CS 6861 S24 Lectures 14-15 Kleene Algebra with Tests Week of March 11, 2024

In semantics and logics of programs, Kleene algebra forms an essential component of Propositional Dynamic
Logic (PDL) [10], in which it is mixed with Boolean algebra and modal logic to give a simple yet powerful
system for modeling and reasoning about computation at the propositional level.

Syntactically, PDL is a two-sorted logic consisting of programs and propositions defined by mutual induction.
A test ¢7 can be formed from any proposition (; intuitively, ¢7 acts as a guard that succeeds with no side
effects in states satisfying ¢ and fails or aborts in states not satisfying ¢. Semantically, programs are modeled
as binary relations on a set of states, and 7 is interpreted as the subset of the identity relation consisting
of all pairs (s, s) such that ¢ is true in state s.

From a practical point of view, many simple program manipulations, such as loop unwinding and basic safety
analysis, do not require the full power of PDL, but can be carried out in a purely equational subsystem using
the axioms of Kleene algebra. However, tests are an essential ingredient, since they are needed to model
conventional programming constructs such as conditional tests and while loops. We define here a variant
of Kleene algebra, called Kleene algebra with tests (KAT), for reasoning equationally with these constructs.
KAT was introduced in [14,15].

KAT has been applied successfully in a number of low-level verification tasks involving communication proto-
cols, basic safety analysis, concurrency control, and local compiler optimizations [1,6,7,17]. A useful feature
of KAT in this regard is its ability to accommodate certain basic equational assumptions regarding the in-
teraction of atomic instructions and tests. This feature makes KAT ideal for reasoning about the correctness
of low-level code transformations.

Definition of Kleene Algebra with Tests

A Kleene algebra with tests is a two-sorted algebra
(K7 B7 +7 '7* 703 177)

where B C K and ~ is a unary operator defined only on B, such that

o (K,+,-,%,0,1) is a Kleene algebra,
e (B,+,-,7,0,1) is a Boolean algebra, and
e (B,+,-,0,1) is a sub-semiring of (K, +,-,0,1).

The elements of B are called tests. We reserve the letters p, g, r, ... for arbitrary elements of K and a,b, ¢, ...

for tests. In PDL, a test would be written b7, but since we are using different symbols for tests we can omit
the 7.

The axioms for Kleene algebra were given in an earlier lecture. The axioms for Boolean algebra are just
the laws of propositional logic. Expressed in our language with + for join (disjunction, “or”, V), - for meet
(conjunction, “and”, A), and ~ for negation (complement, “not”, —), they are

a+(b+c)=(a+bd)+c a(be) = (ab)c a+b=b+a ab = ba
a(b+c¢) = ab+ ac a+bc=(a+b)(a+c) a+0=a al =a
a0 =0 a+1=1 at+a=a aa = a
aa =0 ata=1 ab=a+b a+b=ab
a=a.



The definition of a KAT is deceptively simple, but actually carries a lot of information in a concise package.
Note the overloading of the operators +, -, 0, 1, each of which plays two roles: applied to arbitrary elements
of K, they refer to nondeterministic choice, composition, fail, and skip, respectively; and applied to tests,
they take on the additional meaning of Boolean disjunction, conjunction, falsity, and truth, respectively.
These two usages do not conflict—for example, sequential testing of b and c is the same as testing their
conjunction—and their coexistence admits considerable economy of expression.

It follows immediately from the definition that a < 1 for all a € B, where < is the natural order in the
Kleene algebra (this is the axiom a+ 1 = 1 of Boolean algebra). It is tempting to define tests in an arbitrary
Kleene algebra to be the set {p € K | p < 1}. This is the approach taken by [5]. This approach makes some
sense in algebras of binary relations [19,21], but it does not work in all Kleene algebras. For example, it
rules out the (min, +) Kleene algebra described in an earlier lecture. In this algebra, p < 1 for all p, but
the idempotence law pp = p fails, so the set {p € K | p < 1} does not form a Boolean algebra. In our
approach, every Kleene algebra extends trivially to a Kleene algebra with tests by taking the two-element
Boolean algebra 2 = {0,1}. Of course, there are more interesting models as well.

