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Lecture 13

Probabilistic Complexity

There are many instances of problems with efficient randomized or proba-
bilistic algorithms for which no good deterministic algorithms are known.
In the next few lectures we take a complexity-theoretic look at probabilistic
computation. We define a simple model of randomized computation, the
probabilistic Turing machine, define some basic probabilistic complexity
classes, and outline the relationship of these classes to conventional time
and space classes. Our main result, which we prove next time, is that the
class BPP of sets accepted by polynomial-time probabilistic algorithms
with error probability bounded below 1

2 is contained in Σp
2 ∩ Πp

2 [112].
Many probabilistic algorithms have only a one-sided error; that is, if the

input string is in the set, then the algorithm accepts with high probability;
but if the string is not in the set, then the algorithm rejects always. The
corresponding probabilistic complexity class is known as RP and is called
random polynomial time.

Discrete Probability

Before we begin, let us recall some basic concepts from discrete probability
theory.

Law of Sum The law of sum says that if A is a collection of pairwise
disjoint events, that is, if A ∩ B = ∅ for all A,B ∈ A, A �= B, then the
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probability that at least one of the events in A occurs is the sum of the
probabilities:

Pr(
⋃

A) =
∑
A∈A

Pr(A).

Expectation The expected value EX of a discrete random variable X is the
weighted sum of its possible values, each weighted by the probability that
X takes on that value:

EX =
∑

n

n · Pr(X = n).

For example, consider the toss of a coin. Let

X =
{

1, if the coin turns up heads
0, otherwise. (13.1)

Then EX = 1
2 if the coin is unbiased. This is the expected number of heads

in one flip. Any function f(X) of a discrete random variable X is a random
variable with expectation

Ef(X) =
∑

n n · Pr(f(X) = n) =
∑

m f(m) · Pr(X = m).

It follows immediately from the definition that the expectation function
E is linear. For example, if Xi are the random variables (13.1) associated
with n coin flips, then

E(X1 +X2 + · · ·+Xn) = EX1 + EX2 + · · ·+ EXn,

and this gives the expected number of heads in n flips. The Xi need not be
independent; in fact, they could all be the same flip.

Conditional Probability and Conditional Expectation The conditional prob-
ability Pr(A | B) is the probability that event A occurs given that event B
occurs. Formally,

Pr(A | B) =
Pr(A ∩B)

Pr(B)
.

The conditional probability is undefined if Pr(B) = 0.
The conditional expectation E(X | B) is the expected value of the ran-

dom variable X given that event B occurs. Formally,

E(X | B) =
∑

n

n · Pr(X = n | B).

If the event B is that another random variable Y takes on a particular
value m, then we get a real-valued function E(X | Y = m) of m. Composing
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this function with the random variable Y itself, we get a new random
variable, denoted E(X | Y ), which is a function of the random variable Y .
The random variable E(X | Y ) takes on value n with probability∑

E(X|Y =m)=n

Pr(Y = m),

where the sum is over all m such that E(X | Y = m) = n. The expected
value of E(X | Y ) is just EX :

E(E(X | Y )) =
∑
m

E(X | Y = m) · Pr(Y = m)

=
∑
m

∑
n

n · Pr(X = n | Y = m) · Pr(Y = m)

=
∑

n

n ·
∑
m

Pr(X = n ∧ Y = m) (13.2)

=
∑

n

n · Pr(X = n)

= EX

(see [39, p. 223]).

Independence and Pairwise Independence A set of events A are independent
if for any subset B ⊆ A,

Pr(
⋂

B) =
∏

A∈B

Pr(A).

They are pairwise independent if for every A,B ∈ A, A �= B,

Pr(A ∩B) = Pr(A) · Pr(B).

For example, the probability that two successive flips of a fair coin both
come up heads is 1

4 .
Pairwise independent events need not be independent. Consider the

following three events:

• The first flip gives heads.

• The second flip gives heads.

• Of the two flips, one is heads and one is tails.

