This is page 128
Printer: Opaque this

Supplementary Lecture E

A Crash Course in Logic

In this lecture we present the basics of first-order logic as background for
the lectures on the complexity of logical theories (Lectures 21-25).

What Is Logic?

Logic typically has three parts: syntax, semantics, and deductive apparatus.
Syntaz is concerned with the correct formation of expressions—whether the
symbols are in the right places. Semantics concerns itself with meaning—
how to interpret syntactically correct expressions as meaningful statements
about something. Finally, the deductive apparatus gives rules for deriving
theorems mechanically. We do not concern ourselves much with deductive
apparatus here.

Relational Structures

First-order logic is good for expressing and reasoning about basic math-
ematical properties of algebraic and combinatorial structures. Examples
of such structures are: groups, rings, fields, vector spaces, graphs, trees,
ordered sets, and the natural numbers.

Such a structure A typically consists of a set A, called the domain or
carrier of A, along with some distinguished n-ary functions f# : A" — A

A Crash Course in Logic 129

Example E.1

for various n, constants ¢* € A (which can be viewed as 0-ary functions),
and n-ary relations R* C A" for various n. The number of inputs n is
called the arity of the function or relation. Functions or relations of arity
0, 1, 2, 3, and n are called nullary, unary, binary, ternary, and n-ary,
respectively.

The list of distinguished functions and relations of A along with their
arities is called the signature of A. It is usually represented by an alphabet
3} of function and relation symbols, one for each distinguished function or
relation of A, each with a fixed associated arity.

The structure N of number theory consists of the set w = {0,1,2,...}, the
natural numbers, along with the binary operations of addition and multi-
plication, constant additive and multiplicative identity elements, and the
binary equality relation. The signature of number theory is (+, -, 0, 1, =),
where + and - are binary function symbols, 0 and 1 are constant symbols,
and = is a binary relation symbol.

A group is any structure consisting of a set with a binary multiplica-
tion operation, a unary inverse operation, a constant identity element, and
a binary equality relation, satisfying certain properties. The signature of
group theory is (-, =1, 1, =), where - is a binary function symbol, ~1 is a
unary function symbol, 1 is a constant symbol, and = is a binary relation
symbol.

A partial order is any set with a binary inequality relation and a binary
equality relation satisfying certain properties. The signature of the theory
of partial orders is (<, =), where < and = are binary relation symbols. O

When discussing structures in general, we usually assume a fixed but
arbitrary signature Y. We usually use f,g,... to denote function symbols
of arity at least one, ¢,d, ... to denote constant symbols, and R, S, ... to
denote relation symbols. The functions and relations they represent in the
structure A are denoted f#, ¢, R*, and so on.

At the risk of confusion, when working in a specific structure, we often
use the same symbol for both the symbol of 3 and the semantic object it
denotes; for example, in number theory, we might use + to denote both
the symbol of the signature of number theory and the addition operation
on the natural numbers.

Syntax

The syntax of first-order logic can be separated into two parts, the
first application-specific and the second application-independent. The
application-specific part specifies the correct formation of terms from the
symbols of ¥. The application-independent part specifies the correct forma-
tion of formulas from propositional connectives V, A, =, —, <, 0 (falsity),

130

Supplementary Lecture E

and 1 (truth), variables x,y, z, ..., quantifiers V and 3, and parentheses.
These symbols are part of every first-order language.

Terms

Fix a signature X, and let X be a set of variables. A term is a well-formed
expression built from the function symbols of ¥ and variables X, regarding
elements of X as symbols of arity 0. Here well formed means that the arities
of all the symbols are respected. For example, if f is a binary function
symbol, ¢ is a unary function symbol, ¢,d are constant symbols, and z,y
are variables, then

c oz flg@), fle,9(v) g(f(g(z),c), f(d,g(y)))

are typical terms.