However, there is a more serious issue. Even in algebras of binary relations, the approach of [5] forces us to
consider all elements p < 1 as tests, including conditions that in practice would not normally be considered
testable. For example, there may be programs p whose input/output relations have no side effects—that
is, p < 1—but the associated test succeeds iff p halts, which in general is undecidable. We intend tests to
be viewed as simple predicates that are easily recognizable as such and that are immediately decidable in a
given state (and whose complements are therefore also immediately decidable). Having an explicit Boolean
subalgebra allows this.

While Programs

We will work with a Pascal-like programming language with sequential composition p ; g, a conditional test
if b then p else ¢, and a looping construct while b do p. Programs built inductively from atomic programs
and tests using these constructs are called while programs.

We occasionally omit the else clause of a conditional test. This can be considered an abbreviation for a
conditional test with the dummy else clause skip, which is semantically the same as 1 (true).
These constructs are modeled in Kleene algebra with tests as follows:

P q=pq if bthenp=bp+0b

while b do p = (bp)*b if b then p else ¢ = bp + bq.

These definitions agree with the traditional input-output semantics of while programs in relational models.
For example, the meaning of while b do p is traditionally described as the least solution x of the equation

x = if b then p ; x else skip,
or equivalently, the least x such that

if b then p ; x else skip < x.

Translating to the language of KAT, this just says that (bp)*b is the least x such that bpz + b < x, which is
an immediate consequence of the KA axioms.

Conditions

We will often need to reason in the presence of extra assumptions. Recall that KA and KAT are Horn theories,
and these extra assumptions take the form of equational premises to the left of the implication symbol in a
Horn formula.



There are several common forms of premises that arise in applications. The most common form is a com-
mutativity condition pg = ¢p or pb = bp. A commutativity condition between two atomic programs p and ¢
expresses the fact that the two operations represented by p and ¢ do not interfere with each other and may
be done in either order. For example, if p and g are the assignments = := 3 and y := 4 respectively, then
they do not affect each other. A commutativity condition pb = bp, where p is a program and b is a test,
indicates that the execution of p does not affect the truth value of b. For example, if p is the assignment
x := 3 and b is the test y = 4, then execution of p has no effect on the truth value of b. One can perform
the test either before or after the assignment and the result is the same.

Another common assumption comes in the form of a pair of equations p = pb and bp = b. The first equation
indicates that the execution of p causes b to become true, thus testing b after executing p is redundant. The
second equation indicates that if the sole purpose of p is to make b true, then there is no need to execute p
if b is already true. For example, if p is the assignment = := 3 and b is the test x = 3, then these conditions
hold: executing p makes b true, and if b is already true, there is no need to execute p.

This is useful for example when we want to eliminate a redundant assignment. We can use the first equation
p = pb to generate the condition b in a KAT expression, then use commutativity conditions to move b around
until it comes up against another p, then use the second equation bp = b to eliminate the second occurrence
of p, then move the b back again and eliminate it by applying p = pb in the opposite direction.

It stands to reason that if p does not affect b, then neither should it affect b. This is indeed the case. Thus
pb = bp should be equivalent to pb = bp. More generally,

Lemma 1. In any Kleene algebra with tests, the following are equivalent:

(i) bp =pc
(ii) bp = pe
(iii) bpe + bpc = 0.
Proof. Since b=b for any test b, by symmetry it suffices to show the equivalence of (i) and (iii). Assuming
(i), we have
bpe + bpc = pce + bbp = p0 + 0p = 0.
Conversely, assuming (iii), we have bpc = bpc = 0. Then

bp = bp(c + €) = bpc + bpe = bpc + 0 = bpc + bpc = (b + b)pc = pc. O
Of course, any pair of tests commute; that is, bc = ¢b. This is an axiom of Boolean algebra.