The probability of each pair is 1
4 , but the three cannot happen simultane-

ously.
If A and B are independent, then Pr(A | B) = Pr(A).
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Inclusion–Exclusion Principle It follows from the law of sum that for any
events A and B, disjoint or not,

Pr(A ∪B) = Pr(A) + Pr(B) − Pr(A ∩B).

More generally, for any collection A of events,

Pr(
⋃

A)

=
∑
A∈A

Pr(A) −
∑

B⊆A
|B |=2

Pr(
⋂

B) +
∑

B⊆A
|B |=3

Pr(
⋂

B) − · · · ± Pr(
⋂

A).

This equation is often used to estimate the probability of a join of several
events. The first term alone gives an upper bound and the first two terms
give a lower bound:

Pr(
⋃

A) ≤
∑
A∈A

Pr(A)

Pr(
⋃

A) ≥
∑
A∈A

Pr(A) −
∑

A,B∈A
A �=B

Pr(A ∩B).

Probabilistic Turing Machines

Intuitively, we can think of a probabilistic Turing machine as an ordinary
deterministic TM, except that at certain points in the computation it can
flip a fair coin and make a binary decision based on the outcome. The prob-
ability of acceptance is the probability that its computation path, directed
by the outcomes of the coin tosses, leads to an accept state.

Formally, we define a probabilistic Turing machine to be an ordinary
deterministic TM with an extra semi-infinite read-only tape containing a
binary string called the random bits . The machine runs as an ordinary
deterministic TM, consulting its random bits in a read-only fashion. We
write M(x, y) for the outcome, either accept or reject, of the computation
of M on input x with random bits y. We say that M is T (n) time bounded
(respectively, S(n) space bounded) if for every input x of length n and
every random bit string, it runs for at most T (n) steps (respectively, uses
at most S(n) worktape cells).

In this model, the probability of an event is measured with respect to
the uniform distribution on the space of all sequences of random bits. This
is the measure that would result if a fair coin were flipped infinitely many
times with the ith random bit determined by the outcome of the ith coin
flip.

In practice, we consider only time-bounded computations, in which case
the machine can look at only finitely many random bits. This makes the
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calculation of the probabilities of events easier. For example, if M is T (n)
time bounded, then the probability that M accepts its input string x is

Pry(M(x, y) accepts) =
|{y ∈ {0, 1}k |M(x, y) accepts}|

2k
,

where k is any number exceeding T (|x |). The notation Pry(E) refers to
the probability of event E with a bit string y chosen uniformly at random
among all strings of length k.

Randomness can be regarded as a computational resource, much like
time and space. One can measure the number of random bits consulted in
a computation. We show some examples of this in Lectures 18 to 20.

The following are two basic complexity classes defined for probabilistic
Turing machines.

Definition 13.1 A set A is in RP if there is a probabilistic Turing machine M with poly-
nomial time bound nc such that

• if x ∈ A, then Pry(M(x, y) accepts) ≥ 3
4 ; and

• if x �∈ A, then Pry(M(x, y) accepts) = 0.

The definition of BPP is the same, except we replace the second condition
with:

• if x �∈ A, then Pry(M(x, y) accepts) ≤ 1
4 .

Equivalently, a set A is in BPP if there is a probabilistic Turing machine
M with time bound nc such that for all inputs x,

Pry(M(x, y) errs in deciding whether x ∈ A) ≤ 1
4 .

We have used 1
4 and 3

4 in the definition of RP and BPP , but actually
any 1

2 − ε and 1
2 + ε will do. It matters only that the probabilities be

bounded away from 1
2 by a positive constant ε independent of the input

size.
Also, as previously observed, the length of the random bit string is not

important; any set of strings of sufficient length will do, as long as the
machine has access to as many random bits as it needs.

It is easy to see that P ⊆ RP ⊆ NP , RP ⊆ BPP , and BPP is closed
under complement. We show next time that BPP ⊆ Σp

2 ∩ Πp
2 .

Other classes such as RPSPACE and RNC can be defined similarly.

Probabilistic Tests with Polynomials

Here is an example of a probabilistic test for which no equally efficient de-
terministic test is known: determining whether a given multivariate poly-
nomial p(x1, . . . , xn) of low degree with integer coefficients is identically
0.


