Each C ∈C(Nn) may be written as
∨

Sc∈C { Sc}, and, for each Sc=(c1; : : : ; cn)∈
Nn, it holds that { Sc}= ∑ni=1 ci[ Spi]. It follows that C(Nn) is generated by the sets
[ Spi]. Suppose now that h is a function {[ Sp1]; : : : ; [ Spn]}→Z, say h : [ Spi] �→ xi, i∈ [n].
We need to show that h uniquely extends to a homomorphism h] :C(Nn)→Z∨. For
each set C ∈C(Nn), de2ne

h](C) =
∨
Sc∈C

Sc · Sx;

where Sx is the vector (x1; : : : ; xn). As an immediate consequence of the de2nition of h],
we have that h]([ Spi])= xi, for all i∈ [n], and that h](0)= 0. Also, if F is a non-empty
2nite subset of Nn, then, by Proposition 17,

h]([F]) =
∨

Su∈[F]
Su · Sx

=
∨
Su∈F

Su · Sx:

Thus, for C;D∈C(Nn),

h](C ∨ D) = h]([C ∪ D])
=

∨
Su∈C∪D

Su · Sx
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=
∨
Sc∈C

Sc · Sx ∨ ∨
Sd∈D

Sd · Sx

= h](C) ∨ h](D):
Also,

h](C + D) = h]([C ⊕ D])
=

∨
Su∈C⊕D

Su · Sx

=
∨
Sc∈C

Sc · Sx + ∨
Sd∈D

Sd · Sx

= h](C) + h](D);

since + distributes over ∨. This proves that h] is a homomorphism. Moreover, h] is
the only extension of h since C(Nn) is generated by the sets [ Spi], i∈ [n].
We still need to verify that C(Nn) belongs to V(Z∨). To this end, for each Sx=

(x1; : : : ; xn)∈Zn, let h Sx denote the homomorphism C(Nn)→Z∨ described above taking
[ Spi] to xi, i∈ [n]. If C;D∈C(Nn) with Sd∈D − C, say, then, by Proposition 17,

Sd · Sy ¿ ∨
Sc∈C

Sc · Sy;

for some Sy∈Zn. Thus, it holds that h Sy(D)¿h Sy(C). It follows that the target tupling
of the functions h Sx is an injective homomorphism from C(Nn) to a direct power of
Z∨, proving that C(Nn) belongs to V(Z∨).

Free algebras in V(N∨) and V(N∧) have a similar description.

Theorem 24. For each n¿0, CI(Nn) is freely generated in V(N∨) by the sets ( Spi],
i∈ [n]. Moreover, CF(Nn) is freely generated in V(N∧) by the sets [ Spi), i∈ [n].

Proof. The argument is similar to the proof of Theorem 23. We outline the proof of
the second claim.
First, the convex 2lters [ Spi), i∈ [n], form a generating system of CF(Nn). This

follows from Remark 16 by noting that if U is the convex 2lter generated by the 2nite
non-empty set F , then

U =
∧
Sc∈F

[ Sc):

Moreover, for each Sc=(c1; : : : ; cn)∈Nn, it holds that

[ Sc) =
n∑
i=1
ci[ Spi):

Let h be the assignment [ Spi) �→ xi ∈N, i∈ [n]. By the above argument, h has at most
one extension to a homomorphism h] :CF(Nn)→N∧. De2ne h] by

h](U ) =
∧
Sc∈U

Sc · Sx;
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where Sx=(x1; : : : ; xn). Thus, h](U ) is the least element of the set

{ Sc · Sx: Sc ∈ U} ⊆ N:

(Actually, the above de2nition makes sense for any non-empty set U ⊆Nn.) The proof
of the fact that h] preserves the operations follows the lines of the similar veri2cation
in the proof of Theorem 23. One uses Proposition 19 in lieu of Proposition 17. The
fact that CF(Nn) belongs to V(N∧) can be shown as the corresponding fact in the
proof of Theorem 23.

Remark 25. A complete proof of the 2rst part of Theorem 24 is given in [1].

Remark 26. In any variety, any in2nitely generated free algebra is the direct limit
of 2nitely generated free algebras. More speci2cally, for any cardinal number +, the
free algebra on + generators in V(Z∨) can be described as an algebra of 2nite non-
empty convex sets in N+ consisting of vectors whose components, with a 2nite number
of exceptions, are all zero. The free algebras in V(N∨) and V(N∧) have similar
descriptions using 2nitely generated convex ideals and 2lters, respectively.

Since N∨ is a subalgebra of Z∨, we have that V(N∨)⊆V(Z∨). Also, since N∧ is
isomorphic to the subalgebra N−

∨ of Z∨, it holds that V(N∧)⊆V(Z∨).

De nition 27. Let V and V′ be two varieties of algebras such that the signature of
V extends that of V′. Let E be a collection of equations in the language of V. We
say that V is axiomatized over V′ by E if the collection of equations that hold in
V′ together with E form a basis for the identities of V. We say that V has a @nite
axiomatization relative to V′ if V is axiomatized over V′ by some 2nite set of
equations E.

In the next result we show that both V(N∨) and V(N∧) possess a 2nite axioma-
tization relative to V(Z∨). Of course, V(Z∨) is just V(Z∧), since Z∨ and Z∧ are
isomorphic.

Theorem 28. The following statements hold:
(1) V(N∨) is axiomatized over V(Z∨) by the equation x∨ 0= x.
(2) V(N∧) is axiomatized over V(Z∧) by the equation x∧ 0=0.

Proof. Suppose that n is any non-negative integer. By Theorem 23, the map [ Spi] �→
( Spi], i∈ [n], extends to a unique homomorphism h :C(Nn)→CI(Nn). Comparing the
de2nitions of the operations in C(Nn) and CI(Nn) and using the 2rst part of Propo-
sition 13, it is easy to see that h is in fact the function U �→ [(U ]], U ∈C(Nn). We
prove that the kernel of h is the least congruence on C(Nn) such that the quotient
satis2es (6), which implies the 2rst claim.
As S0 is contained in [(U ]] for every non-empty set U of vectors in Nn, the kernel of
h satis2es (6). To complete the proof, we need to show that if ’ is a homomorphism
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C(Nn)→B, where B is in V+
ciw, then the kernel of h is included in the kernel of ’.

But, since B is in V+
ciw, for every U ∈C(Nn), it holds that

’(U ) =
∨
Su∈U
’([ Su]) =

∨
Su∈(U ]

’([ Su]) =
∨

Su∈[(U ]]
’([ Su]) = ’([(U ]]);

so that if [(U ]] = [(V ]], then ’(U )=’(V ). (Here, the second equality follows since B
is a positive ciw-semiring and thus satis2es (1), while the third equality follows from
Proposition 17.)
The proof of the second claim follows similar lines, using the second part of Propo-

sition 13.

3.4. Non-@nite axiomatizability results

Our order of business in this section is to show that the varieties generated by the
ciw-semirings Z∨ and N∧ are not 2nitely based. Our starting points are the results in
[1] to the e4ect that the variety V(N∨) is not 2nitely based. These we restate below
for ease of reference and for completeness.

Theorem 29. The following statements hold:
(1) The variety V(N∨) is not @nitely based.
(2) For every n∈N, the collection of all the inequations in at most n variables that
hold in V(N∨) does not form an equational basis for it.

We begin by using these results, and the 2rst part of Theorem 28 to prove:

Theorem 30. The variety V(Z∨) is not @nitely based. Moreover, V(Z∨) has no
axiomatization by equations in a bounded number of variables, i.e., there exists no
natural number n such that the collection of all equations in at most n variables that
hold in V(Z∨) forms an equational basis for V(Z∨).

Proof. The 2rst claim is an immediate consequence of the second. To prove the second
claim, we argue as follows. Assume, towards a contradiction, that there is a non-
zero natural number n such that the collection of all equations in at most n variables
that hold in V(Z∨) forms an equational basis for V(Z∨). Then, by the 2rst part of
Theorem 28, this collection of equations together with (6) forms an equational basis
for V(N∨) consisting of equations in at most n variables. However, this contradicts
the second statement in Theorem 29.

An alternative proof of the above result will be sketched in Remark 46 to follow.
We now proceed to apply the results that we have developed so far to the study of

the axiomatizability of the equational theory of the algebra N∧.
Our aim in the remainder of this section is to prove the following result to the e4ect

that the variety V(N∧) has no 2nite equational basis.

Theorem 31. The variety V(N∧) has no @nite (equational) axiomatization, i.e., there
is no @nite set E of equations, which hold in V(N∧), and such that for all
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terms t1; t2,

V(N∧) |= t1 = t2 iA E proves t1 = t2:

To prove Theorem 31, we begin by noting that the following equations e∧n hold in
N∧, for each n¿2:

e∧n : rn ∧ sn = sn; (10)

where

rn = x1 + · · ·+ xn
sn = (2x1 + x3 + x4 + · · ·+ xn−1 + xn)

∧ (x1 + 2x2 + x4 + · · ·+ xn−1 + xn)
...

∧ (x1 + x2 + x3 + · · ·+ xn−2 + 2xn−1)

∧ (x2 + x3 + x4 + · · ·+ xn−1 + 2xn):

In what follows, we shall de2ne a sequence of ciw-semirings Bn (n¿3) such that the
following holds:
For any 2nite set E of equations which hold in V(N∧), there is an n¿3 such
that

Bn |= E but Bn �|= e∧n :
In fact, as we shall see in due course, the algebra construction that we now proceed
to present also yields the following stronger result.

Theorem 32. There exists no natural number n such that the collection of all equa-
tions in at most n variables that hold in V(N∧) forms an equational basis for V(N∧).

The remainder of this section will be devoted to a proof of Theorem 32. We begin
with some preliminary de2nitions and results that will pave the way to the construction
of the algebras Bn.

De nition 33. The weight of a vector Sv=(v1; : : : ; vn) in Nn is de2ned as v1 + · · ·+ vn.
The weight of a non-empty set U ⊆Nn is the minimum of the weights of the vectors
in U .

The subsequent lemma collects those properties of the notion of weight de2ned above
that will be needed in the technical developments to follow.

