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1 VCG : Vickrey Clarke Groves Mechanism

In today’s lecture, we are going to look at the shortest path problem. Consider a graph G = (V, E)
and a cost function ¢ : £ — R. We want to find the shortest path between two vertices s,t € V.
In this setting, we model each edge e having cost c. as a selfish agent A.. The agent cost is 0 if the
edge is not in the selected path and ¢, if it is on the selected path. If e is on the selected path, A,
gets a payment of p.. Since the agent is selfish, the agent A, tries to maximize p, — c,.

The social welfare goal is to minimize the total cost of the path chosen; i.e., ming paths p LeepCe-
Note that money is a vehicle used by the economy to ensure social good. Hence, we want to minimize
the true cost of the path and not the payments made in the process of acquiring a path. We can
write the social welfare objective ming; paths p LeepCe as c(p) where p is the shortest path.

Consider an agent A.. If the agent gets a payment p., the agents goal is to

Mazximize pe— ce if e is on the selected path

Pe if e is not on the selected path

Note that if the payment is such that it is independent of the agent cost (which is ¢, when e is on
the path and 0 when e is not on the path), then the agent will truthfully reveal the real cost of the
edge. As a first attempt, if ¢(p) denotes the true cost of a path, we can have payments:

pe = ce—c(p) 1if e is on the selected path p
= —c(p) if e is not on the selected path p

In this case, the agent gets a profit of p, — c. = —c(p), when e is in the selected path and a profit of
pe = —c(p) when e is not in the selected path p. Though truthful, the above payment scheme does
not encourage agents to participate in the path selection. To maintain the truthfulness property
and elicit voluntary participation, we could add to a positive bonus b, to every payment such that
b is independent of the agent cost. So the payments now become:

Pe = ce—c(p) +be if e is on the selected path p
= —c(p) + be if e is not on the selected path p

We want this b. to be a value independent of the agent cost for each edge. One such b, is the true
cost of the shortest path p® avoiding e. Since, p® is the same as p when e is not on the selected
path, we have

pe = ce —c(p) + c(p®) if e is on the selected path p

—c
= —c(p) + c(p)  if e is not on the selected path p

Let us look at this payment scheme. Consider an edge e on the selected path p. By how much can
the agent A, lie about the cost of the edge ¢, 7 Note that if A, reports a cost z, > c. +¢(p®) — c(p),
then e is no longer on the shortest path and will not be chosen. Hence, A, would report a cost of
at most c. + ¢(p®) — ¢(p). This is exactly the payment made to A..



Theorem 1 (Truthfulness) The shortest path with this payment is truthful.

Proof. Suppose e € p. A, has to report a smaller value for ¢, so that a path through ¢, becomes
the shortest path. Hence, A, would have a negative benefit.

If e € p, A, would get all the benefit he can get by being untruthful about ¢, even by being
truthful about the cost c,. [ ]

There are, however, few issues with this solution which have to be addressed to. The first
issue is the computation difficulty of the payments. The second issue is that social welfare ignores
payments — the sum total of the payments may be much higher than the cost of the shortest path.

Today, we will address the first issue about the computational difficulty of the payments. Note
that if the shortest path has k edges, the payments can be computed using k£ shortest path compu-
tations. Suri and Hershberger [1] show that the payments can be computed using only 2 shortest
path computations. We outline the ideas in this result next.

First let us consider the special case where the shortest path between s and ¢ passes through
all the vertices in the graph. Consider the shortest path between s and ¢ not containing e = (u, v),
ie., p(=?) . For any x which comes before u on the path, d(s, ), which is the shortest distance from
s to z is the same whether e is in the graph or not. Similarly, for any y which comes after v in
the path, d(y,t) is the same whether G has e or not. p® should contain an edge in the cut {U,V},
where U = {z|z lies on s-u path } and V = {yl|y lies on v-t path }. Hence, finding the shortest
path in G\ e reduces to

d(s,t; G\ (u,v) = Min(gy)ccur(U,V)\(up)d(8, ) + c(z,y) + d(y, 1)

To compute the shortest path between s, ¢ omitting each edge on p, compute the above expres-
sion for every edge (u,v) on the path. This can be done efficiently using a Fibonacci heap. At each
phase, keep only those edges which are in the current cut in the heap. The minimum extracted
from the heap would give that (z,y) which minimized the above equation and hence the new path.
This gives a running time of O(nlogn + m) (for analysis see [1]).

In a general undirected graph, not all vertices lie on p. Consider the shortest path tree rooted
at s. To find p*?), consider the two components V, and V; formed by the removing edge (u,v)
from the shortest path tree, Vy contains s and V; contains ¢. For any x € Vi, d(s,z) is the same
even in G \ (u,v). However, it is not as obvious that similarly for any y € Vi, d(y,t) is the same
even in G\ (u,v), since removing the edge (u,v) in the shortest path tree rooted at ¢ might not
yield the same partition.

Lemma 2 Let y be a vertex in component V; in G \ (u,v). Then d(y,t) is the same in G and in

G\ (u,v).

Proof. The proof is by contradiction. Suppose the shortest path from y to ¢ contains (u,v), then
the path should traverse (u,v) in the direction from u to v. (since the shortest path from v to
y is fully contained in V). Then this shortest path can be considered as a concatenation of the
shortest paths between y, v and between v, ¢; with the first sub-path containing u. But since y € V,,
the shortest path shows tree rooted at s shows that the shortest path between v,y is completely
contained in V. Since G is undirected, the shortest path between y,v should just be a reversal of
the above path. But one contains u and the other does not contain u, which leads to the required
contradiction. [ |



We have reduced the problem in the undirected case to the special case where all the vertices
are on the shortest path between s and £. So one can use a similar algorithm to solve the problem
in undirected graph. When trying to compute p{*?), consider all the edges between vertices in z,y
where z € V; and y € V; and minimize the cost d(s,z) + d(z,y) + d(y,1).

However, the same kind of reasoning does not seem to hold for directed graphs and it was proved
that finding the shortest paths for the vickrey payments requires (n(nlogn + m)) time [2, 3].
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