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CS 684: Algorithmic Game Theory Friday, March 12, 2004 
Instructor: Eva Tardos 
Guest Lecturer: Tom Wexler (wexler at cs dot cornell dot edu) Scribe: Richard C. Yeh 

Network-building 
This lecture describes a game that models the building of a network. There are three main 
points: 

1. For the general case of this game, Nash equilibria do not always exist. The finding 
of Nash equilibria in this game is NP-complete. 

2. When Nash equilibria exist in this game, the total cost of building certain Nash-
equilibrium networks is between 1 and k (the number of players) times the cost of 
the optimal network. 

3. For a simplified version of this game, the total cost of building the Nash-
equilibrium network can be found and is equal to the cost of the optimal network. 

For more details, please see E. Anshelevich, A. Dasgupta, É. Tardos, and T. Wexler, 
“Near-optimal network design with selfish agents” , STOC ’03, available at 
http://www.cs.cornell.edu/~wexler/. 

Introduction 
Previously, Professor Tardos presented Roughgarden games, in which players route 
traffic in a network. The players’  selfish motive: to achieve the shortest routing time. 

Today’s lecture will take a different perspective: the building of a network. 
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The game 
We start with a graph representing a network G=(V, E), where we can think of the 
vertices as servers and the edges as possible links. Every edge e has some cost ce 

�
 0 

needed to install the link, connecting the servers at the ends. 

We have k players. Each player i has a pair of nodes si, ti, and is interested only in 
building just enough of the network to connect those nodes, not in building the entire 
network. 

The player strategies are given by the matrix pi(e), whose elements represent the 
statements “player i contributes pi(e)

�
0 towards the cost of edge e.”  

Bought network 
First, we’ ll check whether edge e is bought. Add up all players’  contributions and check 
whether this sum is at least the cost of the edge. Define the bought graph or bought 
network to be the set B of edges e satisfying: � ≥

i
ei cep )( . 

To have the players connect their pairs as cheaply as possible, define each player’s utility 
ui to be: 

• �
∈

−
Be

i ep )(  [minus the total amount paid] if he connects his pair 

(regardless of whether all the edges were actually built.); 

• – �  [minus infinity] otherwise (thereby forcing players to connect). 

Details and Comments 
Today, we just want to connect the pair as cheaply as possible. There is no notion of 
fairness or capacity. 

Today, 

• The sources and sinks are not necessarily disjoint. 

• The graph is undirected (but the directed case is not much different). 

• For all edges, set the edge cost = 1. 

• There can be nodes that are not terminals. (We will look at Steiner nodes later in 
the lecture.) 

In a real situation, we might have other constraints that we will ignore today, such as: 

• Multiple pairs per player 

• Need for redundant network links 

• Desire for shortest time 

(This will be a full-information game: everyone knows the graph and contributions.) 
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Plan: Study the Nash Equilibria of this game. What are the stable 
solutions? 
For illustration, consider the following network: 

 
s1 �  

s2

�  

s3 �
 

�
 

�  �  

�
 

t2 

t3 

t1 
 

Suppose we arrange the strategies as: 

Player pi( � ) pi(� ) pi( 	 ) pi( 
 ) pi( � ) pi( � ) pi( 
 ) ui 

1 1 0.5 0 0 0 0 0 –1.5 

2 0 0.5 0 0 0 0 1 –1.5 

3 0 0 1 1 0 0 0 –2 

 
s1 �  

s2 �  

s3 �
 

�
 

�  �  

�
 

t2 

t3 

t1 
 

Bought? 
Yes Yes Yes Yes No No Yes 

 

What happens? All players have connected their sources and sinks. However, this is not a 
Nash equilibrium, because player 1 would prefer to switch his strategy to: 

Player pi( � ) pi(� ) pi( 	 ) pi( 
 ) pi( � ) pi( � ) pi( 
 ) ui 

1 0 0 0 0 0 1 0 –1 

2 0 0.5 0 0 0 0 1 –∞∞∞∞ 

3 0 0 1 1 0 0 0 –2 

 
s1 �  

s2 �  

s3 �
 

�
 

�  �  

�
 

t2 

t3 

t1 
 

Bought? 
No No Yes Yes No Yes Yes 

 

Result: 

• player 1's utility goes from –1.5 to –1; 

• player 2's utility goes from –1.5 to –�  (fails to connect). 

 

Burning questions 
Do Nash equilibria always exist? If so, how expensive are they (compared to an optimum 
network)? Can we find these equilibria? 

All of these questions have disappointing answers. 
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Basic properties of Nash equilibria in this game 
Any Nash equilibrium must: 

1. buy an acyclic network (a tree or a forest). (If there were a cycle, then players 
would prefer to buy one fewer edge, not affecting connectivity.) 

2. players only contribute to edges on their unique path in the bought network. 