Depending on custom, terms involving binary function symbols are
sometimes written in infix notation, as in (x + 1) - y, and those involv-
ing unary function symbols are sometimes written in postfix notation, as
in 271

Valuations and the Meaning of Terms

A wvaluation over a structure A with domain A is a map from variables to
values:

uw: X — A

These maps are often called environments in programming language se-
mantics. Any valuation extends uniquely by induction to a map

u: {terms} — A

as follows: for any terms ¢4, ... ,t, and n-ary function symbol f,

Wt ot) % At .. ultn)).
A

This definition also includes the case n = 0: for constants ¢, u(c) = ¢*.
A term with no variables is called a ground term. Note that for ground
terms ¢, the value u(t) is independent of u. For this reason we often write
t" instead of u(t) for ground terms ¢.

If u is a valuation, x is a variable, and a € A, we denote by u[x/a] the
valuation that agrees with u except on variable x, on which it takes the
value a. In other words,

ufe/al(y) X {“@% ify £,

a, otherwise.

The operator [z/a] is called a rebinding operator.

A Crash Course in Logic 131

Formulas and Sentences

An atomic formula is either a Boolean constant 0 or 1 or an expression of
the form R(t1,... ,t,), where R is an n-ary relation symbol of the signature
and tq1,...,t, are terms. Depending on the application, atomic formulas
involving binary relation symbols are sometimes written in infix notation,
as in g(z) = y.

Formulas are defined inductively:

e Every atomic formula is a formula;

o If o and 1 are formulas and z is a variable, then the following are
formulas: p A, @ Vb, ¢ — P, @ < 1, =, Az @, and YV ¢.

We use parentheses in ambiguous situations when it is not clear how to
parse the formula. Quantifiers may appear more than once with the same
variable in the same formula.

For example,

Jr (Vzy<z)—ax<y) (E.1)

is a typical formula of the first-order language of ordered structures.

Scope, Free and Bound Occurrences of Variables

Suppose the formula ¢ has an occurrence of a subformula of the form
Qz v, where Q is a quantifier, either 3 or V. The scope of the Qz in that
occurrence of Qx 1 is that occurrence of ¥. (We have to say “occurrence”
because quantifiers and subformulas can have more than one occurrence in
a given formula.)

Consider an occurrence of a variable x in a formula ¢ (as a term, not as
part of a quantifier expression Q). Such an occurrence of x is called bound
if it is in the scope of a quantifier Qz, free if not. A bound occurrence of
2 is bound to the occurrence of Qx with the smallest scope in which that
occurrence of x occurs.

For example, in (E.1), the scope of the Jz is ((Vz y < z) — = < y), and
the scope of the Vz is y < z. The single occurrence of x is bound to the 3z,
the single occurrence of z is bound to the Vz, and the two occurrences of y
are free. In

3z (Vyy<2) =z <y), (E.2)

on the other hand, the single occurrence of x is bound to the 3z, the first
occurrence of y is bound to the Yy, and the single occurrence of z and the
second occurrence of y are free.

A sentence is a formula with no free variables.

It is customary to write ¢(x1, ... ,z,) to indicate that all free variables
of ¢ are among x1,... ,Ty.

132

Supplementary Lecture E

Interpretation of Formulas and Sentences

Given a structure A and a valuation of variables u over A, every formula
has a truth value defined inductively as follows. We write

Au E o

and say “p is true in A under valuation «” if the truth value associated
with the formula ¢ is 1 (true) under the inductive definition we are about
to give.

For atomic formulas, A, u F 1 always, A, u F 0 never, and

LL RA(u(ty), . .. ,ultn)).

A uE R(ty,... tn)

For compound formulas,

AuE oAy &5 A ukEpand A,uk
AuE vy L5 A ukEpor AuEy
A, uE —p L% it is not the case that A, uFE @
A, uE Tz £ there exists a € A such that A, ulz/al E ¢
A, uEVYr @ &L forallac A, A, ulz/a] E p.

