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Lecture 15

Myhill–Nerode Relations

Two deterministic finite automata

M = (QM , Σ, δM , sM , FM ),
N = (QN , Σ, δN , sN , FN )

are said to be isomorphic (Greek for “same form”) if there is a one-to-one
and onto mapping f : QM → QN such that

• f(sM ) = sN ,

• f(δM (p, a)) = δN (f(p), a) for all p ∈ QM , a ∈ Σ, and

• p ∈ FM iff f(p) ∈ FN .

That is, they are essentially the same automaton up to renaming of states.
It is easily argued that isomorphic automata accept the same set.
In this lecture and the next we will show that if M and N are any two
automata with no inaccessible states accepting the same set, then the quo-
tient automata M/≈ and N/≈ obtained by the collapsing algorithm of
Lecture 14 are isomorphic. Thus the DFA obtained by the collapsing al-
gorithm is the minimal DFA for the set it accepts, and this automaton is
unique up to isomorphism.
We will do this by exploiting a profound and beautiful correspondence
between finite automata with input alphabet Σ and certain equivalence
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relations on Σ∗. We will show that the unique minimal DFA for a regular
set R can be defined in a natural way directly from R, and that any minimal
automaton for R is isomorphic to this automaton.

Myhill–Nerode Relations

Let R ⊆ Σ∗ be a regular set, and let M = (Q, Σ, δ, s, F ) be a DFA for
R with no inaccessible states. The automaton M induces an equivalence
relation ≡M on Σ∗ defined by

x ≡M y
def⇐⇒ δ̂(s, x) = δ̂(s, y).

(Don’t confuse this relation with the collapsing relation ≈ of Lecture 13—
that relation was defined on Q, whereas ≡M is defined on Σ∗.)
One can easily show that the relation ≡M is an equivalence relation; that
is, that it is reflexive, symmetric, and transitive. In addition, ≡M satisfies
a few other useful properties:

(i) It is a right congruence: for any x, y ∈ Σ∗ and a ∈ Σ,

x ≡M y ⇒ xa ≡M ya.

To see this, assume that x ≡M y. Then

δ̂(s, xa) = δ(δ̂(s, x), a)

= δ(δ̂(s, y), a) by assumption

= δ̂(s, ya).

(ii) It refines R: for any x, y ∈ Σ∗,

x ≡M y ⇒ (x ∈ R⇐⇒ y ∈ R).

This is because δ̂(s, x) = δ̂(s, y), and this is either an accept or a
reject state, so either both x and y are accepted or both are rejected.
Another way to say this is that every ≡M -class has either all its
elements in R or none of its elements in R; in other words, R is a
union of ≡M -classes.

(iii) It is of finite index; that is, it has only finitely many equivalence
classes. This is because there is exactly one equivalence class

{x ∈ Σ∗ | δ̂(s, x) = q}

corresponding to each state q of M .
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Let us call an equivalence relation ≡ on Σ∗ a Myhill–Nerode relation for R
if it satisfies properties (i), (ii), and (iii); that is, if it is a right congruence
of finite index refining R.
The interesting thing about this definition is that it characterizes exactly
the relations on Σ∗ that are ≡M for some automaton M . In other words,
we can reconstruct M from ≡M using only the fact that ≡M is Myhill–
Nerode. To see this, we will show how to construct an automaton M≡ for
R from any given Myhill–Nerode relation ≡ for R. We will show later that
the two constructions

M 7→ ≡M ,

≡ 7→ M≡

are inverses up to isomorphism of automata.
Let R ⊆ Σ∗, and let ≡ be an arbitrary Myhill–Nerode relation for R.
Right now we’re not assuming that R is regular, only that the relation ≡
satisfies (i), (ii), and (iii). The ≡-class of the string x is

[x] def= {y | y ≡ x}.

Although there are infinitely many strings, there are only finitely many
≡-classes, by property (iii).
Now define the DFA M≡ = (Q, Σ, δ, s, F ), where

Q
def= {[x] | x ∈ Σ∗},

s
def= [ε],

F
def= {[x] | x ∈ R},

δ([x], a) def= [xa].