Lemma 34. The following statements hold:
(1) Let Su and Sv be vectors in Nn. Then the weight of Su+ Sv is the sum of the weights
of Su and Sv.
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(2) Let Su be a vector in Nn.
(a) If Su¡Sv in Nn, with respect to the pointwise order, then the weight of Su is

less than the weight of Sv.
(b) Assume that Su is a convex linear combination �1 Sv1 + · · · + �k Svk of vectors

Sv1; : : : ; Svk ∈Nn. Let wi denote the weight of vector Svi, for every i∈ [k]. Then
the weight of Su is �1w1+· · ·+�kwk . Moreover, the weight of Su is greater than,
or equal to, the minimum of the wi and less than, or equal to, the maximum
of the wi.

(3) Let U be a non-empty subset of Nn. Then the following statements hold.
(a) The weight of U is equal to that of [U ], [U ) and [[U )].
(b) Let k be the weight of U. Then, a weight k vector belongs to [[U )] iA it is

a convex linear combination of some vectors of weight k in U.
(4) Let U, V be a non-empty subset of Nn. Then the weight of U ⊕V is equal to
the sum of the weights of U and V.

Proof. We only give the proofs of statements 3 and 4.

• Proof of Statement 3. Let U be a non-empty subset of Nn. We consider Statements
3a and 3b in turn.

• Proof of Statement 3a. Since U is included in both [U ] and [U ), it follows that
the weights of both [U ] and [U ) are no larger than that of U . As for every vector
Sv contained in [U ) there is a vector Su in U such that Su6Sv with respect to the
pointwise order in Nn, by Statement 2a of the lemma we have that the weight
of U is less than, or equal to, the weight of [U ). Thus [U ) and U have equal
weight.
We now argue that [U ] and U also have equal weight. To this end, recall that,

by Proposition 12, every vector Sv∈ [U ] is a convex linear combination of vectors
Su1; : : : ; Suk ∈ U . By Statement 2b of the lemma, the weight of Sv is larger than, or
equal to, the minimum weight of the Sui (i∈ [k]). Thus, for every Sv∈ [U ] there is a
vector Su∈U whose weight is no larger than that of Sv. It follows that [U ] and U
have equal weight, as claimed.
As an immediate consequence of the claims proven above, we have that [[U )]

and U also have equal weight.

• Proof of Statement 3b. We 2rst establish the “only if” implication. To this end,
assume that k is the weight of U , and that Su is a vector of weight k in [[U )]. As Su
is contained in [[U )], Proposition 12 entails that, with respect to the pointwise order,
Su is above a convex linear combination of vectors Su1; : : : ; Sul ∈U . As U has weight
k, the weight of each of the Sui (i∈ [l]) is larger than, or equal to, k. Moreover,
as k is larger than, or equal to, a convex linear combination of the weights of the
Sui (i∈ [l]), it follows that each of the Sui (i∈ [l]) has weight exactly k. Thus, by
statements 2a and 2b of the lemma, Su is a convex linear combination of the vectors
Su1; : : : ; Sul, which was to be shown.

Conversely, if Su is a convex linear combination of vectors of weight k in U , then
Su has weight k (Statement 2b of the lemma), and is contained in [[U )].
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• Proof of Statement 4. Let U; V be a non-empty subset of Nn. Then any vector of
minimum weight in U ⊕V is the sum of two vectors of minimum weight in U
and V .

We introduce the following notations for some vectors in Nn related to the
equation e∧n :

S/= (1; : : : ; 1)

S01 = (2; 0; 1; 1; : : : ; 1; 1)

S02 = (1; 2; 0; 1; : : : ; 1; 1)
...

S0n−1 = (1; 1; 1; 1; : : : ; 2; 0)

S0n = (0; 1; 1; 1; : : : ; 1; 2);

so that in S0i (i∈ [n]), the 2 is on the ith position and is followed by a 0. (Of course,
we assume that the 2rst position follows the nth.) All other components are 1. Note
that

S/ =
1
n
S01 + · · ·+ 1

n
S0n: (11)

Thus, S/ belongs to the convex 2lter generated by the vectors S0i (i∈ [n]). Moreover, the
system consisting of any n of the vectors S/; S01; : : : ; S0n is linearly independent (cf. [1,
Lemma 5.2]).
We de2ne:

1= [[{ S01; : : : ; S0n})];
2=1 − { S/};

so that 1 is the convex 2lter generated by the S0i (i∈ [n]). By (11), the set 2 is not a
convex 2lter. It follows from the following lemma that the only vectors of weight n
in 1 are S/ and the S0i (i∈ [n]).

Lemma 35. Suppose that a non-empty subset U of Nn satis@es:
(1) The weight of U is greater than, or equal to, n.
(2) Any vector of weight n in U belongs to the set { S/; S01; : : : ; S0n}.
Then every vector of weight n in [[U )] lies in the set { S/; S01; : : : ; S0n}. Moreover,
S0i ∈ [[U )] iA S0i ∈U , and S/∈ [[U )] iA S/∈U or { S01; : : : ; S0n}⊆U .

Proof. Suppose that Su∈ [[U )] has weight n. Then, by Lemma 34, Su is a convex linear
combination of weight n vectors in U , and hence a convex linear combination of the
vectors S/; S01; : : : ; S0n. It follows that no component of Su is greater than 2 and at most one
component is 0. Moreover, if the ith component of Su is 2, for some i, then necessarily
Su= S0i. Suppose that Su= S/. Then, since any n of the vectors S/; S01; : : : ; S0n form a linearly
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independent system, and since S/ is a convex linear combination of the S0i (i∈ [n]), it
follows that either S/∈U or { S01; : : : ; S0n}⊆U .

Corollary 36. The convex @lter 1 has { S01; : : : ; S0n} as its unique minimal generating
set.

Proof. Since { S01; : : : ; S0n} generates 1, it is suRcient to argue that the set { S01; : : : ; S0n}
must be included in every set G that generates 1 as a convex 2lter. To this end, assume
that [[G)]=1. Then, by Lemma 34(3a), G has weight n. Now each S0i is in [[G)] and
is therefore, by Lemma 34(3b), a convex linear combination of some vectors of weight
n in G. But by Lemma 35, any such vector is S/ or some of the S0i. Moreover, again
by Lemma 35, each S0i is in G, which was to be shown.

Lemma 37. Suppose that F is a convex @lter in Nn properly included in 1. Then
F − { S/} is also a convex @lter.

Proof. By our assumptions, the set F − { S/} is a convex 2lter if S/ =∈F , so assume
S/∈F . Now observe that F − { S/} is a convex 2lter unless S/∈ [[F − { S/})]. But since
each vector of weight n in F −{ S/} is one of the S0i, and since at least one S0i is not in
F − { S/}, by Lemma 35 we have that S/ =∈ [[F − { S/})].

We now proceed to de2ne the algebras Bn=(Bn;∧;+; 0), for every n¿1.
Let Bn consist of the non-empty convex 2lters in Nn and the set 2=1 − { S/}. The

following results will allow us to endow Bn with the structure of a ciw-semiring.

Corollary 38. If F is a convex @lter, then F ∩2∈Bn.

Proof. Since 2 is included in 1, it holds that F ∩2=(F ∩1)∩2. Thus we may
assume that F is included in 1. If F =1, the intersection is 2. Otherwise F is properly
included in 1 and F ∩2=F − { S/}∈Bn, by the previous lemma.

Proposition 39. If the intersection of a family of sets in Bn is not empty, then the
intersection is in Bn.

Proof. Let Ui, i∈ I , be a family of sets in Bn such that U =
⋂
i∈I Ui is non-empty. If

each Ui is di4erent from 2, then U is a non-empty convex 2lter and is thus in Bn.
Otherwise, we have that

U = 2 ∩⋂{Ui: i ∈ I; Ui �= 2};

and the result follows by the previous corollary.

For each non-empty set U ⊆Nn, let cl(U ) denote the least set in Bn containing U .
(This set exists in light of the proposition above.) For each U; V ∈Bn,
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we de2ne

U + V = cl(U ⊕ V );
U ∧ V = cl(U ∪ V ):

Moreover, we de2ne the constant 0 to be the set [[ S0)]= [ S0)=Nn. This completes the
de2nition of the algebra Bn=(Bn;∧;+; 0).

Recall that CF(Nn) is freely generated by the sets [ Spi), i∈ [n], in the variety gen-
erated by N∧. The following result will be useful in the proof of Proposition 45 to
follow.

Lemma 40. The function given by 2 �→1 and U �→U , if U �=2, de@nes a homomor-
phism Bn→CF(Nn).

Proof. To prove the lemma we have to show that the assignment that de2nes the
mapping given above preserves the operations. Below we only give the proof for the
operation + as the proof for ∨ is similar. Towards proving the statement for the +
operation, assume that U; V ∈Bn and that Z is their sum in Bn. We now proceed by
case analysis on the form of U and V .

Case U; V �=2: Then either Z is the sum U+V taken in CF(Nn) or Z =2 in which
case the sum U+V taken in CF(Nn) is 1, since 1 is the least convex 2lter containing
2. Thus, in this case, the assignment preserves +.

Case U =2; V �=2: Then Z =2 if V =0, and Z is the sum 1+V taken in CF(Nn)
otherwise. In either case the assignment preserves +.

Case V =2;U �=2: Symmetric to the previous case.
Case U =V =2: Then Z is the least convex 2lter containing 2⊕2, and is thus

equal to the sum 1 + 1 taken in CF(Nn), which was to be shown.

To show that Bn is a ciw-semiring, we need:

Lemma 41. When n¿3, the @lter 1 has no decomposition in CF(Nn) into the sum of
two non-zero convex @lters. Similarly, when n¿3, neither 1 nor 2 has a non-trivial
decomposition in Bn into the sum of two non-zero sets.

