Lecture 15 # Myhill-Nerode Relations Two deterministic finite automata $$M = (Q_M, \Sigma, \delta_M, s_M, F_M),$$ $$N = (Q_N, \Sigma, \delta_N, s_N, F_N)$$ are said to be isomorphic (Greek for "same form") if there is a one-to-one and onto mapping $f:Q_M\to Q_N$ such that - $f(s_M) = s_N$, - $f(\delta_M(p,a)) = \delta_N(f(p),a)$ for all $p \in Q_M$, $a \in \Sigma$, and - $p \in F_M$ iff $f(p) \in F_N$. That is, they are essentially the same automaton up to renaming of states. It is easily argued that isomorphic automata accept the same set. In this lecture and the next we will show that if M and N are any two automata with no inaccessible states accepting the same set, then the quotient automata M/\approx and N/\approx obtained by the collapsing algorithm of Lecture 14 are isomorphic. Thus the DFA obtained by the collapsing algorithm is the minimal DFA for the set it accepts, and this automaton is unique up to isomorphism. We will do this by exploiting a profound and beautiful correspondence between finite automata with input alphabet Σ and certain equivalence relations on Σ^* . We will show that the unique minimal DFA for a regular set R can be defined in a natural way directly from R, and that any minimal automaton for R is isomorphic to this automaton. ### Myhill-Nerode Relations Let $R \subseteq \Sigma^*$ be a regular set, and let $M = (Q, \Sigma, \delta, s, F)$ be a DFA for R with no inaccessible states. The automaton M induces an equivalence relation \equiv_M on Σ^* defined by $$x \equiv_M y \iff \widehat{\delta}(s, x) = \widehat{\delta}(s, y).$$ (Don't confuse this relation with the collapsing relation \approx of Lecture 13—that relation was defined on Q, whereas \equiv_M is defined on Σ^* .) One can easily show that the relation \equiv_M is an equivalence relation; that is, that it is reflexive, symmetric, and transitive. In addition, \equiv_M satisfies a few other useful properties: (i) It is a right congruence: for any $x, y \in \Sigma^*$ and $a \in \Sigma$, $$x \equiv_M y \Rightarrow xa \equiv_M ya.$$ To see this, assume that $x \equiv_M y$. Then $$\begin{split} \widehat{\delta}(s,xa) &= \delta(\widehat{\delta}(s,x),a) \\ &= \delta(\widehat{\delta}(s,y),a) \quad \text{by assumption} \\ &= \widehat{\delta}(s,ya). \end{split}$$ (ii) It refines R: for any $x, y \in \Sigma^*$, $$x \equiv_M y \implies (x \in R \iff y \in R).$$ This is because $\hat{\delta}(s,x) = \hat{\delta}(s,y)$, and this is either an accept or a reject state, so either both x and y are accepted or both are rejected. Another way to say this is that every \equiv_M -class has either all its elements in R or none of its elements in R; in other words, R is a union of \equiv_M -classes. (iii) It is of *finite index*; that is, it has only finitely many equivalence classes. This is because there is exactly one equivalence class $$\{x \in \Sigma^* \mid \widehat{\delta}(s, x) = q\}$$ corresponding to each state q of M. Let us call an equivalence relation \equiv on Σ^* a *Myhill–Nerode relation for R* if it satisfies properties (i), (ii), and (iii); that is, if it is a right congruence of finite index refining R. The interesting thing about this definition is that it characterizes exactly the relations on Σ^* that are \equiv_M for some automaton M. In other words, we can reconstruct M from \equiv_M using only the fact that \equiv_M is Myhill–Nerode. To see this, we will show how to construct an automaton M_{\equiv} for R from any given Myhill–Nerode relation \equiv for R. We will show later that the two constructions $$M \mapsto \equiv_M,$$ $\equiv \mapsto M_\equiv$ are inverses up to isomorphism of automata. Let $R \subseteq \Sigma^*$, and let \equiv be an arbitrary Myhill–Nerode relation for R. Right now we're not assuming that R is regular, only that the relation \equiv satisfies (i), (ii), and (iii). The \equiv -class of the string x is $$[x] \ \stackrel{\mathrm{def}}{=} \ \{y \mid y \equiv x\}.