It follows from property (i) of Myhill–Nerode relations that δ is well defined.
In other words, we have defined the action of δ on an equivalence class [x]
in terms of an element x chosen from that class, and it is conceivable that
we could have gotten something different had we chosen another y ∈ [x]
such that [xa] 6= [ya]. The property of right congruence says exactly that
this cannot happen.
Finally, observe that

x ∈ R ⇐⇒ [x] ∈ F. (15.1)

The implication (⇒) is from the definition of F , and (⇐) follows from the
definition of F and property (ii) of Myhill–Nerode relations.
Now we are ready to prove that L(M≡) = R.

Lemma 15.1 δ̂([x], y) = [xy].

Proof. Induction on |y|.
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Basis

δ̂([x], ε) = [x] = [xε].

Induction step

δ̂([x], ya) = δ(δ̂([x], y), a) definition of δ̂

= δ([xy], a) induction hypothesis

= [xya] definition of δ. 2

Theorem 15.2 L(M≡) = R.

Proof.

x ∈ L(M≡) ⇐⇒ δ̂([ε], x) ∈ F definition of acceptance

⇐⇒ [x] ∈ F Lemma 15.1

⇐⇒ x ∈ R property (15.1). 2

M 7→ ≡M and ≡ 7→M≡ Are Inverses

We have described two natural constructions, one taking a given automaton
M for R with no inaccessible states to a corresponding Myhill–Nerode
relation ≡M for R, and one taking a given Myhill–Nerode relation ≡ for R
to a DFA M≡ for R. We now wish to show that these two operations are
inverses up to isomorphism.

Lemma 15.3 (i) If ≡ is a Myhill–Nerode relation for R, and if we apply the construc-
tion ≡ 7→M≡ and then apply the construction M 7→ ≡M to the result,
the resulting relation ≡M≡ is identical to ≡.

(ii) If M is a DFA for R with no inaccessible states, and if we apply the
construction M 7→ ≡M and then apply the construction ≡ 7→ M≡ to
the result, the resulting DFA M≡M

is isomorphic to M .

Proof. (i) Let M≡ = (Q, Σ, δ, s, F ) be the automaton constructed from ≡
as described above. Then for any x, y ∈ Σ∗,

x ≡M≡ y ⇐⇒ δ̂(s, x) = δ̂(s, y) definition of ≡M≡

⇐⇒ δ̂([ε], x) = δ̂([ε], y) definition of s

⇐⇒ [x] = [y] Lemma 15.1

⇐⇒ x ≡ y.
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(ii) Let M = (Q, Σ, δ, s, F ) and let M≡M
= (Q′, Σ, δ′, s′, F ′). Recall from

the construction that

[x] = {y | y ≡M x} = {y | δ̂(s, y) = δ̂(s, x)},
Q′ = {[x] | x ∈ Σ∗},
s′ = [ε],
F ′ = {[x] | x ∈ R},

δ′([x], a) = [xa].

We will show that M≡M
and M are isomorphic under the map

f : Q′ → Q,

f([x]) = δ̂(s, x).

By the definition of ≡M , [x] = [y] iff δ̂(s, x) = δ̂(s, y), so the map f is
well defined on ≡M -classes and is one-to-one. Since M has no inaccessible
states, f is onto.
To show that f is an isomorphism of automata, we need to show that f pre-
serves all automata-theoretic structure: the start state, transition function,
and final states. That is, we need to show

• f(s′) = s,

• f(δ′([x], a)) = δ(f([x]), a),

• [x] ∈ F ′ ⇐⇒ f([x]) ∈ F .

These are argued as follows:

f(s′) = f([ε]) definition of s′

= δ̂(s, ε) definition of f

= s definition of δ̂;

f(δ′([x], a)) = f([xa]) definition of δ′

= δ̂(s, xa) definition of f

= δ(δ̂(s, x), a) definition of δ̂
= δ(f([x]), a) definition of f ;

[x] ∈ F ′ ⇐⇒ x ∈ R definition of F and property (ii)

⇐⇒ δ̂(s, x) ∈ F since L(M) = R

⇐⇒ f([x]) ∈ F definition of f . 2



94 Lecture 15

We have shown:

Theorem 15.4 Let Σ be a finite alphabet. Up to isomorphism of automata, there is a one-
to-one correspondence between deterministic finite automata over Σ with
no inaccessible states accepting R and Myhill–Nerode relations for R on
Σ∗.