Whether A, u E ¢ depends only on the values that u assigns to the free
variables of ¢. In other words, if u and v agree on all variables with a free
occurrence in ¢, then A, u E ¢ iff A, v E . This can be shown by induction
on the structure of ¢. In particular, for sentences (formulas with no free
variables), whether A, u F ¢ does not depend on w at all. In this case we
omit the u and write A F ¢ and say “p is true in A” if the sentence ¢ is
true in A under any valuation (hence all valuations).

If @ is a set of sentences, we write A E ® if AFE ¢ for all p € .

If the free variables of ¢ are all among x1,...,x,, that is, if ¢ =
o(1,... &), and if aq,... ,a, € A, it is common to abuse notation by
writing

A E plar,...,ap) (E.3)
for

Au B p(z,...,zp), (E4)

where u is some valuation such that w(z;) = a;, 1 < ¢ < n. This is an
abuse of notation because it is mixing syntactic objects (¢) with semantic
objects (a1, ... ,an). Some authors deal with this by including a constant
for each element of the domain of A and substituting the constant a; for
x; in the definition of truth. Please just remember that anytime you see
(E.3), although strictly speaking it is a type error, it really should be taken
as an abbreviation for (E.4).

A Crash Course in Logic 133

Prenex Form

There are semantics-preserving rules for transforming first-order formulas
to a semantically equivalent special form called prenez form. In prenex
form, all quantifiers occur first, followed by a quantifier free part. The rules
are

pAVEB@) & Y (9 AY()
PVYI Ba) & Vo (pV ()
P AT @) & T (pAY()
oV Bz) & T (pV ()
Vo (z) & Jr p(x)
(@) e Vo -b(),

provided x does not occur free in ¢. If & does occur free in ¢, one can
change the bound variable by applying the rule

Vo p(z) < Vyihy),

where y is a new variable. To transform a formula to prenex form, the rules
would be applied from left to right.

First-Order Theories

The first-order theory of a structure A, denoted Th(A), is the set of sen-
tences in the first-order language of A that are true in A:

Th(A) = {p|AF).

For example, first-order number theory is the set of first-order sentences
true in N.

If Cis a class of structures all of the same signature, the first-order
theory of €, denoted Th(C), is the set of sentences in appropriate first-
order language that are true in all structures in C:

Th(e) = (7] Th(A).
Aece

For example, first-order group theory is the set of sentences in the language
of groups that are true in all groups.

Axiomatization

If @ is a set of sentences over some signature X, the class of models of ®
is the class of structures of signature 3 that satisfy all the sentences of ®.

134

Supplementary Lecture E

Example E.2

This class is denoted Mod(®):

Mod(®) ' {A|AF @)

A sentence ¢ is called a logical consequence of a set of sentences ® if it
is true in all models of ®. In other words, the set of logical consequences
of ® is the set Th(Mod(®)).

We often specify a class of structures by giving a set of azioms, which
are just first-order sentences. The class being specified is defined to be the
class of models of those sentences.

A group is a structure of signature (-, 1, 71, =) satisfying the first-order
group axioms

Vo Yy Vz 2(yz) = (zy)z
Ve xl =z

Ve lr ==z

Ve zo~!l =1

Ve o lz =1

and the axioms of equality

Ve x=x VeVyVzax =y — xz=yz
VeVyr=y—y==za Ve VyVzax =y — zox =2y
VeVyVz (x=yAy=2z2)—z=2 VeVyr=y—a =y L

The Decision Problem

The decision problem for a first-order theory is to determine whether a
given sentence is an element of the theory. For a theory of a structure
such as N, this is just the problem of deciding whether a given sentence
in the language of number theory is true in N. For the theory of a class of
structures C, the decision problem is to determine whether a given sentence
is true in all structures in the class; that is, whether it is in Th(C). For a
set of first-order axioms ®, the decision problem is to determine whether a
given sentence is a logical consequence of ®.