$$ Although there are infinitely many strings, there are only finitely many ≡-classes, by property (iii). Now define the DFA $M_{\equiv} = (Q, \Sigma, \delta, s, F)$, where $$Q \stackrel{\text{def}}{=} \{[x] \mid x \in \Sigma^*\},$$ $$s \stackrel{\text{def}}{=} [\epsilon],$$ $$F \stackrel{\text{def}}{=} \{[x] \mid x \in R\},$$ $$\delta([x], a) \stackrel{\text{def}}{=} [xa].$$ It follows from property (i) of Myhill–Nerode relations that δ is well defined. In other words, we have defined the action of δ on an equivalence class [x] in terms of an element x chosen from that class, and it is conceivable that we could have gotten something different had we chosen another $y \in [x]$ such that $[xa] \neq [ya]$. The property of right congruence says exactly that this cannot happen. Finally, observe that $$x \in R \iff [x] \in F.$$ (15.1) The implication (\Rightarrow) is from the definition of F, and (\Leftarrow) follows from the definition of F and property (ii) of Myhill–Nerode relations. Now we are ready to prove that $L(M_{\equiv}) = R$. #### Lemma 15.1 $\widehat{\delta}([x], y) = [xy].$ *Proof.* Induction on |y|. Basis $$\widehat{\delta}([x], \epsilon) = [x] = [x\epsilon].$$ Induction step $$\begin{array}{lll} \widehat{\delta}([x],ya) & = & \delta(\widehat{\delta}([x],y),a) & \text{ definition of } \widehat{\delta} \\ & = & \delta([xy],a) & \text{ induction hypothesis} \\ & = & [xya] & \text{ definition of } \delta. & \square \end{array}$$ Theorem 15.2 $L(M_{\equiv}) = R$. Proof. $$x \in L(M_{\equiv}) \iff \widehat{\delta}([\epsilon], x) \in F$$ definition of acceptance $$\iff [x] \in F \qquad \text{Lemma 15.1}$$ $$\iff x \in R \qquad \text{property (15.1).}$$ #### $M \mapsto \equiv_M \text{ and } \equiv \mapsto M_= \text{ Are Inverses}$ We have described two natural constructions, one taking a given automaton M for R with no inaccessible states to a corresponding Myhill–Nerode relation \equiv_M for R, and one taking a given Myhill–Nerode relation \equiv for R to a DFA M_{\equiv} for R. We now wish to show that these two operations are inverses up to isomorphism. - Lemma 15.3 (i) If \equiv is a Myhill-Nerode relation for R, and if we apply the construction $\equiv \mapsto M_{\equiv}$ and then apply the construction $M \mapsto \equiv_M$ to the result, the resulting relation $\equiv_{M_{\equiv}}$ is identical to \equiv . - (ii) If M is a DFA for R with no inaccessible states, and if we apply the construction $M \mapsto \equiv_M$ and then apply the construction $\equiv \mapsto M_\equiv$ to the result, the resulting DFA M_{\equiv_M} is isomorphic to M. *Proof.* (i) Let $M_{\equiv} = (Q, \Sigma, \delta, s, F)$ be the automaton constructed from \equiv as described above. Then for any $x, y \in \Sigma^*$, $$\begin{split} x \equiv_{M_{\equiv}} y &\iff \widehat{\delta}(s,x) = \widehat{\delta}(s,y) & \text{ definition of } \equiv_{M_{\equiv}} \\ &\iff \widehat{\delta}([\epsilon],x) = \widehat{\delta}([\epsilon],y) & \text{ definition of } s \\ &\iff [x] = [y] & \text{ Lemma 15.1} \\ &\iff x \equiv y. \end{split}$$ (ii) Let $M=(Q,\Sigma,\delta,s,F)$ and let $M_{\equiv_M}=(Q',\Sigma,\delta',s',F')$. Recall from the construction that $$\begin{aligned} [x] &=& \{y \mid y \equiv_M x\} = \{y \mid \widehat{\delta}(s,y) = \widehat{\delta}(s,x)\}, \\ Q' &=& \{[x] \mid x \in \Sigma^*\}, \\ s' &=& [\epsilon], \\ F' &=& \{[x] \mid x \in R\}, \\ \delta'([x],a) &=& [xa]. \end{aligned}$$ We will show that M_{\equiv_M} and M are isomorphic under the map $$f: Q' \rightarrow Q,$$ $f([x]) = \widehat{\delta}(s, x).