Proof. First we work in CF(Nn).
Assume, towards a contradiction, that n¿3, F and G are non-empty convex 2lters

with F + G=1 in CF(Nn), but F;G �=Nn. Let k denote the weight of F and ‘ the
weight of G. Then k; ‘¿0 and k + ‘= n (Statements 3a and 4 in Lemma 34). Let F ′

denote the set of all vectors of weight k in F , and de2ne G′ ⊆G in similar fashion.
Then, with respect to the pointwise order, every vector in F + G=1 is greater than,
or equal to, a convex linear combination of vectors in F ⊕G. But, since every vector
in F ⊕G has weight at least n, it follows that a weight n vector is in F + G if and
only if it is a convex linear combination of weight n vectors in F ⊕G, i.e. of vectors
in F ′ ⊕G′. Thus, each vector in the set { S01; : : : ; S0n; S/} is a convex linear combination
of vectors in F ′ ⊕G′, and since { S01; : : : ; S0n; S/} is a set of generators for 1, it follows
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that F ′ ⊕G′ is also a set of generators for 1. Thus, by Corollary 36, we have that

{ S01; : : : ; S0n} ⊆ F ′ ⊕ G′:

Moreover, it holds that

F ′ ⊕ G′ ⊆ { S01; : : : ; S0n; S/}: (12)

This follows because F ′ ⊕G′ is a set of vectors of weight n included in 1, and the
only vectors of weight n in 1 are S/ and the S0i (i∈ [n]).
Suppose that F ′, say, contains a vector Su which has a component equal to 2 on

its ith position. Then G′ contains a single vector Sv. Moreover, the vector Sv has 0
on its ith and (i+1)st position, and on those positions where Su contains a 1, and 1 in
all other positions. Since Sv �=0, for some j its jth component is not 0. But then S0j−1
is not contained in F ′ ⊕G′, contradicting (12). Thus, F ′ contains no vector having a
component equal to 2, and similarly for G′.
Since the complex sum of F ′ and G′ contains the vectors S01 and S02, there are vectors

Sw1; Sw2 ∈F ′ and Sv1; Sv2 ∈G′ such that

Sw1 + Sv1 = S01 and Sw2 + Sv2 = S02:

This means that, for some b3; : : : ; bn ∈{0; 1},
Sw1 = (1; 0; b3; : : : ; bn)

and

Sv1 = (1; 0; b̃3; : : : ; b̃n):

where b̃ denotes the complement of b, for every b∈{0; 1}. Similarly, since n¿3, there
are c1; c4; : : : ; cn ∈{0; 1} such that

Sw2 = (c1; 1; 0; c4; : : : ; cn)

and

Sv2 = (c̃1; 1; 0; c̃4; : : : ; c̃n):

It is now easy to see that if Sw1 + Sv2 is in { S01; : : : ; S0n; S/}, then Sw2 + Sv1 is not. Indeed, if
Sw1 + Sv2 is in { S01; : : : ; S0n; S/}, then c̃1 = 0, so that c1 = 1. Thus the 2rst two components
of Sw2 + Sv1 are 2 and 1, respectively, contradicting (12).
Assume now that F+G ∈{1; 2} in Bn. If F;G ∈CF(Nn), then F+G=1 in CF(Nn).

By the 2rst claim, this is possible only if F or G is 0. If F =2, say, then G must
be 0, or else F ⊕G would only contain vectors whose weight is greater than n. This
completes the proof.

Remark 42. When n=2, the set 2 does not have a non-trivial representation as the
sum of two non-zero elements of Bn, but we have

[[{(1; 0); (0; 1)})] + [[{(1; 0); (0; 1)})] = 1
both in Bn and in CF(Nn).
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Proposition 43. If n¿3, then Bn is a ciw-semiring satisfying x∧ 0=0.

Proof. It is obvious that both binary operations are commutative and that ∧ is idem-
potent. Also, the equation x∧ 0=0 holds. The fact that ∧ is associative follows from
general properties of closure operators. In fact,

(A ∧ B) ∧ C = cl(A ∪ B ∪ C) = A ∧ (B ∧ C);
for all A; B; C ∈Bn. The facts that also

(A+ B) + C = A+ (B+ C);

(A ∧ B) + C = (A+ C) ∧ (B+ C)

hold follow by Lemma 41. The only way that these equations can fail is that one
side is 2 and the other is 1. But in that case one of A; B; C is 0, by Lemma 41 and
since in CF(Nn), and in Bn, if A∧B=0 then A=0 or B=0, and then both equations
obviously hold.

Remark 44. For all A; B; C ∈Bn, we have that

A+ B+ C = cl(A⊕ B⊕ C): (13)

Indeed, if A+B+C is di4erent from 2, then it is a convex 2lter and, as in the proof of
Proposition 22, we can argue that it equals [[A⊕B⊕C)]= cl(A⊕B⊕C). If A+B+C
equals 2, then, by Lemma 41 and Remark 42, exactly one of A, B and C is 2 and
the other two are 0. In this case, we have that

cl(A⊕ B⊕ C) = cl(2) = 2;

which was to be shown.

Equality (13) will be used implicitly in the proof of the following result, which is
the crux of the proof of Theorem 32.

Proposition 45. For each n¿3, the algebra Bn satis@es any equation in at most n−1
variables which holds in N∧.

Proof. It suRces to show that Bn |= t¿t′ for any simple ∧-inequation t¿t′ such
that N∧ |= t¿t′ and both t and t′ contain the same at most m¡n variables, so that
t= t(x1; : : : ; xm) and t′ = t′(x1; : : : ; xm), say. Indeed, since by Proposition 43, Bn is a
ciw-semiring satisfying x∧ 0=0, any variable occurring in t′ must occur in t. More-
over, we can set each variable occurring in t, which does not occur in t′, to 0. (This
matter will be discussed in more detail in Section 4.1.) By Lemma 40, we only need
to show that for all U1; : : : ; Um in Bn, it is not possible that S/∈V and 2=V ′, where
V = t(U1; : : : ; Um) and V ′ = t′(U1; : : : ; Um).
Assume, towards a contradiction, that for some Ui ∈Bn, i∈ [m], we have S/∈V and
2=V ′, and that t¿t′ is a simple inequation in fewest variables for which this holds.
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Note that this implies that Ui �=0 for every i∈ [m]. Moreover, the weight of each Ui
(i∈ [m]) is at most n. In fact, since S/∈V = t(U1; : : : ; Um) in Bn, we have that V is a
convex 2lter whose weight is at most n. As V is a convex 2lter, by Lemma 40, in
CF(Nn) it holds that

V = t(U ′
1; : : : ; U

′
m);

where, for every i∈ [m],

U ′
i =

{
1 if Ui = 2;
Ui otherwise:

(Note that, for every i∈ [m], the weight of Ui is equal to that of U ′
i .) Since t(x1; : : : ; xm)

is a “linear combination” of the variables x1; : : : ; xm, it follows by Lemma 34(3–4) that
the weight of each U ′

i , and thus of each Ui, is at most n, as claimed. Also, if the
weight of some Ui is n, then m=1 and t= x1. Since t¿t′ holds in N∧ and t′ contains
exactly x1, it follows that t′ = x1 or t′ =0 modulo the equations of ciw-semirings and
equation x∧ 0=0. But then t¿t′ holds in Bn, contrary to our assumption. Thus, each
Ui is di4erent from 2 and is thus a non-empty convex 2lter. Since V �=2, it holds
that V = t(U1; : : : ; Um) also in CF(Nn). Moreover, we have that t′(U1; : : : ; Um)=1 in
CF(Nn). By Lemma 41, it holds that V �=1. Since t¿t′ holds in CF(Nn), we have
that V ⊆1. Thus V is a proper subset of 1.
Now write t′ = t′1 ∧ · · · ∧ t′k , where the t′i are linear combinations of the variables

x1; : : : ; xm. For each i∈ [k], let V ′
i = t

′
i (U1; : : : ; Um) in Bn. Each V ′

i is included in 2, and
is in fact a proper subset of 2, since 2 has no non-trivial decomposition in Bn into
the sum of two sets (Lemma 41). Thus, each V ′

i is a non-empty convex 2lter, and
V ′
i = t

′
i (U1; : : : ; Um) also in CF(Nn). Call a t′i , and the corresponding V ′

i , relevant if
the weight of V ′

i is n. In that case V ′
i contains some, but not all of the S01; : : : ; S0n, and

no other vector of weight less than or equal to n. (Each relevant V ′
i cannot contain all

of the vectors S01; : : : ; S0n, or else, being a convex 2lter, it would also contain the vector
S/. This would contradict our assumption that S/ =∈V ′.)
Suppose that Swj ∈Uj, j∈ [m], have minimum weight. Then for every relevant t′i =∑
j∈[m] cijxj, it holds that

∑
j∈[m] cij Swj has weight n and thus must be in { S01; : : : ; S0n}

(Lemma 35). Hence, no cij can be greater than 2, and there cannot be two coeRcients
equal to 2. The same fact holds for the coeRcients in the linear term t. Thus, two
cases arise.

Case 1: t= x1 + · · ·+ xm. Since S/∈V and V is a proper subset of 1, by Lemma 35
there exist vectors Swj ∈Uj, j∈ [m], with S/= Sw1 + · · · + Swm, i.e. for each i∈ [n] there
is a unique j∈ [m] such that the ith component of Swj is 1, and the ith component
of any other Swk is 0. Since the operations are monotonic, we may also assume that
Uj = [[ Swj)], for all j∈ [m]. Indeed, we have that, in Bn,

S/ ∈ t([[ Sw1)]; : : : ; [[ Swm)])

and

S/ =∈ t′([[ Sw1)]; : : : ; [[ Swm)]);
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since t′([[ Sw1)]; : : : ; [[ Swm)])⊆ t′(U1; : : : ; Um)=2. But if t′([[ Sw1)]; : : : ; [[ Swm)]) is not 2,
then it is in CF(Nn), and we may infer that

t([[ Sw1)]; : : : ; [[ Swm)]) ⊆ t′([[ Sw1)]; : : : ; [[ Swm)]);

contradicting the fact that S/ is contained in t([[ Sw1)]; : : : ; [[ Swm)]), but not in t′([[ Sw1)]; : : : ;
[[ Swm)]). Thus, t′([[ Sw1)]; : : : ; [[ Swm)])=2.
Assume that Sw1 has two or more components equal to 1, say the 2rst and the second

components are 1. Since Sw1+· · ·+ Swm= S/, the 2rst two components of Sw2; : : : ; Swm are 0.
Furthermore, as S01 ∈1= t′(U1; : : : ; Um) in CF(Nn), there is a relevant t′i with S01 ∈V ′

i .
This is possible only if S01 =

∑
j∈[m] cij Swj. But in that case the coeRcient ci1 is 2. Thus,

the 2rst two components of S01 would be 2, which is contradiction. Hence Sw1 has a
single component equal to 1. In the same way, each of the vectors Swj is a unit vector,
and m = n follows, contrary to our assumption that m¡n.