Models of KAT

Here we introduce the syntax of Kleene algebra with tests (KAT), along with several useful interpretations.
Every KA extends trivially to a KAT by taking the Boolean subalgebra to be 2 = {0, 1}, but there are much
more interesting ones. We will describe a family of language models consisting of regular sets of guarded
strings, which play the same role in KAT that the regular sets of strings play in Kleene algebra. We will also
discuss relational models. These results are from [15,18].

KAT Syntax

Let P and B be disjoint finite sets of symbols. Elements of P are called primitive actions and elements of B
are called primitive tests. Action terms and Boolean terms are defined inductively:



e any primitive action p is an action term

e any primitive test b is a Boolean term

e 0 and 1 are Boolean terms

e if p and ¢ are action terms, then so are p + ¢, pg, and p* (suitably parenthesized if necessary)
e if b and c are Boolean terms, then so are b+ ¢, be, and b (suitably parenthesized if necessary)

e any Boolean term is an action term.

Expressed as a grammar,

pu=peP|p+q|pg|p*|b
bu=a€B|0|1|b+c]|bc|b.

The set of all terms over P and B is denoted Exp P, B. The set of all Boolean terms over B is denoted Exp B.

An interpretation over a KAT K is any homomorphism (function commuting with the distinguished opera-
tions and constants) defined on Exp P, B and taking values in K such that the Boolean terms are mapped to
elements of the distinguished Boolean subalgebra.

If K is a KAT and [ is an interpretation over K, we write K, I F ¢ if the formula ¢ holds in K under the
interpretation I according to the usual semantics of first-order logic.

We write KAT E ¢ if the formula ¢ is a logical consequence the axioms of KAT, that is, if ¢ holds under
all interpretations over Kleene algebras with tests. We write KAT* E ¢ if ¢ holds under all interpretations
over star-continuous Kleene algebras with tests. The only formulas we consider are equations or equational
implications (universal Horn formulas).

Language Models

Let P and B be disjoint finite sets of symbols. Our language-theoretic models of Kleene algebras with tests
are based on the idea of guarded strings over P and B. Guarded strings were first studied in [13].

We obtain a guarded string from a string x € P* by inserting atoms interstitially among the symbols of
2. An atom is a Boolean expression representing an atom (minimal nonzero element) of the free Boolean
algebra on generators B.

Formally, an atom of B = {by,...,bs} is a product of literals c; - - - cx, where each ¢; € {b;,b;}. This assumes
an arbitrary but fixed order b; < by < --- < by on B. For technical reasons, we require the literals in an
atom appearing in a guarded string to occur in this order. There are exactly 2¥ atoms, and they are in
one-to-one correspondence with the truth assignments to B. We denote atoms of B by «, 3, aq,... . The
set of all atoms of B is denoted Atg, or just At when B is understood. The set At will turn out to be the
multiplicative identity of our language-theoretic models.

If b € B and « is an atom of B, we write a < b if b occurs positively in o and a < b if b occurs negatively in a.
This notation is consistent with the natural order in the free Boolean algebra generated by B. Equivalently,
a < b iff the truth assignment corresponding to « assigns 1 (true) to b.

Intuitively, the action symbols can be thought of as atomic instructions to be executed and atoms as condi-
tions that must be satisfied at some point in the computation. If @ < ¢;, then « asserts that ¢; holds (and
¢; fails) at that point in the computation.



A guarded string over P and B is any element of (At - P)* - At; that is, any string of the form

QP1OIP2Qg * + * Oy 1PpOly, T 2> 0,

where each «; € At and each p; € P. Note that every guarded string = begins and ends with an atom, which
we call first z and last x, respectively. Thus if x is the guarded string above, then firstx = o and lastz = «,.
In the case n = 0, = just consists of a single atom «g, and firstz = lastz = «p.

The set of all guarded strings over P and B is denoted GSp g, or just GS when P and B are understood.
Let B = {b| b € B}. We denote strings in (PUBUB)*, including guarded strings, by the letters =, y, z, 1, ... .