$ By the definition of \equiv_M , [x] = [y] iff $\hat{\delta}(s, x) = \hat{\delta}(s, y)$, so the map f is well defined on \equiv_M -classes and is one-to-one. Since M has no inaccessible states, f is onto. To show that f is an isomorphism of automata, we need to show that f preserves all automata-theoretic structure: the start state, transition function, and final states. That is, we need to show - f(s') = s, - $f(\delta'([x], a)) = \delta(f([x]), a),$ - $[x] \in F' \iff f([x]) \in F$. These are argued as follows: $$f(s') = f([\epsilon])$$ definition of s' = $\hat{\delta}(s, \epsilon)$ definition of f = s definition of $\hat{\delta}$; $$\begin{array}{lll} f(\delta'([x],a)) & = & f([xa]) & \text{definition of } \delta' \\ & = & \widehat{\delta}(s,xa) & \text{definition of } f \\ & = & \delta(\widehat{\delta}(s,x),a) & \text{definition of } \widehat{\delta} \\ & = & \delta(f([x]),a) & \text{definition of } f; \end{array}$$ $$\begin{split} [x] \in F' &\iff x \in R & \text{definition of } F \text{ and property (ii)} \\ &\iff \widehat{\delta}(s,x) \in F & \text{since } L(M) = R \\ &\iff f([x]) \in F & \text{definition of } f. \end{split}$$ We have shown: Theorem 15.4 Let Σ be a finite alphabet. Up to isomorphism of automata, there is a one-to-one correspondence between deterministic finite automata over Σ with no inaccessible states accepting R and Myhill-Nerode relations for R on Σ^* . ## Lecture 16 # The Myhill-Nerode Theorem Let $R \subseteq \Sigma^*$ be a regular set. Recall from Lecture 15 that a *Myhill–Nerode* relation for R is an equivalence relation \equiv on Σ^* satisfying the following three properties: (i) \equiv is a right congruence: for any $x, y \in \Sigma^*$ and $a \in \Sigma$, $$x \equiv y \quad \Rightarrow \quad xa \equiv ya;$$ (ii) $\equiv refines R$: for any $x, y \in \Sigma^*$, $$x \equiv y \implies (x \in R \iff y \in R);$$ (iii) \equiv is of finite index; that is, \equiv has only finitely many equivalence classes. We showed that there was a natural one-to-one correspondence (up to isomorphism of automata) between - deterministic finite automata for R with input alphabet Σ and with no inaccessible states, and - Myhill–Nerode relations for R on Σ^* . This is interesting, because it says we can deal with regular sets and finite automata in terms of a few simple, purely algebraic properties. In this lecture we will show that there exists a *coarsest* Myhill–Nerode relation \equiv_R for any given regular set R; that is, one that every other Myhill–Nerode relation for R refines. The notions of *coarsest* and *refinement* will be defined below. The relation \equiv_R corresponds to the unique minimal DFA for R. Recall from Lecture 15 the two constructions • $M \mapsto \equiv_M$, which takes an arbitrary DFA $M = (Q, \Sigma, \delta, s, F)$ with no inaccessible states accepting R and produces a Myhill–Nerode relation \equiv_M for R: $$x \equiv_M y \iff \widehat{\delta}(s, x) = \widehat{\delta}(s, y);$$ • $\equiv \mapsto M_{\equiv}$, which takes an arbitrary Myhill–Nerode relation \equiv on Σ^* for R and produces a DFA $M_{\equiv} = (Q, \Sigma, \delta, s, F)$ accepting R: $$\begin{aligned} [x] &\stackrel{\text{def}}{=} & \{y \mid y \equiv x\}, \\ Q &\stackrel{\text{def}}{=} & \{[x] \mid x \in \Sigma^*\}, \\ s &\stackrel{\text{def}}{=} & [\epsilon], \\ \delta([x], a) &\stackrel{\text{def}}{=} & [xa], \\ F &\stackrel{\text{def}}{=} & \{[x] \mid x \in R\}. \end{aligned}$$ We showed that these two constructions are inverses up to isomorphism. **Definition 16.1** A relation \equiv_1 is said to *refine* another relation \equiv_2 if $\equiv_1 \subseteq \equiv_2$, considered as sets of ordered pairs. In other words, \equiv_1 *refines* \equiv_2 if for all x and y, $x \equiv_1 y$ implies $x \equiv_2 y$. For equivalence relations \equiv_1 and \equiv_2 , this is the same as saying that for every x, the \equiv_1 -class of x is included in the \equiv_2 -class of x For example, the equivalence relation $x \equiv y \mod 6$ on the integers refines the equivalence relation $x \equiv y \mod 3$. For another example, clause (ii) of the definition of Myhill–Nerode relations says that a Myhill–Nerode relation \equiv for R refines the equivalence relation with equivalence classes R and $\Sigma^* - R$. The relation of *refinement* between equivalence relations is a partial order: it is reflexive (every relation refines itself), transitive (if \equiv_1 refines \equiv_2 and \equiv_2 refines \equiv_3 , then \equiv_1 refines \equiv_3), and antisymmetric (if \equiv_1 refines \equiv_2 and \equiv_2 refines \equiv_1 , then \equiv_1 and \equiv_2 are the same relation). If \equiv_1 refines \equiv_2 , then \equiv_1 is the *finer* and \equiv_2 is the *coarser* of the two relations. There is always a finest and a coarsest equivalence relation on any set U, namely the *identity relation* $\{(x,x) \mid x \in U\}$ and the *universal relation* $\{(x,y) \mid x,y \in U\}$, respectively. Now let $R \subseteq \Sigma^*$, regular or not. We define an equivalence relation \equiv_R on Σ^* in terms of R as follows: $$x \equiv_R y \iff \forall z \in \Sigma^* \ (xz \in R \iff yz \in R).$$ (16.1) In other words, two strings are equivalent under \equiv_R if, whenever you append the same string to both of them, the resulting two strings are either both in R or both not in R. It is not hard to show that this is an equivalence relation for any R. We show that for any set R, regular or not, the relation \equiv_R satisfies the first two properties (i) and (ii) of Myhill–Nerode relations and is the coarsest such relation on Σ^* . In case R is regular, this relation is also of finite index, therefore a Myhill–Nerode relation for R. In fact, it is the coarsest possible Myhill–Nerode relation for R and corresponds to the unique minimal finite automaton for R. **Lemma 16.2** Let $R \subseteq \Sigma^*$, regular or not. The relation \equiv_R defined by (16.1) is a right congruence refining R and is the coarsest such relation on Σ^* . *Proof.* To show that \equiv_R is a right congruence, take z = aw in the definition of \equiv_R : $$x \equiv_R y \quad \Rightarrow \quad \forall a \in \Sigma \ \forall w \in \Sigma^* (xaw \in R \Longleftrightarrow yaw \in R)$$ $$\Rightarrow \quad \forall a \in \Sigma \ (xa \equiv_R ya).$$ To show that \equiv_R refines R, take $z = \epsilon$ in the definition of \equiv_R : $$x \equiv_R y \implies (x \in R \iff y \in R).