Case 2: t=2x1+x2+· · ·+xm. In this case, we may assume that there exist Sw1; : : : ; Swm
and Sv1 with Sv1 + Sw1 + · · · + Swm= S/, U1 = [[ Sw1; Sv1)] and Uj = [[ Swj)], for j¿2. Note
that Sw1 and Sv1 have equal weight, for otherwise V would contain a vector of weight
strictly smaller than n. Again, we can conclude that Sv1 and each Swj have exactly
one non-zero component, which is a 1. Using this, a contradiction is easily reached.
Suppose that the 2rst component of Sw1 is 1, say. Then there must be some i such that
t′i =2x1 + x2 + · · ·+ xm. But then t¿t′ holds in Bn.

We are now ready to prove Theorem 32.

Proof of Theorem 32. Given an integer n¿3, consider the algebra Bn and the simple
inequation rn¿sn, where the terms rn and sn were de2ned below Eq. (10). For each
i∈ [n], let Spi denote the ith n-dimensional unit vector whose components are all 0
except for a 1 in the ith position. We have

rn([[ Sp1)]; : : : ; [[ Spn)]) = [[ S/)]

and

sn([[ Sp1)]; : : : ; [[ Spn)]) = 2

in Bn. Thus Bn �|= rn¿sn, i.e., Bn �|= e∧n . On the other hand e∧n holds in V(N∧), and
moreover, by Proposition 45, Bn satis2es all identities in at most n− 1 variables that
hold in V(N∧). Hence, the collection of identities in at most n− 1 variables that hold
in V(N∧) does not prove e∧n , and thus is not a basis for V(N∧).

Remark 46. The model construction upon which the proof of Theorem 32 is based
is similar in spirit to the one we used in [1] to show that the variety V(N∨) is not
2nitely based. The proof of that result was based upon the realization that the equations
en below hold in N∨, and in fact in Z∨, for each n¿2:

en: rn ∨ qn = qn; (14)
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where rn was de2ned below (10) and

qn = (2x1 + x3 + x4 + · · ·+ xn−1 + xn)

∨ (x1 + 2x2 + x4 + · · ·+ xn−1 + xn)
...

∨ (x1 + x2 + x3 + · · ·+ xn−2 + 2xn−1)

∨ (x2 + x3 + x4 + · · ·+ xn−1 + 2xn):

In [1] we constructed a sequence of ciw-semirings An (n¿2) which satisfy all the
equations in at most n− 1 variables that hold in V(N∨), but in which the equation en
fails. This shows that the collection of equations in at most n − 1 variables that hold
in V(N∨) does not prove en, and thus is not a basis of identities for V(N∨). Unlike
the algebras Bn, the ciw-semirings An are 2nite, and consist of non-empty convex
ideals contained in [({ S01; : : : ; S0n}]], together with [({ S01; : : : ; S0n}]] − { S/}, and an extra
element 	.
The aforementioned results from [1] lead to an alternative proof of Theorem 30.

Indeed, assume that there is a natural number n¿2 such that the collection En of
equations in at most n variables that hold in V(Z∨) is a basis for it. Since the equation
en+1 holds in V(Z∨), it follows that En proves en+1. However, this contradicts the
aforementioned results from [1]. In fact, since N∨ is a subalgebra of Z∨, the equations
in En also hold in N∨, and, thus, cannot prove en+1.

Remark 47. The alternative proof of Theorem 30 mentioned in the above remark
is, in fact, applicable in a rather general setting. For the sake of this generaliza-
tion, which is meant to apply to algebras whose addition operation need be nei-
ther commutative nor associative, we rephrase the family of equations in (14) as
follows:

e′n: r′n ∨ q′n = q′n (n¿ 2); (15)

where

r′n = x1 + (x2 + (· · ·+ xn) · · ·) and

q′n = (x1 + (x1 + (x3 + (x4 + (· · ·+ (xn−1 + xn) · · ·)))))
∨ (x1 + (x2 + (x2 + (x4 + (· · ·+ (xn−1 + xn) · · ·)))))
...

∨ (x1 + (x2 + (x3 + (· · ·+ (xn−2 + (xn−1 + xn−1)) · · ·))))
∨ (x2 + (x3 + (x4 + (· · ·+ (xn−1 + (xn + xn)) · · ·)))):

(The join subterms in q′n can be arbitrarily parenthesized.) The reader will 2nd it easy
to rephrase the family of equations e∧n given in (10) in similar fashion.
The argument used in the previous remark can be used to show, mutatis mutandis,

that:
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Theorem 48. Let V be any variety that contains N∨ (respectively, N∧), and in which
e′n (resp., the rephrasing of e∧n ) holds for every n¿2. Then V has no axiomatization
in a bounded number of variables.

Suppose that V is generated by the algebra A. Then, the proviso of the above
statement is met if the following conditions hold:
(1) N∨ (respectively, N∧) embeds in A,
(2) the ∨ (respectively, ∧) operation on A is a semilattice operation,
(3) A is linearly ordered by the semilattice order, and the + operation is monotonic.
An application of Theorem 48 will be presented in Section 6.4.

Remark 49. Since the algebra N−
∨ is isomorphic to N∧, Theorems 31 and 32 apply

equally well to it.

We have presented several examples of non-2nitely based ciw-semirings. However,
all of the ciw-semirings that we have studied so far are in2nite. This prompts us to
formulate the following:

Problem. Let A be a 2nite ciw-semiring. Is the variety V(A) 2nitely based?

4. Tropical semirings

Our aim in this section will be to investigate the equational theories of the tropical
semirings studied in the literature that are obtained by adding bottom elements to the
ciw-semirings presented in the previous section. More speci2cally, we shall study the
following semirings:

Z∨;−∞ = (Z ∪ {−∞};∨;+;−∞; 0);
N∨;−∞ = (N ∪ {−∞};∨;+;−∞; 0)

and

N−
∨;−∞ = (N− ∪ {−∞};∨;+;−∞; 0):

Since Z∨;−∞, N∨;−∞ and N−
∨;−∞ are isomorphic to the semirings:

Z∧;∞ = (Z ∪ {∞};∧;+;∞; 0);
N−

∧;∞ = (N− ∪ {∞};∧;+;∞; 0)
and

N∧;∞ = (N ∪ {∞};∧;+;∞; 0);
respectively, the results that we shall obtain apply equally well to these algebras.
The semirings Z∧;∞ and N∧;∞ are usually referred to as the equatorial semiring

[22] and the tropical semiring [35], respectively. The semiring N∨;−∞ is called the
polar semiring in [24].
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Our study of the equational theories of these algebras will proceed as follows. First,
we shall o4er some general facts relating the equational theory of a ciw-semiring A
to the theory of the ci-semiring A⊥ de2ned in Section 2. In particular, in Section 4.1
we shall provide a necessary and suRcient condition that ensures that A and A⊥
satisfy the same equations in the language of ciw-semirings, and a necessary and
suRcient condition ensuring the validity of a simple inequation in A⊥ for positive
ciw-semirings A. We use these conditions to relate the non-2nite axiomatizability of
V(A⊥) to the non-2nite axiomatizability of V(A). Then, in Section 4.2, we shall
apply our general study to derive the facts that all tropical semirings have exponential
time decidable, but non-2nitely based equational theories. Our general results, together
with those proven in Section 3, will also give geometric characterizations of the valid
equations in the tropical semirings Z∨;−∞ and N−

∨;−∞, and thus in Z∧;∞ and N∧;∞,
but not in N∨;−∞, or in the isomorphic semiring N−

∧;∞. The task of providing a
geometric description of the valid equations for these semirings will be accomplished
in Section 4.3, where we shall also show that V(N∨;−∞) can be axiomatized over
V(Z∨;−∞) by a single equation.

4.1. Adding ⊥

In Section 2, we saw how to generate a ci-semiring A⊥ =(A⊥;∨;+;⊥; 0) from
any ciw-semiring A=(A;∨;+; 0) by freely adding a bottom element ⊥ to it. We
now go on to study some general relationships between the equational theories of
these two structures. Our investigations will proceed as follows. We shall 2rst o4er a
result to the e4ect that if A is a ciw-semiring satisfying a certain technical property,
then the variety it generates has a 2nite axiomatization (or an axiomatization in a
bounded number of variables) if, and only if, so does V(A⊥) (cf. Theorem 55).
Positive ciw-semirings, however, do not a4ord the technical property mentioned in the
statement of Theorem 55. For this reason, we shall then prove two theorems that will
allow us to lift results pertaining to the non-existence of 2nite axiomatizations, and of
axiomatizations in a bounded number of variables, for non-trivial positive ciw-semirings
to the free ci-semirings they generate (cf. Theorems 62 and 63). The developments
of this section will be applied in Section 4.2 to obtain decidability and non-2nite
axiomatizability results for the tropical semirings associated with the ciw-semirings we
studied in Section 3.
Recall that a simple inequation in the variables x1; : : : ; xn is of the form

t 6
∨
i∈[k]
ti;

where k¿0, and t and the ti (i∈ [k]) are linear combinations of the variables
x1; : : : ; xn.
As mentioned above, our order of business will, 2rst of all, be to study the rela-

tionships between the equational theories of ciw-semirings satisfying a certain technical
property and those of the free ci-semirings they generate. The following de2nition intro-
duces the notions that we shall use in the formulation of the aforementioned technical
property.
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De nition 50. A simple inequation t6t′ is called non-expansive if every variable that
occurs in t′ also occurs in t.
Suppose that t6t′ is a simple inequation. We say that t6t′ has a kernel, or that the

kernel of t6t′ exists, if t′ contains at least one linear subterm all of whose variables
appear in t. Moreover, in this case we say that the kernel of t6t′ is the simple
inequation t6t′′, where the linear terms of t′′ are those linear terms of t′ whose
variables all appear in t.