The analog of concatenation for guarded strings is fusion product, also sometimes called coalesced product.
It is a partial binary operation ¢ on GS defined as follows:

o
zoro By = {xay, if =0,

undefined, otherwise.

That is, if lastx = firsty, then the fusion product = ¢ y exists and is equal to the string obtained by
concatenating x and y, but writing the mediating atom last x = first y only once between them; otherwise,
x ¢y is undefined.

For example, if B = {b,c} and P = {p, ¢}, then
bepbe o begbe = bepbegbe.

The operation ¢ is associative in the sense that (z ¢ y) ¢ z is defined iff z ¢ (y ¢ 2) is defined, and if both are
defined, then they are equal.

If A, B C GS, define

A'Bd:ef{xoy|x€A, y € B, lastz = firsty}.

We will tend to elide the - and write just AB. Thus AB consists of all existing fusion products of guarded
strings in A with guarded strings in B. For example, if B = {b,c}, P = {p, ¢}, and

A = {bepbe, be, begbey B = {bcpbe, be, begbe},
then
AB = {bepbepbe, bepbe, bepbe, be, begbegbe )

Note that, whereas the operation ¢ on guarded strings is a partial operation, the set-theoretic product - on
sets of guarded strings defined in terms of ¢ is a total operation. If there are no existing fusion products of
strings from A and B, then AB = &. It is not difficult to show that - is associative, that it distributes over
union, and that it has two-sided identity At.

For A C GS, define inductively
JERN: AL g,
The asterate operation for sets of guarded strings is defined by

A E A

n>0

Let ~ denote set complementation in At. That is, if A C At, then A = At — A.



We now define a language-theoretic model Reg P, B based on guarded strings. The elements of Reg P, B will
be the regular sets of guarded strings over P and B (although we have not yet defined regular in this context).
We will also give a standard interpretation G : Exp P,B — Reg P, B analogous to the standard interpretation
of regular expressions as regular sets.

Consider the structure
(2GS7 2At7 U7 '7* 777 Qa At)?

which we denote briefly by 265. Tt is quite straightforward to verify that this is a star-continuous Kleene
algebra with tests; that is, it is a model of KAT*. The Boolean algebra axioms hold for 22t because it is a
set-theoretic Boolean algebra.

The star-continuity condition follows immediately from the definition of * and the distributivity of - over
arbitrary union. Since

B =] B",
n>0

we have that

AB*C = A(lJ BMC = | AB"C.

n>0 n>0

Both of these expressions denote the set

U{:z:oyoz|x€A, y € B", z € C, lastax = firsty, lasty = first z}.
n>0

Standard Interpretation

For p € P and b € B, define

G(p) & {apB | o, B € At} G(b) € {a e At|a<b}. (1)

The structure Reg P, B is defined to be the subalgebra of 2% generated by the elements G(p) for p € P and
G(b) for b € B. Elements of RegP, B are called regular sets.

The map G defined on primitive actions and primitive tests in (1) extends uniquely to a homomorphism
G :ExpP,B — RegP,B:

G(p+q) € G(p) UG(q) G(1) = At G(b) € At\ G(b)

G(pg) € G(p)G(q) G0 Lo G(") E Gp)".

The map G is called the standard interpretation over Reg P, B.

Relational Models

Relational Kleene algebras with tests are interesting because they closely model our intuition about programs.
In a relational model, the elements of K are binary relations and - is interpreted as relational composition.
Elements of the Boolean subalgebra are subsets of the identity relation.

Formally, a relational Kleene algebra with tests on a set X is any structure

(Kvauv;v*a77®7id)



such that (K,U,;,*,@,id) is a Kleene algebra of binary relations on X, in which ; is ordinary relational
composition, * is reflexive transitive closure, and id is the identity relation on X; and (B,U,;,”, d,id) is a
Boolean algebra of subsets of the identity relation id (not necessarily the whole powerset).

All relational Kleene algebras with tests are star-continuous. We write REL F ¢ if the formula ¢ holds in all
relational Kleene algebras in the usual sense of first-order logic.