$$ Moreover, \equiv_R is the coarsest such relation, because any other equivalence relation \equiv satisfying (i) and (ii) refines \equiv_R : $$x \equiv y$$ $\Rightarrow \forall z \ (xz \equiv yz)$ by induction on $|z|$, using property (i) $\Rightarrow \forall z \ (xz \in R \Longleftrightarrow yz \in R)$ property (ii) $\Rightarrow x \equiv_R y$ definition of \equiv_R . At this point all the hard work is done. We can now state and prove the $Myhill-Nerode\ theorem$: - Theorem 16.3 (Myhill–Nerode theorem) Let $R \subseteq \Sigma^*$. The following statements are equivalent: - (a) R is regular; - (b) there exists a Myhill-Nerode relation for R; (c) the relation \equiv_R is of finite index. *Proof.* (a) \Rightarrow (b) Given a DFA M for R, the construction $M \mapsto \equiv_M$ produces a Myhill–Nerode relation for R. (b) \Rightarrow (c) By Lemma 16.2, any Myhill–Nerode relation for R is of finite index and refines \equiv_R ; therefore \equiv_R is of finite index. (c) \Rightarrow (a) If \equiv_R is of finite index, then it is a Myhill–Nerode relation for R, and the construction $\equiv \mapsto M_{\equiv}$ produces a DFA for R. Since \equiv_R is the unique coarsest Myhill–Nerode relation for a regular set R, it corresponds to the DFA for R with the fewest states among all DFAs for R. The collapsing algorithm of Lecture 14 actually gives this automaton. Suppose $M = (Q, \Sigma, \delta, s, F)$ is a DFA for R that is already collapsed; that is, there are no inaccessible states, and the collapsing relation $$p \approx q \iff \forall x \in \Sigma^* \ (\widehat{\delta}(p, x) \in F \iff \widehat{\delta}(q, x) \in F)$$ is the identity relation on Q. Then the Myhill–Nerode relation \equiv_M corresponding to M is exactly \equiv_R : $$\begin{array}{lll} x \equiv_R y \\ \iff & \forall z \in \Sigma^* \; (xz \in R \iff yz \in R) & \text{definition of } \equiv_R \\ \iff & \forall z \in \Sigma^* \; (\widehat{\delta}(s,xz) \in F \iff \widehat{\delta}(s,yz) \in F) & \text{definition of acceptance} \\ \iff & \forall z \in \Sigma^* \; (\widehat{\delta}(\widehat{\delta}(s,x),z) \in F \iff \widehat{\delta}(\widehat{\delta}(s,y),z) \in F) \\ & \qquad \qquad & \text{Homework 1, Exercise 3} \\ \iff & \widehat{\delta}(s,x) \approx \widehat{\delta}(s,y) & \text{definition of } \approx \\ \iff & \widehat{\delta}(s,x) = \widehat{\delta}(s,y) & \text{since M is collapsed} \\ \iff & x \equiv_M y & \text{definition of } \equiv_M. \end{array}$$ ### An Application The Myhill–Nerode theorem can be used to determine whether a set R is regular or nonregular by determining the number of \equiv_R -classes. For example, consider the set $$A = \{a^n b^n \mid n \ge 0\}.$$ If $k \neq m$, then $a^k \not\equiv_A a^m$, since $a^k b^k \in A$ but $a^m b^k \not\in A$. Therefore, there are infinitely many \equiv_A -classes, at least one for each a^k , $k \geq 0$. By the Myhill–Nerode theorem, A is not regular. In fact, one can show that the \equiv_A -classes are exactly $$G_k = \{a^k\}, k \ge 0,$$ $$H_k = \{a^{n+k}b^n \mid 1 \le n\}, k \ge 0,$$ $$E = \Sigma^* - \bigcup_{k \ge 0} G_k \cup H_k = \Sigma^* - \{a^mb^n \mid 0 \le n \le m\}.$$ For strings in G_k , all and only strings in $\{a^nb^{n+k} \mid n \geq 0\}$ can be appended to obtain a string in A; for strings in H_k , only the string b^k can be appended to obtain a string in A; and no string can be appended to a string in E to obtain a string in A. We will see another application of the Myhill–Nerode theorem involving two-way finite automata in Lectures 17 and 18. #### Historical Notes Minimization of DFAs was studied by Huffman [54], Moore [84], Nerode [88], and Hopcroft [53], among others. The Myhill–Nerode theorem is due independently to Myhill [85] and Nerode [88] in slightly different forms.