Thus, if t6t′ is non-expansive, then its kernel is the inequation t6t′. Note that the
kernel of a simple inequation that holds in a ciw-semiring A need not hold in A. For
example, the simple inequation x6(x + y)∨ 0 holds in every positive ciw-semiring,
but its kernel x60 only holds in trivial positive semirings.

Example 51. The kernel of x6x∨y is x6x. The inequations 06x and x6x+y∨ x+z
have no kernel.

Lemma 52. Suppose that A is a ciw-semiring. Then a simple inequation holds in A⊥
iA it has a kernel that holds in A. Thus, if an inequation is non-expansive, then it
holds in A iA it holds in A⊥.

Proof. Suppose that t6t′ is a simple inequation. If it has no kernel, then each linear
subterm of t′ contains a variable not occurring in t. Assign 0 to the variables that occur
in t, and ⊥ to any other variable. It follows that t evaluates to 0 while t′ evaluates to
⊥, proving that t6t′ does not hold in A⊥. Assume now that t6t′ has kernel t6t′′. If
A �|= t6t′′ then for some evaluation in A of the variables appearing in t we have that
the value of t in the algebra A, denoted a, is not less than, or equal to, the value b of
t′′. Assign ⊥ to all other variables appearing in t′. Since in A⊥ term t evaluates to a
and t′ evaluates to b, it follows that t6t′ does not hold in A⊥. On the other hand, if
A |= t6t′′, then A⊥ |= t6t′. Indeed, this holds true when t evaluates to ⊥. Assume that
t evaluates to an element of A, the carrier set of A. Then the value of each variable
occurring in t belongs to the set A. Thus, since each variable of t′′ appears in t and
since t6t′′ holds in A, we have that the value of t is less than, or equal to, the value
of t′′, which in turn is less than, or equal to, the value of t′.

The above lemma has a number of useful corollaries relating the equational theory
of a ciw-semiring with that of the free ci-semiring it generates.

Corollary 53. The following conditions are equivalent for a ciw-semiring A:
(1) Every simple inequation that holds in A also holds in A⊥.
(2) Every equation in the language of ciw-semirings that holds in A also holds

in A⊥.
(3) A and A⊥ satisfy the same equations in the language of ciw-semirings.
(4) For each simple inequation that holds in A, the kernel of the inequation exists

and holds in A.
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(5) There exists a set E of non-expansive simple inequations such that Eciw ∪E is an
axiomatization of V(A).

When these conditions hold, V(A⊥) is axiomatized by Eci ∪E, where E is given as
above.

Corollary 54. Suppose that each inequation that holds in A has a kernel that holds
in A. Then V(A⊥) is axiomatized over V(A) by the equations

x ∨ ⊥ = x; (16)

x +⊥ = ⊥: (17)

We are now in a position to prove the promised result that will allow us to lift
(non-)2nite axiomatizability results from certain ciw-semirings to the free ci-semirings
they generate.

Theorem 55. Suppose that each inequation that holds in A has a kernel that holds
in A. Then V(A) has a @nite axiomatization iA V(A⊥) has. Moreover, V(A) has
an axiomatization by equations in a bounded number of variables iA V(A⊥) has.

Proof. We 2rst prove that V(A) has a 2nite axiomatization i4 so does V(A⊥). One
direction is obvious from Corollary 54. Suppose now that V(A⊥) has a 2nite axiom-
atization. Then, by Corollary 54 and the compactness theorem, there is a 2nite set E
of simple equations that hold in A such that Eci ∪E is an axiomatization of V(A⊥).
Since simple inequations that hold in A have kernels that hold in A, we may assume
that each inequation in E is non-expansive. We claim that Eciw ∪E is an axiomatiza-
tion of V(A). Indeed, all of the equations in Eciw ∪E hold in A. Assume that there
is an equation t= t′ that holds in A but fails in a model B of the set of equations
Eciw ∪E. Then consider the ci-semiring B⊥. By Lemma 52, it satis2es each simple
inequation in E, so that B⊥ is a model of Eci ∪E. But since t= t′ fails in B, it also
fails in B⊥, contradicting the fact that Eci ∪E is an axiomatization of V(A). Thus,
Eciw ∪E proves each equation that holds in A, so that V(A) has a 2nite axiomatization.
A similar reasoning proves that if V(A⊥) has an equational axiomatization in a
bounded number of variables, then V(A) also has such an axiomatization. Indeed,
suppose that V(A⊥) has an axiomatization in a bounded number of variables, say n.
Since every simple inequation that holds in A has a kernel that holds in A, by Corol-
lary 53 we may assume, furthermore, that this axiomatization is given by the axioms of
Eci and a collection E of non-expansive simple inequations such that Eciw ∪E axioma-
tizes V(A). It follows that V(A) also has an axiomatization in a bounded number of
variables.

We now turn to positive ciw-semirings. Note, 2rst of all, that not every inequation
that holds in a positive ciw-semiring has a kernel. For instance, as remarked in Exam-
ple 51, the de2ning inequation for these structures, viz. 06x, has no kernel. Thus the
above theorem cannot be used for positive ciw-semirings. Our aim in the remainder
of this section will be to prove statements that will allow us to lift negative results on
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the axiomatizability of non-trivial positive ciw-semirings to the free ci-semirings they
generate.

De nition 56. An equation is regular if its two sides contain the same variables
(cf. eg., [38]). An inequation is regular if every variable contained in the left-hand
side of the inequation also appears on the right-hand side. An inequation is strictly
regular if its two sides contain the same variables.

Thus, a simple inequation is strictly regular i4 it is regular and non-expansive.

Lemma 57. Suppose that A is a non-trivial positive ciw-semiring and t6t′ is a simple
inequation that holds in A. Then t6t′ is regular, i.e., every variable that appears in
t also appears in t′.

Proof. Assume to the contrary that t contains a variable x which does not appear
in t′. Then, substituting 0 for all other variables occurring in t or t′, we obtain that
A satis2es the inequation nx60, where n denotes the non-zero coeRcient of x in t.
Since A is positive it satis2es 06x and hence x6nx. It follows that x=0 holds in A,
contradicting the assumption that A is non-trivial.

Lemma 58. Suppose that A is a non-trivial positive ciw-semiring. Then for each sim-
ple inequation t6t′ that holds in A there is a strictly regular inequation t6t′′ that
also holds in A such that E+ciw ∪{t6t′′} proves t6t′.

Proof. Let t′′ be the simple term that results from t′ by substituting 0 for each variable
that does not occur in t.

We call the non-expansive, in fact strictly regular, inequation t6t′′ constructed above
the projection of t6t′.

Lemma 59. Suppose that A is a non-trivial positive ciw-semiring. Then a simple
inequation holds in A⊥ iA it has a strictly regular kernel that holds in A.

Proof. This follows from Lemmas 52 and 57.

The two lemmas above are the key to the proof of the following result, which o4ers
axiomatizations for the variety generated by a non-trivial positive ciw-semiring and for
that generated by its associated free ci-semiring.

Corollary 60. Suppose that A is a non-trivial positive ciw-semiring. Then V(A) is
axiomatized by the set of equations E+ciw ∪E, where E denotes the set of all regular
equations that hold in A. Moreover, V(A⊥) is axiomatized by Eci ∪E.

Proof. For the 2rst part, we need to show that whenever an algebra B satis2es all the
equations in E+ciw ∪E, then B satis2es any equation that holds in A. But, with respect to
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Eciw, any equation is equivalent to a 2nite set of simple inequations (see Corollary 8).
Moreover, by Lemma 58, for every simple inequation t6t′ that holds in A there is a
strictly regular inequation t6t′′ that also holds in A such that E+ciw ∪{t6t′′} proves
t6t′. Thus, since all such inequations hold in B, it follows that B satis2es any equation
that holds in A.
For the second claim, observe that, by Lemma 59, any equation in E holds in A⊥,

as does any equation in Eci. Suppose now that an algebra B satis2es all the equations
in Eci ∪E. By Corollary 8, we only need to show that B satis2es any simple inequation
that holds in A⊥. Lemma 59 tells us that these are the simple inequations that have a
strictly regular kernel that holds in A. But these inequations can be proven from those
in E, and thus hold in B.

Remark 61. If A is a trivial ciw-semiring, then V(A) is axiomatized by the single
equation x=y. However, this equation is not provable from E+ciw ∪E, where E denotes
the set of all regular equations that hold in A. Thus the assumption of non-triviality
in the statement of the above result is necessary.

Theorem 62. Suppose that A is a non-trivial positive ciw-semiring. If the variety
V(A⊥) has a @nite axiomatization then so does V(A).

Proof. Let E denote the set of strictly regular, simple inequations that hold in A. By
Corollary 60, Eci ∪E proves all the equations satis2ed by A⊥. Suppose that V(A⊥)
is 2nitely axiomatizable. Then, by the compactness theorem, there is a 2nite set F ⊆E
such that the set of equational axioms Eci ∪F forms a complete axiomatization of
V(A⊥). We claim that E+ciw ∪F is a complete axiomatization of the variety V(A).
Indeed, all of the equations in this set hold in A. Moreover, if E+ciw ∪F does not form
a complete set of equations for V(A), then, by Corollary 60, there are some algebra B
and a simple inequation t6t′ in E such that B satis2es all of the equations in E+ciw ∪F ,
but such that t6t′ fails in B. Consider the algebra B⊥. By Lemma 1, B⊥ satis2es the
equations in Eci, and, by Lemma 59, B⊥ satis2es the equations in F . Since t6t′ does
not hold in B, it follows that t6t′ does not hold in B⊥. But t ≤ t′ is in E and thus
holds in A⊥, so that Eci ∪F is not a complete set of identities for V(A⊥).

Theorem 63. Suppose that A is a non-trivial positive ciw-semiring. If the variety
V(A⊥) has an equational axiomatization in a bounded number of variables, then so
has V(A).

Proof. Assume that the set E of valid equations of A⊥ in at most n¿3 variables forms
an equational axiomatization of V(A⊥). With respect to the axioms Eci, each equation
in E may be transformed into a 2nite set of simple inequations in at most n variables.
Any such inequation holds in A and is thus regular by Lemma 57. Now, using the
equations in E+ciw, each inequation may be replaced by its projection which also has
at most n variables. Any such simple inequation is strictly regular. Let E′ denote the
resulting set of inequations. By construction, we have that Eci ∪E′ is an axiomatization
of V(A⊥). Moreover, since n¿3, each equation in this set has at most n variables.
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As in the proof of the preceding theorem, we can show that E+ciw ∪E′ is a complete
set of axioms for V(A).

