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Combinatorial Auctions 
 

There is a set N of items, and players who want to bid on subsets of the items. It’s 

combinatorial because a subset may contain more than one item, and the utility of two or 

more items together may be more then the sum of the utilities of the individual items. 

 

In the general instance, the input is exponential in size, as each user would have to supply 

a bid for every possible subset. So instead, each user’s input specifies both the subset to 

bid on, and the price they are willing to pay for it. 

 

Formally, the bidders are “single minded bidders”: 

N is s a set of k items. 

There are n users. Each user I has subset Si in N and value Ui for receiving Si

 

Note that lying by asking for a superset may help a user, as if he wins he would get the 

set he wants anyway, as it’s included in the superset.  

 

Social Welfare 
VCG for this problem to decide who gets what. 

 

Define social welfare: a set of disjoint subsets that maximize total value. 

Formally: 

max (∑ : set S
∈Ii

Ui i  for i∈I disjoint) = OPT 

 

Payment bonus: 

P1 = OPT if i is not in I 



P2 = OPT – Ui if i∈I 

 

This is not an easy optimization problem as it is just like set-packing, which is NP-

complete. It can’t even be approximated well, as will be shown later. 

 

Heuristic Algorithm 

 
Suppose you have a heuristic algorithm to optimize this (such as integer programming 

that is stopped after a fixed amount of computational time). Is it truthful? 

 

Assume that users know what algorithm you are using to optimize. Then they will 

actually lie in order to help you, by giving you extra input! Their welfare is aligned with 

your optimization accuracy, so it benefits the users to help you optimize. So a heuristic 

approximation is not truthful.  

 

 

 

A paper by Nison and Ronen describes a 2 phase heuristic algorithm: 

 

1. Users announce Si and Ui to designer 

2. Mechanism announces all requests, as well as the heuristics it is using 

3. Users are allowed to offer alternates. (S, U). Each user proposes alternate sets and  

     utilities for all other users. 

4. Run the heuristic algorithm on the original set (S, U), and on all n alternates (S, U)i for  

     all i. Return the best result from all of those runs.  

 

 

 

 

Approximations 



 

Can we use an approximation algorithm that given an approximation bound? Yes, but 

they aren’t very good. 

 

Possible algorithms: 

 

(1) Take a single Si with the maximum Ui. This is a k-approximation and n-

approximation algorithm. The worst case is when a set of n individual users 

wanting individual items is better than some one user taking the entire set.This 

algorithm is truthful (user will report actual utilities).  

 

(2) Sort by 
|| Si

Ui  and allocate greedily. This is also an n-approximation. A worst case 

example is when a user I wants some one item for a high price, but another user 

with slightly lower density wants the entire set. Since the first user will be 

serviced first, the 2nd user is denied the entire set and the total value is thus 

comparatively low.  

 

(3) Sort by Ui and allocate greedily. This is also an n-approximation. A worst case 

example is when some one user wants an entire set, but all the other users want all 

of the items individually, with utilities lower by just epsilon.  

 

(4) Sort by 
|| Si

Ui  and allocate greedily.  

 

Theorem: (4) is a n  approximation.  

Note: unless P=NP, no 
e

n
−

2
1

 approximation is possible [due to Hastad]  

 

 



Theorem: Any one of the strategies 2-4 above can be made truthful by proper 

payments. 

 

Proof:  

First, note that it is never tempting to lie about Si. Declaring a larger set will still give you 

your original set, but will put you later in the sorting order for the algorithms. Declaring a 

smaller set is never good because even if you get it, you don’t get the full set you 

originally wanted. But it can be tempting to lie about the utility. Increasing the utility will 

put you higher in the sorting order. Decreasing the utility could potentially lower your 

payment. So how should payments be set to avoid such lying?  

 

Set Pi = 0 if I is not selected 

Set Pi = min value Ui such that algorithm includes i with this value. 

 

Claim: Resulting procedure is truthful: 

 

If i∈I, then user i already gets the lowest possible payment, so there is no incentive to 

decrease utility. There is no incentive to increase it either, as the user is already 

guaranteed to be in the set 

 

If i is not in I, then raising Ui high enough to get the user in the set will exceed payment, 

so it won’t be worth it to be in the set, so the user won’t make this lie.  
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