This is page 95
Printer: Opaque this

Lecture 16

The Myhill–Nerode Theorem

Let R ⊆ Σ∗ be a regular set. Recall from Lecture 15 that a Myhill–Nerode
relation for R is an equivalence relation ≡ on Σ∗ satisfying the following
three properties:

(i) ≡ is a right congruence: for any x, y ∈ Σ∗ and a ∈ Σ,

x ≡ y ⇒ xa ≡ ya;

(ii) ≡ refines R: for any x, y ∈ Σ∗,

x ≡ y ⇒ (x ∈ R⇐⇒ y ∈ R);

(iii) ≡ is of finite index; that is, ≡ has only finitely many equivalence
classes.

We showed that there was a natural one-to-one correspondence (up to
isomorphism of automata) between

• deterministic finite automata for R with input alphabet Σ and with
no inaccessible states, and

• Myhill–Nerode relations for R on Σ∗.
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This is interesting, because it says we can deal with regular sets and finite
automata in terms of a few simple, purely algebraic properties.
In this lecture we will show that there exists a coarsest Myhill–Nerode
relation≡R for any given regular set R; that is, one that every other Myhill–
Nerode relation for R refines. The notions of coarsest and refinement will
be defined below. The relation ≡R corresponds to the unique minimal DFA
for R.
Recall from Lecture 15 the two constructions

• M 7→ ≡M , which takes an arbitrary DFA M = (Q, Σ, δ, s, F )
with no inaccessible states accepting R and produces a Myhill–Nerode
relation ≡M for R:

x ≡M y
def⇐⇒ δ̂(s, x) = δ̂(s, y);

• ≡ 7→M≡, which takes an arbitrary Myhill–Nerode relation ≡ on Σ∗
for R and produces a DFA M≡ = (Q, Σ, δ, s, F ) accepting R:

[x] def= {y | y ≡ x},

Q
def= {[x] | x ∈ Σ∗},

s
def= [ε],

δ([x], a) def= [xa],

F
def= {[x] | x ∈ R}.

We showed that these two constructions are inverses up to isomorphism.

Definition 16.1 A relation ≡1 is said to refine another relation ≡2 if ≡1⊆≡2, considered
as sets of ordered pairs. In other words, ≡1 refines ≡2 if for all x and y,
x ≡1 y implies x ≡2 y. For equivalence relations ≡1 and ≡2, this is the same
as saying that for every x, the ≡1-class of x is included in the ≡2-class of
x. 2

For example, the equivalence relation x ≡ y mod 6 on the integers refines
the equivalence relation x ≡ y mod 3. For another example, clause (ii) of the
definition of Myhill–Nerode relations says that a Myhill–Nerode relation ≡
for R refines the equivalence relation with equivalence classes R and Σ∗−R.
The relation of refinement between equivalence relations is a partial order:
it is reflexive (every relation refines itself), transitive (if ≡1 refines ≡2 and
≡2 refines ≡3, then ≡1 refines ≡3), and antisymmetric (if ≡1 refines ≡2

and ≡2 refines ≡1, then ≡1 and ≡2 are the same relation).
If ≡1 refines ≡2, then ≡1 is the finer and ≡2 is the coarser of the two
relations. There is always a finest and a coarsest equivalence relation on
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any set U , namely the identity relation {(x, x) | x ∈ U} and the universal
relation {(x, y) | x, y ∈ U}, respectively.
Now let R ⊆ Σ∗, regular or not. We define an equivalence relation ≡R on
Σ∗ in terms of R as follows:

x ≡R y
def⇐⇒ ∀z ∈ Σ∗ (xz ∈ R⇐⇒ yz ∈ R). (16.1)

In other words, two strings are equivalent under ≡R if, whenever you ap-
pend the same string to both of them, the resulting two strings are either
both in R or both not in R. It is not hard to show that this is an equivalence
relation for any R.
We show that for any set R, regular or not, the relation ≡R satisfies the first
two properties (i) and (ii) of Myhill–Nerode relations and is the coarsest
such relation on Σ∗. In case R is regular, this relation is also of finite index,
therefore a Myhill–Nerode relation for R. In fact, it is the coarsest possible
Myhill–Nerode relation for R and corresponds to the unique minimal finite
automaton for R.

Lemma 16.2 Let R ⊆ Σ∗, regular or not. The relation ≡R defined by (16.1) is a right
congruence refining R and is the coarsest such relation on Σ∗.