4.2. Decidability and non-@nite axiomatizability

We now apply the results of the previous subsection to show that each of the tropical
semirings de2ned thus far has a decidable but non-2nitely based equational theory.

Proposition 64. Every simple inequation that holds in N−
∨ (respectively, in Z∨) has

a kernel that holds in N−
∨ (resp., in Z∨).

Proof. Assume to the contrary that the simple inequation t6t′ holds in N−
∨ but does

not have a kernel. Then each linear subterm of t′ contains a variable that does not
appear in t. If we assign −1 to all such variables and 0 to any other variable then
t evaluates to 0 while t′ evaluates to a negative number. Thus t6t′ fails in N−

∨ ,
contradicting our assumption. Since N−

∨ is a subalgebra of Z∨, every simple inequation
that holds in Z∨ also has a kernel.
We now show that the kernel t6t′′ of a simple inequation t6t′ that holds in N−

∨
also holds in N−

∨ . To this end, assume that t6t′′ fails in N−
∨ and that t′ = t′′ ∨ u, with

u such that each of its linear subterms contains a variable not occurring in t. Let Sx be
the vector of variables occurring in t, and Sy be the vector of variables occurring in u
but not in t. Since t6t′′ fails in N−

∨ , there is a vector Sa of non-positive integers such
that t( Sa), the result of evaluating t with respect to Sa, is greater than t′′( Sa). Evaluate u
with respect to the assignment that extends Sa by mapping each variable in Sy to t′′( Sa).
The resulting value of u is no greater than t′′( Sa), showing that t6t′ fails in N−

∨ .
A similar argument can be used to show that the kernels of simple inequations that

hold in Z∨ also hold in Z∨.

Remark 65. In fact, the kernel of any simple inequation that holds in Z∨ is strictly
regular.

Theorem 66. For each of the tropical semirings A=Z∨;−∞;N∨;−∞;N−
∨;−∞, the equa-

tional theory of V(A) is decidable in exponential time. Suppose that Sd6U is a simple
inequation. Then Sd6U holds in V(Z∨;−∞) if and only if Sd∈ [U ] and it holds in
V(N−

∨;−∞) if and only if Sd∈ [[U )].

Proof. This follows from Proposition 64, the corresponding facts for the ciw-semirings
Z∨, N∨ N−

∨ and from Lemmas 52 and 59.

Remark 67. A simple inequation Sd6U holds in V(Z∨(−∞)) if and only if Sd∈ [U ].
(We recall that, for every ciw-semiring A, we write A(⊥) for the algebra (A⊥;∨;+; 0)
obtained by adding ⊥ to the carrier set of A, but not to the signature.) Therefore
the structures Z∨, Z∨(−∞) and Z∨;−∞ satisfy the same equations in the language of
ciw-semirings.
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A geometric description of the equations that hold in V(N∨;−∞) will be given in
Section 4.3.

Theorem 68. For each of the tropical semirings A=Z∨;−∞;N∨;−∞;N−
∨;−∞, the va-

riety V(A) has no axiomatization in a bounded number of variables.

Proof. This follows immediately from the corresponding facts for the ciw-semirings
Z∨;N∨ N−

∨ and Theorems 55 and 63.

Since Z∧;∞ and N∧;∞ are isomorphic to Z∨;−∞ and N−
∨;−∞, respectively, Theorems

66 and 68 also apply to these semirings.

4.3. The algebra N∨(−∞)

We now study in some more detail the structure N∨;−∞, and in particular its ciw-
semiring reduct N∨(−∞) obtained by forgetting about the constant ⊥. For this algebra,
we shall o4er concrete descriptions of the free algebras in the variety it generates,
characterize the simple inequations that hold in it, and obtain an axiomatization for it
relative to Z∨.
Given a vector Sc=(c1; : : : ; cn)∈Nn, let nz( Sc) denote the set of all integers i∈ [n]

with ci �=0. (That is, nz( Sc) is the set of the non-zero positions in the vector Sc.) When
U ⊆Nn we de2ne:

nz(U ) =
⋃{nz( Sc): Sc ∈ U}:

The following proposition is a reformulation of Lemma 52 that will be useful in the
technical developments to follow.

Proposition 69. Let Sd be a vector in Nn and U ⊆Nn be non-empty and @nite. The
following are equivalent for a simple inequation Sd6U and a ciw-semiring A=(A;∨;
+; 0).
(1) A⊥ |= Sd6U .
(2) There exists a non-empty U ′ ⊆U such that nz(U ′)⊆ nz( Sd) and A |= Sd6U ′.
(3) U Sd= { Sc: Sc∈U and nz( Sc)⊆ nz( Sd)} is non-empty and A |= Sd6U Sd.

The characterization of the simple inequations that hold in V(N∨(−∞)), the variety
generated by N∨(−∞), will be based on a variation on the notion of convex ideal
introduced in De2nition 10. Note that, unlike Z∨ and Z∨(−∞) (cf. Remark 67), the
ciw-semirings N∨ and N∨(−∞) do not have the same equational theory. For instance,
the inequation

06 x (18)

holds in N∨, but fails in N∨(−∞). This observation, together with our characterization
of the simple inequations that hold in N∨, motivates the following de2nition.
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De nition 70. Call a set U ⊆Nn a positive convex ideal if for all non-empty { Sc1; : : : ;
Sck}=U ′ included in U and Sd∈Nn, if nz( Sd)⊇ nz(U ′) and there exist �1; : : : ; �k¿0,∑
i∈[k] �i=1 with Sd6

∑
i∈[k] �i Sci, then Sd∈U .

Remark 71. In the above de2nition, we may replace the condition nz( Sd)⊇ nz(U ′) by
nz( Sd)= nz(U ′).

Proposition 72. The intersection of any family of positive convex ideals is a positive
convex ideal.

Thus, each U ⊆Nn is included in a least positive convex ideal [(U ]]+. For exam-
ple, the positive convex ideal [( Spi]]

+ (i∈ [n]) generated by the ith unit vector only
contains Spi.

Lemma 73. Let U ⊆Nn and Sd∈Nn. Then Sd∈ [(U ]]+ if and only if there exists a
non-empty U ′ = { Sc1; : : : ; Sck}⊆U such that nz(U ′)⊆ nz( Sd), and Sd ∈ [(U ′]].

As an immediate corollary of the above lemma, we obtain a characterization of the
simple inequations that hold in the algebra N∨(−∞). Using this characterization and
the general strategy employed in the proof of Corollary 20, we also immediately have
that the equational theory of this algebra is decidable.

Corollary 74. Suppose that U is a non-empty @nite set in Nn and Sd∈Nn. Then:
(1) Sd6U holds in N∨(−∞) iA Sd∈ [(U ]]+.
(2) There exists an algorithm to decide whether an equation holds in the structure

N∨(−∞).

Proof. We only present a proof of the 2rst claim. Assume that Sd6U holds in
N∨(−∞). Since the algebras N∨(−∞) and N∨;−∞ have the same carrier set, this
means that Sd6U also holds in N∨;−∞. By Proposition 69, there exists a non-empty
U ′ ⊆U such that nz(U ′)⊆ nz( Sd) and N∨ |= Sd6U ′. By the 2rst claim in Proposition
19, we have that Sd∈ [(U ′]]. Since nz(U ′)⊆ nz( Sd), Lemma 73 yields that Sd∈ [(U ]]+,
which was to be shown. The proof of the converse implication is similar, and is there-
fore omitted.

We now o4er concrete descriptions of the free algebras in the variety generated by
N∨(−∞).
Let CI+(Nn) denote the set of all 2nite non-empty positive convex ideals in Nn.

We turn this set into a ciw-semiring. Suppose that U; V ∈CI+(Nn). We de2ne

U ∨ V = [(U ∪ V ]]+;
U + V = [(U ⊕ V ]]+;

0 = [( S0]]+ = { S0}:
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Following the structure of the proof of similar statements in Section 3.3, it is not too
hard to show that:

Theorem 75. For each n¿0, the algebra CI+(Nn) is a ciw-semiring, and is freely
generated in V(N∨(−∞)) by the sets [( Spi]]

+, i∈ [n].

Our next aim will be to o4er 2nite axiomatizations of the variety generated by
N∨(−∞) relative to those for V(Z∨). This result will also yield 2nite axiomatizations
of V(N∨) relative to V(N∨(−∞)). As a corollary, we shall obtain that V(N∨(−∞))
is not 2nitely based.

Lemma 76. The convex hull of any non-empty set U is included in [(U ]]+.

Let U ⊆Nn. De2ne the positive ideal generated by U thus:

(U ]+ = { Sd: ∃ Sc ∈ U such that nz( Sc) = nz( Sd) and Sd6 Sc}:
The following technical result is the crux of the relative axiomatization results to follow.

Proposition 77. Suppose that U is a non-empty subset of Nn. Then [(U ]]+ is the
convex hull of (U ]+.

Proof. The proof is similar to that of the 2rst statement in Proposition 13, but we
present it in full as an aid to the reader.
Since (U ]+ ⊆ [(U ]]+, it follows by Lemma 76 that the convex hull of (U ]+ is

included in [(U ]]+. In order to prove the other direction, suppose that

Sd6 �1 Sc1 + · · ·+ �k Sck
for some k¿0, Sc1; : : : ; Sck ∈U and �1; : : : ; �k¿0 with

∑
i∈[k] �i=1. Moreover, assume

that nz( Sd)= nz({ Sc1; : : : ; Sck}). By Lemma 73, it suRces to show that Sd is in the convex
hull of the set (V ]+, where V = { Sc1; : : : ; Sck}. We shall prove this by induction on

r = k + n+ w;

where we use w to denote the sum of the weights of the vectors Sci (i ∈ [k]), i.e., the
sum of all of their entries.
The base case is when r=2. Then n= k =1 and Sd= Sc= S0, so that our claim holds.
For the inductive step, suppose that r¿2. We proceed with the proof by distinguish-

ing three cases.
Case 1: If there exists some j∈ [n] with dj =0, then for this j, we have cij =0 for

all i∈ [k]. We can then remove the jth components of all the vectors to obtain Sd′ and
Sc′1; : : : ; Sc

′
k of dimension n− 1 with Sd′6�1 Sc′1 + · · ·+ �k Sc′k and nz( Sd′)= nz({ Sc′1; : : : ; Sc′k}).

