

CS 684: Algorithmic Game Theory Scribe: Mikolaj Franaszczuk
Instructor Eva Tardos Friday, April 16, 2004

Combinatorial Auctions

There is a set N of items, and players who want to bid on subsets of the items. It’s

combinatorial because a subset may contain more than one item, and the utility of two or

more items together may be more then the sum of the utilities of the individual items.

In the general instance, the input is exponential in size, as each user would have to supply

a bid for every possible subset. So instead, each user’s input specifies both the subset to

bid on, and the price they are willing to pay for it.

Formally, the bidders are “single minded bidders”:

N is s a set of k items.

There are n users. Each user I has subset Si in N and value Ui for receiving Si

Note that lying by asking for a superset may help a user, as if he wins he would get the

set he wants anyway, as it’s included in the superset.

Social Welfare
VCG for this problem to decide who gets what.

Define social welfare: a set of disjoint subsets that maximize total value.

Formally:

max (∑ : set S
∈Ii

Ui i for i∈I disjoint) = OPT

Payment bonus:

P1 = OPT if i is not in I

P2 = OPT – Ui if i∈I

This is not an easy optimization problem as it is just like set-packing, which is NP-

complete. It can’t even be approximated well, as will be shown later.

Heuristic Algorithm

Suppose you have a heuristic algorithm to optimize this (such as integer programming

that is stopped after a fixed amount of computational time). Is it truthful?

Assume that users know what algorithm you are using to optimize. Then they will

actually lie in order to help you, by giving you extra input! Their welfare is aligned with

your optimization accuracy, so it benefits the users to help you optimize. So a heuristic

approximation is not truthful.

A paper by Nison and Ronen describes a 2 phase heuristic algorithm:

1. Users announce Si and Ui to designer

2. Mechanism announces all requests, as well as the heuristics it is using

3. Users are allowed to offer alternates. (S, U). Each user proposes alternate sets and

 utilities for all other users.

4. Run the heuristic algorithm on the original set (S, U), and on all n alternates (S, U)i for

 all i. Return the best result from all of those runs.

Approximations

Can we use an approximation algorithm that given an approximation bound? Yes, but

they aren’t very good.

Possible algorithms:

(1) Take a single Si with the maximum Ui. This is a k-approximation and n-

approximation algorithm. The worst case is when a set of n individual users

wanting individual items is better than some one user taking the entire set.This

algorithm is truthful (user will report actual utilities).

(2) Sort by
|| Si

Ui and allocate greedily. This is also an n-approximation. A worst case

example is when a user I wants some one item for a high price, but another user

with slightly lower density wants the entire set. Since the first user will be

serviced first, the 2nd user is denied the entire set and the total value is thus

comparatively low.

(3) Sort by Ui and allocate greedily. This is also an n-approximation. A worst case

example is when some one user wants an entire set, but all the other users want all

of the items individually, with utilities lower by just epsilon.

(4) Sort by
|| Si

Ui and allocate greedily.

Theorem: (4) is a n approximation.

Note: unless P=NP, no
e

n
−

2
1

 approximation is possible [due to Hastad]

Theorem: Any one of the strategies 2-4 above can be made truthful by proper

payments.

Proof:

First, note that it is never tempting to lie about Si. Declaring a larger set will still give you

your original set, but will put you later in the sorting order for the algorithms. Declaring a

smaller set is never good because even if you get it, you don’t get the full set you

originally wanted. But it can be tempting to lie about the utility. Increasing the utility will

put you higher in the sorting order. Decreasing the utility could potentially lower your

payment. So how should payments be set to avoid such lying?

Set Pi = 0 if I is not selected

Set Pi = min value Ui such that algorithm includes i with this value.

Claim: Resulting procedure is truthful:

If i∈I, then user i already gets the lowest possible payment, so there is no incentive to

decrease utility. There is no incentive to increase it either, as the user is already

guaranteed to be in the set

If i is not in I, then raising Ui high enough to get the user in the set will exceed payment,

so it won’t be worth it to be in the set, so the user won’t make this lie.

	Instructor Eva Tardos