Proof. To show that ≡R is a right congruence, take z = aw in the definition
of ≡R:

x ≡R y ⇒ ∀a ∈ Σ ∀w ∈ Σ∗(xaw ∈ R⇐⇒ yaw ∈ R)
⇒ ∀a ∈ Σ (xa ≡R ya).

To show that ≡R refines R, take z = ε in the definition of ≡R:

x ≡R y ⇒ (x ∈ R⇐⇒ y ∈ R).

Moreover, ≡R is the coarsest such relation, because any other equivalence
relation ≡ satisfying (i) and (ii) refines ≡R:

x ≡ y
⇒ ∀z (xz ≡ yz) by induction on |z|, using property (i)
⇒ ∀z (xz ∈ R⇐⇒ yz ∈ R) property (ii)
⇒ x ≡R y definition of ≡R. 2

At this point all the hard work is done. We can now state and prove the
Myhill–Nerode theorem:

Theorem 16.3 (Myhill–Nerode theorem) Let R ⊆ Σ∗. The following statements
are equivalent:

(a) R is regular;

(b) there exists a Myhill–Nerode relation for R;
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(c) the relation ≡R is of finite index.

Proof. (a) ⇒ (b) Given a DFA M for R, the construction M 7→ ≡M

produces a Myhill–Nerode relation for R.
(b) ⇒ (c) By Lemma 16.2, any Myhill–Nerode relation for R is of finite
index and refines ≡R; therefore ≡R is of finite index.
(c) ⇒ (a) If ≡R is of finite index, then it is a Myhill–Nerode relation for
R, and the construction ≡ 7→M≡ produces a DFA for R. 2

Since ≡R is the unique coarsest Myhill–Nerode relation for a regular set R,
it corresponds to the DFA for R with the fewest states among all DFAs for
R.
The collapsing algorithm of Lecture 14 actually gives this automaton. Sup-
pose M = (Q, Σ, δ, s, F ) is a DFA for R that is already collapsed; that is,
there are no inaccessible states, and the collapsing relation

p ≈ q def⇐⇒ ∀x ∈ Σ∗ (δ̂(p, x) ∈ F ⇐⇒ δ̂(q, x) ∈ F )

is the identity relation on Q. Then the Myhill–Nerode relation ≡M corre-
sponding to M is exactly ≡R:

x ≡R y

⇐⇒ ∀z ∈ Σ∗ (xz ∈ R⇐⇒ yz ∈ R) definition of ≡R

⇐⇒ ∀z ∈ Σ∗ (δ̂(s, xz) ∈ F ⇐⇒ δ̂(s, yz) ∈ F ) definition of acceptance

⇐⇒ ∀z ∈ Σ∗ (δ̂(δ̂(s, x), z) ∈ F ⇐⇒ δ̂(δ̂(s, y), z) ∈ F )

Homework 1, Exercise 3

⇐⇒ δ̂(s, x) ≈ δ̂(s, y) definition of ≈
⇐⇒ δ̂(s, x) = δ̂(s, y) since M is collapsed

⇐⇒ x ≡M y definition of ≡M .

An Application

The Myhill–Nerode theorem can be used to determine whether a set R
is regular or nonregular by determining the number of ≡R-classes. For
example, consider the set

A = {anbn | n ≥ 0}.

If k 6= m, then ak 6≡A am, since akbk ∈ A but ambk 6∈ A. Therefore, there
are infinitely many ≡A-classes, at least one for each ak, k ≥ 0. By the
Myhill–Nerode theorem, A is not regular.
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In fact, one can show that the ≡A-classes are exactly

Gk = {ak}, k ≥ 0,
Hk = {an+kbn | 1 ≤ n}, k ≥ 0,

E = Σ∗ −
⋃
k≥0

Gk ∪Hk = Σ∗ − {ambn | 0 ≤ n ≤ m}.

For strings in Gk, all and only strings in {anbn+k | n ≥ 0} can be appended
to obtain a string in A; for strings inHk, only the string bk can be appended
to obtain a string in A; and no string can be appended to a string in E to
obtain a string in A.
We will see another application of the Myhill–Nerode theorem involving
two-way finite automata in Lectures 17 and 18.

Historical Notes

Minimization of DFAs was studied by Huffman [54], Moore [84], Nerode
[88], and Hopcroft [53], among others. The Myhill–Nerode theorem is due
independently to Myhill [85] and Nerode [88] in slightly different forms.