Let W = { Sc′1; : : : ; Sc′k}. Thus, by induction, Sd′ is in the convex hull of (W ]+, so that
Sc is in the convex hull of (V ]+. The case that n=1 is handled separately: we have
Sd= Sc1 = · · · = Sck = S0, and our claim is trivial.
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Case 2: If there exists an i∈ [k] with �i=0, then it follows from the inductive
hypothesis that Sd is already in the convex hull of the set (W ]+, where W =V − { Sci}.

Case 3: If none of the previous two cases applies, then dj¿0 for all j∈ [n] and
�i¿0 for all i∈ [k]. Suppose that there exists some j such that cij =1 for all i∈ [k].
Then also dj =1 and we may remove the jth components of the vectors to obtain Sd′

and Sc′i , i∈ [k], as before. Using the inductive hypothesis, it follows as in case 1 above
that Sd is in the convex hull of (V ]+. The case that n=1 is again handled separately.

Suppose now that for each j there is some ij with cijj¿1. Let Se= �1 Sc1 + · · ·+ �k Sck .
If for some j

Sd6 �1 Sc1 + · · ·+ �ij−1 Scij−1 + �ij ( Scij − Spj) + �ij+1 Scij+1 + · · ·+ �k Sck
= Se − �ij Spj;

then, by induction, Sd is contained in the convex hull of (W ]+, where W is the set
{ Sc1; : : : ; Scij−1; Scij − Spj; Scij+1; : : : ; Sck}⊆ (V ]+. It follows that Sd is in the convex hull of
(V ]+. Otherwise, we have that

ej − �ij 6 dj 6 ej;

for all j. But this means that Sd is inside the n-dimensional cube determined by the
vectors

SvK = Se − ∑
j∈K
�ij Spj;

where K ranges over all subsets of [k]. Since these vectors SvK are all in the convex
hull of (V ]+, it follows that Sd belongs to the convex hull of (V ]+, which was to be
shown.

Corollary 78. A simple inequation Sd6U holds in N∨(−∞) iA Sd is in the convex hull
of (U ]+ iA the simple inequation Sd6(U ]+ holds in Z∨.

Using the above results, and following the lines of the proof of Theorem 28, we
can now show the promised results on the relative axiomatization of the varieties
V(N∨(−∞)) and V(N∨).

Corollary 79. V(N∨(−∞)) can be axiomatized over V(Z∨) by the inequation

x 6 x + x: (19)

Furthermore V(N∨;−∞) can be axiomatized over V(Z∨;−∞) by the above inequation.

Corollary 80. V(N∨) can be axiomatized over V(N∨(−∞)), or over V(Z∨), by the
inequation (18), i.e., 06x.

Using the aforementioned relative axiomatization results, and following the lines
of the proof of Theorem 30, we have that:
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Corollary 81. The variety V(N∨(−∞)) is not @nitely based. Moreover, there
exists no n such that the set of all equations En in at most n variables that hold in
N∨(−∞) is a complete axiomatization of V(N∨(−∞)).

5. Adding more constants

We now proceed our investigations of the equational theories of structures based
upon ciw-semirings by investigating the e4ect of adding a top element 	 to them.

5.1. Adding 	

Suppose that A=(A;∨;+; 0) is any algebra and 	 �∈A. We de2ne

a+	=	+ a = 	;
a ∨ 	=	 ∨ a = 	

for all a∈A� =A∪{	}. Below we shall consider A� equipped with the ∨ and +
operations, extended as above, and the constant 0. Consistently with previous notation,
we write A� if 	 is added to the signature of the resulting algebra, and A(	) for
the structure resulting by adding 	 only to the carrier set. When A is one of the
ci(w)-semirings Z∨;N∨, etc., then we also write A∞ and A(∞) for A� and A(	),
respectively.

Proposition 82. Any equation that holds in A(	) also holds in A. Moreover, A(	)
satis@es an equation iA the equation is regular and holds in A.

Proof. Since A is a subalgebra of A(	), the 2rst claim is obvious. As for the sec-
ond claim, assume that t= t′ holds in A and t and t′ contain the same variables,
say x1; : : : ; xn. Since t= t′ holds in A, the only way that t= t′ may fail in A(	) is
that there exist some a1; : : : ; an such that at least one of the ai is 	 and t(a1; : : : ;
an) �= t′(a1; : : : ; an). But in that case both sides are 	.
On the other hand, if t′ contains a variable that does not appear in t, say, and if

the variables of t and t′ are x1; : : : ; xn, then let ai ∈A whenever xi appears in t, and
let ai=	 otherwise. We have that t(a1; : : : ; an)∈A but t′(a1; : : : ; an)=	. Hence the
equation t= t′ fails in A(	).

Corollary 83. The algebras A and A(	) satisfy the same regular equations. More-
over, A and A(	) satisfy the same equations iA every equation that holds in A is
regular.

Corollary 84. A is a ciw-semiring iA so is A(	). Suppose that A is a ciw-semiring
and that every simple inequation that holds in A is regular. Then A and A(	) satisfy
the same equations.
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Proof. The 2rst fact follows by Proposition 82, noting that every de2ning equation
of ciw-semirings is regular. The second fact follows by noting that the following two
conditions are equivalent for a ciw-semiring A:
(1) Every equation that holds in A is regular.
(2) Every simple inequation that holds in A is regular.

Remark 85. The same facts hold if we consider algebras containing more constants
such as algebras (A;∨;+;⊥; 0) equipped with a constant ⊥.

We might wish to add the symbol 	 also to the signature and consider equations
involving 	 that hold in A�. The following proposition gives a characterization of the
equations of this kind that hold in A� relative to those that hold in A.

Proposition 86. For any algebra A=(A;∨;+; 0) or A=(A;∨;+;⊥; 0), an equation
between terms possibly involving 	 holds in A� iA
• either both sides contain an occurrence of 	;
• or neither of them does, the equation holds in A and is regular.

The simple proof is omitted. The above result has a number of useful corollaries
relating the equational theories of A� and A.

Corollary 87. If the equational theory of A is decidable in time O(t(n)), with t(n)¿
n2, then so is the equational theory of A�.

Corollary 88. Suppose that A=(A;∨;+; 0) or A=(A;∨;+;⊥; 0) is a given algebra
and E is a set of equations possibly involving 	. Let E0 denote the set of equations
in E not containing 	. Then E, together with the equations

x +	 = 	; (20)

x ∨ 	 = 	; (21)

is an equational basis for A� iA E0 is a basis for the regular equations 2 that hold
in A. In particular, if all equations satis@ed by A are regular, then E together with
(20) and (21) is an equational basis for A� iA E0 is an equational basis for A.

Corollary 89. Suppose that A is a ci(w)-semiring such that every simple inequation
that holds in A is regular. Let E denote a set of equations and de@ne E0 as in the
statement of Corollary 88. Then E, together with (20) and (21), is an equational
basis for A� iA E0 is an equational basis for A.

2 This means that E0 consists of regular equations that hold in A. Moreover, E0 proves all regular equations
that hold in A.
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Corollary 90. Suppose that A is a ci(w)-semiring such that every simple inequation
that holds in A is regular. Then A has a @nite basis for its identities iA so does A�.
Moreover, A has an axiomatization in a bounded number of variables iA so does A�.

5.2. Applications

We now proceed to apply the general results developed in Section 5.1 to the algebras
obtained by adding top elements to some of the ciw-semirings we study in this paper.

Proposition 91. Let A be any of the commutative idempotent (weak) semi-rings Z∨,
N∨, Z∨;−∞, N∨;−∞, Z∨(−∞) and N∨(−∞). Then A(∞) and A∞ are not @nitely
based, and have no axiomatization in a bounded number of variables. Moreover, the
equational theory of A∞ is decidable in exponential time.

Proof. Immediate from the preceding results, the fact that each of Z∨, N∨, Z∨(−∞),
N∨(−∞), Z∨;−∞ and N∨;−∞ is a ci(w)-semiring satisfying only regular simple in-
equations, and from the results established in Sections 3 and 4.

6. Variations on tropical semirings

We now examine some variations on the tropical semirings studied so far in this
paper. These include structures whose carrier sets are the (non-negative) rational or real
numbers (Section 6.1), semirings whose product operation is standard multiplication
(Section 6.2), and the semirings studied by Mascle and Leung in [30] and [26,27],
respectively, (Section 6.3). We also o4er results on the equational theory of some
algebras based on the ordinals proposed by Mascle in [29] (Section 6.4).

6.1. Structures over the rational and real numbers

We now proceed to study tropical semirings over the (non-negative) rationals and re-
als, and their underlying ciw-semirings. More precisely, we shall consider the following
ciw-semirings:

Q∨ = (Q;∨;+; 0); Q+
∨ = (Q+;∨;+; 0); Q+

∧ = (Q+;∧;+; 0);
R∨ = (R;∨;+; 0); R+

∨ = (R+;∨;+; 0); R+
∧ = (R+;∧;+; 0);

where Q+ and R+ denote the sets of non-negative rational and real numbers, respec-
tively. We shall also investigate the tropical semirings associated with the aforemen-
tioned ciw-semirings, viz. the structures

Q∨;−∞ = (Q ∪ {−∞};∨;+;−∞; 0); Q+
∨;−∞ = (Q+ ∪ {−∞};∨;+;−∞; 0);

R∨;−∞ = (R ∪ {−∞};∨;+;−∞; 0); R+
∨;−∞ = (R+ ∪ {−∞};∨;+;−∞; 0);

Q+
∧;∞ = (Q+ ∪ {∞};∧;+;∞; 0); R+

∧;∞ = (R+ ∪ {∞};∧;+;∞; 0):
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We begin by noting the following result, to the e4ect that each of the algebras on a
dense carrier set has the same equational theory of its corresponding discrete structure:

Lemma 92. The following statements hold:
(1) The ciw-semirings Q∨, R∨ and Z∨ have the same equational theory.
(2) The ciw-semirings Q+

∨, R
+
∨ and N∨ have the same equational theory.