3. for any edge e, total payment is either ce or zero. 

Example with no Nash equilibrium 
Consider the following simple example where there is no Nash equilibrium: 

 
s1 �  

s2 �  

�
 

�
 

t2 

t1 
 

Two players, four nodes (two sinks and two sources), and four edges, 
each with cost 1. (This is also figure 1 from the paper.) 

 

For example, we could 
begin with both players 
paying for 1.5 edges: 

 
s1

�  

s2 �  

�
 

�
 

t2 

t1 
 

But then player 1 would 
prefer to defect: 

 
s1

�  

s2 �  

�
 

�
 

t2 

t1 
 

And then player 2 would 
prefer to change to: 

 
s1

�  

s2 �  

�
 

�
 

t2 

t1 
 

This example shows that Nash equilibria don’t necessarily exist. 

Example with multiple Nash equilibria 
Here’s another example: imagine a two-node, two-edge graph, where all k players have 
the same source and sink nodes. The two parallel links have costs 1 and k, as shown. 

 s1,s2,…,sk 

t1,t2,…,tk 

1 k 

 
There are at least three Nash equilibria: 

• Each player could pay 1/k, and the group as a whole buys the cheaper edge. 

• Each player could pay 1, and the group as a whole buys the cost-k edge. 

• One player could pay 1, buying the cheaper edge, and the other players free-ride. 



Page 5 of 6 

Calculating the Nash/Opt ratio: 
Claim: Any Nash equilibrium costs at most k times the total cost of the optimal solution. 
(k·cost(OPT)). 

Proof: Suppose otherwise — that there exists a Nash equilibrium where the total cost 
exceeds (k·cost(OPT)). Then there must be at least one player paying more than the 
optimal total cost. This is a contradiction, because that one player would have preferred 
to pay just the optimal total cost. 

(Recall and compare: in the Roughgarden game, the costs of Nash equilibria were unique, 
and Nash equilibria always existed.) 

Define the optimistic price of anarchy to be the ratio of the total cost of the cheapest 
Nash equilibrium to the total cost of the optimal solution. This quantity indicates how 
good uncoordinated solutions can be. 

 

Even the best Nash equilibrium can be terrible; for example, combine the two previous 
examples by inserting the no-equilibrium network into the cost-k edge: 

 s1,s2,…,sk 

t1,t2,…,tk 

1 k–1 

0 

1 

1 1 
1 

  or 

 s1,s2,…,sk 

t1,t2,…,tk 

1 

k–1 

0 

1 
1 

1 
1 

 

(where, as before, the no-equilibrium network players (not included in k) have sources 
and sinks at opposite corners of the little network) This forces the k players to buy the 
expensive edge. 

Nash claimed that mixed equilibria always exist. In our case, we only consider pure 
strategies because all players must connect; otherwise, the expected utility is not well-
defined. Any given connection is a manifestation of a pure strategy. 
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Single-source connection game 
Since finding Nash equilibria is in general NP-complete, we will consider a simpler case: 

Define a single-source connection game to be one in which all players share the same 
source node. (For all players i, si = s.) Outside of the game-theoretic context, this is the 
Steiner tree problem, with the root as the source. 

Theorem: in a single-source connection game, Nash equilibria exist, and the optimistic 
price of anarchy is 1. 

Proof sketch: 

Simple case: all nodes are player-terminals. Imagine starting with a minimum-cost 
spanning tree. This is stable if every node pays for the edge immediately toward root. If 
any player were to prefer to buy a different edge (i.e., one not in the minimum-cost 
spanning tree), then we must not have started with a minimum-cost spanning tree. 

 s 

 
Complication: If we add Steiner (non-terminal) nodes (represented in the figures as filled 
disks), then we must determine a way to pay for the edges from the Steiner nodes toward 
the root. We must begin with an optimum Steiner tree. 

 s 

5 5 

3 3 

3 

 

Here, players will pay a maximum of 5. 

 s 
4 4 

4 4 4 4 

A B C D 5  

The payments don’t have to be split evenly: 
players A and D will pay up to 8, while 
players B and C will only pay up to 5. 

The idea is that we can add the payments from the bottom up (from the sinks to the 
source), while never violating the implicit constraints that a player will pay only as much 
as her or his cheapest alternative path to the root. This works; below is an argument by 
contradiction: 

What if we ask all the players what they’re willing to pay, and it’s not enough to buy the 
optimum Steiner tree? It must be that some player has some cheaper alternate edge to buy 
than that assigned by the optimum Steiner tree. But if we were to allow this player to 
deviate, then the total payment for the bought network would be less than for the optimal 
Steiner tree, which is a contradiction. Either this player or some other player must have 
lied. 

In both cases, the minimum-cost spanning tree or minimum-cost Steiner tree is optimal, 
and the optimistic price of anarchy is 1. 