KAT and Hoare Logic

In this segment we will show that KAT subsumes propositional Hoare logic (PHL). Thus the specialized
syntax and deductive apparatus of Hoare logic are inessential and can be replaced by simple equational
reasoning. Moreover, all relationally valid Hoare-style inference rules are derivable in KAT (this is false for
PHL). In a future lecture we will show that deciding the relational validity of such rules is PSPACE-complete.
These results are from [16, 18].

Hoare logic, introduced by C. A. R. Hoare in 1969 [12], was the first formal system for the specification and
verification of well-structured programs. This pioneering work initiated the field of program correctness and
inspired hundreds of technical articles [4,8,9]. For this achievement among others, Hoare received the Turing
Award in 1980. Comprehensive introductions to Hoare logic can be found in [2,3,9].

Hoare logic uses a specialized syntax involving partial correctness assertions (PCAs) of the form {b}p{c}
and a deductive apparatus consisting of a system of specialized rules of inference. Under certain conditions,
these rules are relatively complete [8]; essentially, the propositional fragment of the logic can be used to
reduce partial correctness assertions to static assertions about the underlying domain of computation.

The propositional fragment of Hoare logic, called propositional Hoare logic (PHL), is subsumed by KAT.
The reduction transforms PCAs to ordinary equations and the specialized rules of inference to equational
implications (universal Horn formulas). The transformed rules are all derivable in KAT by pure equational
reasoning. More generally, all Hoare-style inference rules of the form

{biypi{ei} .. A{ba}paica} @)
{b}p{c}

that are valid over relational models are derivable in KAT; this is trivially false for PHL.

Encoding of While Programs and Partial Correctness Assertions

The encoding of the while programming constructs using the regular operators and tests originated with
propositional Dynamic Logic (PDL) [10]. KAT is strictly less expressive than PDL, but is simpler and
purely equational, and is only PSPACE-complete, whereas PDL is EXPTIME-complete. In addition, PDL
interpretations are restricted to relational models.

Halpern and Reif [11] prove PSPACE-completeness of strict deterministic PDL, but neither the upper nor
the lower bound of the KAT PSPACE-completeness result follows from theirs. Not only are PDL semantics
restricted to relational models, but the arguments of [11] depend on an additional nonalgebraic restriction:
the relations interpreting atomic programs must be single-valued. Without this restriction, even if only while
programs are allowed, PDL is EXPTIME-hard. In contrast, KAT imposes no such restrictions.

Hoare Logic

A common choice of programming language in Hoare logic is the language of while programs. The first-order
version of this language contains a simple assignment x := e, conditional test if b then p else ¢, sequential
composition p ; ¢, and a looping construct while b do p.



The encoding of the while program constructs in KAT is as in PDL [10]:

def
P;q=pq (3)
if b then p else ¢ % bp + bg (4)
while b do p %' (bp)*D. (5)

The basic assertion of Hoare logic is the partial correctness assertion (PCA)

{b}p{c}, (6)

where b and ¢ are formulas and p is a program. Intuitively, this statement asserts that whenever b holds
before the execution of the program p, then if and when p halts, ¢ is guaranteed to hold of the output state.
It does not assert that p must halt.

For applications in program verification, the standard interpretation would be a Kleene algebra of binary
relations on a set and the Boolean algebra of subsets of the identity relation.

Semantically, programs p in Hoare logic and dynamic logic (DL) are usually interpreted as binary in-
put/output relations p* on a domain of computation M, and assertions are interpreted as subsets of M [8,20].
The definition of the relation p™ is inductive on the structure of p; for example, (p ; ¢)™ = pM ; ¢M, the
ordinary relational composition of the relations corresponding to p and ¢g. The meaning of the PCA (6) is
the same as the meaning of the DL formula b = [plc, where = is ordinary propositional implication and
the modal construct [plc is interpreted in the model M as the set of states s such that for all (s,t) € p™,
the output state ¢ satisfies c.