(3) The ciw-semirings Q+
∧, R

+
∧ and N∧ have the same equational theory.

(4) The ci-semirings Q∨;−∞, R∨;−∞ and Z∨;−∞ have the same equational theory.
(5) The ci-semirings Q+

∨;−∞, R+
∨;−∞ and N∨;−∞ have the same equational theory.

(6) The ci-semirings Q+
∧;∞, R+

∧;∞ and N∧;∞ have the same equational theory.

Proof. We only outline the proof of the 2rst statement of the lemma. Since Z∨ is a
subalgebra of Q∨, which is in turn a subalgebra of R∨, it follows that the equational
theory of R∨ is included in that of Q∨, which is in turn included in that of Z∨. For
the converse, assume that

t(x1; : : : ; xn) = t′(x1; : : : ; xn)

holds in Z∨. Let r1; : : : ; rn be rationals, and write ri= qi=q, where the qi (i∈ [n]) and
q are integers, with q positive. Now

t(r1; : : : ; rn) =
t(q1; : : : ; qn)

q

=
t′(q1; : : : ; qn)

q
= t′(r1; : : : ; rn):

Thus, any valid equation of Z∨ holds in Q∨. The fact that any equation of Q∨ holds in
R∨ follows from the continuity of the term functions. The proof of the other statements
is similar.

As an immediate corollary of the above lemma, and of the non-2nite axiomatizability
and decidability results presented earlier in the paper, we have that:

Theorem 93. Let A be any of the algebras Q∨, R∨, Q+
∨, R

+
∨, Q

+
∧, R

+
∧, Q∨;−∞,

R∨;−∞, Q+
∨;−∞, R+

∨;−∞, Q+
∧;∞ and R+

∧;∞. Then:
(1) The variety V(A) is not @nitely based.
(2) For every natural number n, the collection of equations in at most n variables

that hold in V(A) is not a basis for its identities.
(3) The equational theory of V(A) is decidable in exponential time.

Remark 94. The structure R∨;−∞ =(R;∨;+;−∞; 0) is the well-known max-plus al-
gebra, whose plethora of applications are discussed in, e.g., [15].

All of the algebras, whose carrier sets are the set of rational or real numbers, that
we have discussed so far in this section sometimes appear in their isomorphic form
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as min-plus algebras. As a further corollary of the above theorem, we therefore have
that:

Corollary 95. Let A be either Q or R. Then the algebras A∧ =(A;∧;+; 0) and
A∧;∞ =(A∪{∞};∧;+;∞; 0) are not @nitely based. Moreover, for every n ∈ N, the
collection of equations in at most n variables that hold in A∧ (respectively, A∧;∞)
does not form an equational basis for A∧ (resp., A∧;∞). Finally, the equational the-
ories of A∧ and A∧;∞ are decidable in exponential time.

6.2. Min-max-times algebras

We now apply the results we have previously obtained to the study of the equational
theories of the ci(w)-semirings

A∨;× = (A\{0};∨;×; 1);
A∧;× = (A\{0};∧;×; 1);
A∨;×;0 = (A;∨;×; 0; 1)

and

A∧;×;0 = (A;∧;×; 0; 1);
where A is any of the sets N, Q+ or R+, and × is standard multiplication.

Proposition 96. Let A be any of the sets N, Q+ or R+. Then:
(1) V(A∨;×)=V(A∨),
(2) V(A∧;×)=V(A∧),
(3) V(A∨;×;0)=V(A∨;−∞) and
(4) V(A∧;×;0)=V(A∧;−∞).

Proof. We only show statement 1, when A is N. The proof of the remaining claims
is similar.
First of all, note that N∨ is isomorphic to the subalgebra of N∨;× determined by the

natural numbers that are a power of 2. Conversely, observe that N∨;× is isomorphic
to the algebra

(log(N\{0});∨;+; 0);
where we write log(N\{0}) for the collection of logarithms in base 2 of the positive
natural numbers, via the mapping

n �→ log n:

The above mapping is injective, and the set log(N\{0}) is closed under addition, in
light of the well-known equation

log(x × y) = log x + log y:
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Note, furthermore, that N∨ is a subalgebra of (log(N\{0});∨;+; 0), which is itself a
subalgebra of R+

∨. By Lemma 92, these three algebras have the same equational theory,
and thus generate the same variety.

As a corollary of the above proposition, and of the results that we have previously
established for min-max-plus ci(w)-semirings, we obtain the following result:

Corollary 97. Let A be any of the sets N, Q+ or R+. Then:
(1) The varieties generated by the algebras A∨;×, A∧;×, A∨;×;0 and A∧;×;0 are not

@nitely based. Moreover none of these varieties has an axiomatization in a
bounded number of variables.

(2) There exists an exponential time algorithm to decide whether an equation holds
in the structures A∨;×, A∧;×, A∨;×;0 and A∧;×;0.

6.3. Mascle’s and Leung’s semirings

We now study the equational theory of some semirings originally proposed by Mascle
and Leung, and discussed in the survey paper [32].

6.3.1. Mascle’s semiring
In [30], Mascle introduced the semiring

P−∞ = (N ∪ {−∞;∞};∨;+;−∞; 0)
where the addition operation satis2es the identities

−∞+ x = x + (−∞) = −∞:
(See also the survey paper [32] for information on this and other semirings proposed
by Mascle.) Note that the ci-semiring P−∞ is di4erent from the structure N∨;−∞(∞)
we studied in Section 5.2. Indeed, in N∨;−∞(∞) it holds that

−∞+∞ = ∞+ (−∞) = ∞:
Instead, it is the case that P−∞ is obtained by freely adding −∞ to the ciw-semiring
N∨(∞).

Theorem 98. The variety V(P−∞) is not @nitely based, and aAords no axiomatization
in a bounded number of variables.

Proof. The variety generated by the positive ciw-semiring N∨(∞) has no axiomati-
zation in a bounded number of variables (Proposition 91). By Theorem 63, the same
holds true of V(P−∞).

6.3.2. Leung’s semiring
Leung [26,27] introduced and studied the semiring

M = (N ∪ {!;∞};∧;+;∞; 0);
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where the minimum operation is de2ned with respect to the order

0¡ 1¡ 2¡ · · ·¡ !¡∞;
and addition in the tropical semiring N∧;∞ is completed by stipulating that

x + ! = !+ x = max{x; !}:
Thus the carrier of M is just the ordinal !+2. It is easy to see that M is a ci-semiring.
We shall now proceed to show that Leung’s semiring is also not 2nitely based. To

this end, we relate the equational theory of the tropical semiring N−
∨;−∞ to that of

M− = (N− ∪ {−!;−∞};∨;+;−∞; 0);
which is isomorphic to M.

Lemma 99. Let t6t′ be a simple inequation. Then t6t′ holds in N−
∨;−∞ iA it holds

in M−.

Proof. Since N−
∨;−∞ is a subalgebra of M−, every simple inequation that holds in

M− also holds in N−
∨;−∞. Conversely, let t6t′ be a simple inequation that holds in

N−
∨;−∞. By Lemma 52, t6t′ has a kernel that holds in N−

∨ . This kernel holds in M−

(again by Lemma 52), and so does t6t′.

As immediate corollary of the above result, we have that N−
∨;−∞ and M− have

the same equational theory. Since Leung’s semiring M and M− are isomorphic, using
Theorem 68, we therefore have that:

Proposition 100. The variety V(M) generated by the semiring M has no @nite ax-
iomatization, and no axiomatization in a bounded number of variables.

6.4. Ordinals

In [29] (see also the survey paper [32]), Mascle proposed to study min-plus algebras
whose carrier sets consist of the collection of ordinals strictly smaller than a given
ordinal 9. Our aim in this section is to o4er results to the e4ect that these algebras do
not a4ord any axiomatization in a bounded number of variables. We begin by giving
the precise de2nition of these structures.
Recall that each ordinal 9 can be represented as the well-ordered set of all the

ordinals strictly smaller than it. When 9 is a power of !, the 2rst in2nite ordinal, this
set is closed under ordinal addition, giving rise to the structures

9∨ = (9;∨;+; 0)
and

9∧ = (9;∧;+; 0);
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where ∨ and ∧ denote the maximum and minimum operation over ordinals, respec-
tively. Since ordinal addition is not commutative, these structures are not ciw-semirings
unless 9=1 or 9=!. However, except for commutativity of addition, they satisfy all
the de2ning equations of ciw-semirings. Moreover, when 9 �=1, the algebra 9∨ con-
tains N∨ as a subalgebra, and 9∧ contains N∧. In both 9∨ and 9∧, the carrier set 9 is
linearly ordered by the semilattice order, and the + operation is monotonic (see, e.g.,
[20]). Thus, by Theorem 48, we have that:

Theorem 101. Suppose that 9 �=1 is a power of !. Then V(9∨) cannot be axioma-
tized by equations in a bounded number of variables. The same fact holds for V(9∧).

When 9 is an ordinal of the form !:, where : is itself a power of !, the set 9 is
closed under ordinal product, giving rise to the structures

9∨;× = (9\{0};∨;×; 1);

and

9∧;× = (9\{0};∧;×; 1):

Proposition 102. The structures 9∨ and 9∧ embed in !9∨;× and !9∧;×, respectively.

Proof. The function mapping any ordinal :¡9 to !: is an embedding, in light of the
equality

!: × !0 = !:+0;

and we are done.

From the above result, it follows that the algebra 9∨;× contains N∨;× as a subalgebra,
and 9∧;× contains N∧;×. In both 9∨;× and 9∧;×, the carrier set 9 is linearly ordered
by the semilattice order, and the × operation is monotonic (see, e.g., [20]). Thus, by
Theorem 48, we have that:

Theorem 103. Suppose that 9 is an ordinal of the form !:, where : is itself a power
of !. Then V(9∨;×) cannot be axiomatized by equations in a bounded number of
variables. The same fact holds for V(9∧;×).
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