Algorithmic Game Theory Problem Set 1 (missing assumptions added)
CS 684 Spring 2004 Due Monday, February 23, 2004

Solve at least 3 of the following 4 problems. You may solve all 4 for extra credit. The problems
are of varying difficulty, but are worth equal credit. We will maintain a FAQ for the problem set
on the course Web page. You may use any fact we proved in class without proving the proof or
reference.

(1) Consider the following load balancing game. There are n jobs each controlled by a separate
and selfish user. There are m servers S that can serve jobs, and each job j has an associated set
S; C S of servers where it can possibly be served. For this problem we assume that the load of each
jobs is 1, and each server ¢ has a load dependent response time: 7;(x) is the response time of server
i if its load is z. We assume that r;(x) is a monotone increasing function for all i. We showed in
class that this is an (atomic) potential game, and hence has a deterministic Nash equilibrium.

(a) Give a polynomial time algorithm to find an equilibrium.

(b) We considered two possible definitions of social optimum for this game. First consider the as-
signment of jobs to servers that minimizes the maximum response time, and give a polynomial
time algorithm to find the best assignment for this objective function.

(c) Next considered the assignment of jobs to servers that minimizes the sum of all response
times, and give a polynomial time algorithm to find the best assignment for this objective
function.

Hint: The minimum cost matching problem (defined below) can be solved in polynomial time.
This may be useful as a subroutine. The minimum cost matching problem is given by a bipartite
graph G, costs on the edges and an integer k, and the problem is to find a matching in G of size k
of minimum possible cost.

(2) Consider the game from the previous problem in the special case that the response time is
directly proportional to the load, that is r;(x) = z for all 7, so the goal of the users is to be on servers
with small load. In this problem we consider the ratio of the worst possible Nash equilibrium and
the optimum under the objective function minimizing the maximum load. (Often referred to as
the min-max objective.) (Recall that in class we proved that if S; = S for each j, than the cost
of any Nash equilibrium under this objective function is at most twice the minimum possible load,
and this was true even if the jobs can have different loads. Here we assume all jobs have load 1,
but are only allowed to be served from the subset S; of the servers.)

(a) Give an example of a set of n jobs and n servers when there is an assignment of jobs to servers
with maximum load 1, and there is a Nash equilibrium where a machine has load ~ logn.

(b) Show that if there are m machines, than the maximum load in a Nash equilibrium is at most

an O(logm) factor above the minimum possible value of the maximum load.

(3) Consider a continuous version of the above game analogous to the routing game we consid-
ered in class. Assume there are m servers S, and n types of jobs, and for each job type j € J have



a subset S; of the servers that can serve jobs of type j, and for each job type there is 1 unit of
jobs of this type. An assignment of jobs to machines is now a vector x;; > 0 so that z;; = 0 when
i ¢ S;, and Y ;cgxi; =1 for each job type j.

The load of a server i is now defined as L; = }_,c; z;j. Finally, assume each server has a load
dependent response time. The response time of server i is r;(x) if the load is z, and assume that
ri(x) is a continuous, and monotone increasing function of x for all servers i. We define a Nash
equilibrium to be a solution where, if a job type j is assigned to a server, than no other server jobs
of type j can be assigned to, have smaller response time. (Formally, z;; > 0, and k € S; implies
that Ti(Li) < ’f'k(Lk).)

(a) Show that a Nash equilibrium always exists in this game.

(b) Consider the objective function of minimizing the maximum response time. Show that any
Nash equilibrium minimizes this objective function over all assignments. (We will see in class
that this is not true in the general routing game, e.g., see Braess’s paradox.)

(c) Now consider the average response time objective function, which is >, L;7;(L;), as the load
of L; jobs all experience the servers r;(L;) response time. Assume for this part that r;(z) = =
for all x and i. Show that any Nash equilibrium minimizes this objective function over all
assignments. (Note that the routing example with two parallel links, discussed in class shows
that this is not true with general response functions.)

(4) Consider the one commodity special case of the continuous routing game discussed in class
where all traffic goes from a common source s to a common destination ¢. Again more formally, we
are given a graph G, and the problem will be to route 1 unit of flow from s to ¢t in G. Each edge
has a delay function d.(x) which is the delay incurred by the flow along edge e if there is z units
of flow on e. Assume for all parts of this problem that the load on each edge is a nonegative,
linear and monotone increasing function of the load.

We think of flow as defined by a set of paths from s to ¢, with fp > 0 the amount of flow
carried from s to ¢ along the path P. Now f(e) = > p..cpy fp, and the delay along the path P
is dp(f) = > cepde(f(e)). For this problem we define a flow f* to be optimal if the longest paths
that carries flow is as short as possible, and we define a flow to be fair if all flow is carried on
equal length paths. (This definition assumes that users realize the existence of a better path only
by seeing other users who use that path, and the length of path not carrying flow is not relevant
for the definition.) We know from class (essentially by definition) that the Nash flow is fair. From
the Braess paradox example, we also see that there can be a fair flow that is better than the flow
at Nash equilibrium.

(a) Prove that the Nash flow is at most a factor of 4/3 worse than the optimal for the objective
of minimizing the longest path carrying flow.

(b) Prove that there is an optimal flow for the above objective that is also fair.

(c) For this part consider a flow f* that minimizes average delay, that is, minimizes Y p fpdp(f).
We know that this optimal flow may not be fair. We measure the unfairness of this flow by
the ratio of the lengths of the longest and shortest (s,t) paths that carries flow. Prove that
the unfairness of the flow f* is at most 2.