Hoare logic provides a system of specialized rules for deriving valid PCAs, one rule for each programming
construct. The verification process is inductive on the structure of programs. The traditional Hoare inference
rules are:

Assignment rule

{b{e/a}tta = e{b} (7)

Composition rule

{b}p{c} {C}Q{d} (8)
{b}p;q{d}

Conditional rule

{bActp{d}  {-bAc}q{d} (9)
{c}if b then p else q{d}

While rule

{6 A ctpfcd
{c}while b do p{=bAc} (10)



Weakening rule
bV =10 {b}p{c} c=c
{"}p{c'}

Cook [8] showed that these rules are complete relative to first-order number theory when interpreted over
the structure of arithmetic IN.

(11)

Propositional Hoare logic (PHL) consists of atomic proposition and program symbols, the usual propositional
connectives, while program constructs, and PCAs built from these. Atomic programs are interpreted as
binary relations on a set M and atomic propositions are interpreted as subsets of M. The deduction system
of PHL consists of the composition, conditional, while, and weakening rules (8)—(11) and propositional logic.
The assignment rule (7) is omitted, since there is no first-order relational structure over which to interpret
program variables; in practice, its role is played by PCAs over atomic programs that are postulated as
assumptions.

In PHL, we are concerned with the problem of determining the validity of rules of the form

{b1}p1{c1} {bn}pn{cn} (12)
{b}p{c}

over relational interpretations. The premises {b;} p; {c;} take the place of the assignment rule (7) and are an
essential part of the formulation.

Encoding Hoare Logic in KAT

The propositional Hoare rules can be derived as theorems of KAT. The PCA {b}p{c} is encoded in KAT in
any one of the following four equivalent ways:

Lemma 2. The following are equivalent:

The proof is easy, and we leave it as an exercise. Intuitively, the formulation (i) says that the program p
with preguard b and postguard ¢ has no halting execution, and the formulation (ii) says that testing ¢ after
executing bp is always redundant.

Using the encoding of while programs (3)—(5) and Lemma 2(ii), the Hoare rules (8)—(11) take the following
form:

Composition rule bp = bpc A cq = cqd = bpg = bpqd (13)
Conditional rule bep = bepd A beq = beqd = c(bp + bq) = c(bp + bq)d (14)
While rule bep = bepe = ¢(bp)*b = c(bp)*bbe (15)
Weakening rule bV <bAbp=bpchc<c = bp=>bpc. (16)

These implications are to be interpreted as universal Horn formulas; that is, the variables are implicitly
universally quantified. To establish the adequacy of the translation, we show that the KAT encodings (13)-
(16) of the Hoare rules (8)—(11) are theorems of KAT.



Theorem 3. The universal Horn formulas (13)—(16) are theorems of KAT.

Proof. First we derive the composition rule (13). Assuming the premises

we have

bpq = bpcq

Thus the implication (13) holds.

For the conditional rule (14), assume the premises

bp = bpc (17)
cq = cqd, (18)
by (17)
by (18)
by (17)

bep = bepd (19)
beq = beqd. (20)

Then

c(bp + bq) = cbp + cbq
= bep + beg
= bepd + begd
= cbpd + cbqd
= c(bp + bq)d

by distributivity
by commutativity of tests
by (19) and (20)
by commutativity of tests

by distributivity.

For the while rule (15), by trivial simplifications it suffices to show

cbp < cbpe = ¢(bp)* < c(bp)*e.

Assume

cbp < chpe. (21)

By an axiom of KA, we need only show

¢+ c(bp)*ebp < c(bp)*e.

But

¢+ c(bp)*cbp < ¢+ c(bp)*cbpe
< cle+ e(bp)*ebpe
< (14 (bp)*cbp)c

c(1 4 (bp)*bp)c

<
< c(bp) e

by (21) and monotonicity
by Boolean algebra

by distributivity

by monotonicity

by unwinding.

Finally, for the weakening rule (16), we can rewrite the rule as

b <bAbpec=0AT <¢ = bpc =0,

which follows immediately from the monotonicity of multiplication.
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