The Design and Analysis of Algorithms Problem Set 6
CS 681 Fall 2003 Due Friday, December 5, 2003

Solve 2 of the following 3 problems. You may solve all 3 for extra credit. We will maintain a
FAQ for the problem set on the course Web page.

(1) (15 points) Consider the following problem. There is a set U of n nodes (users) (e.g., these
are locations that need to access a service, such as a Web server). You would like to place servers
at multiple locations. Suppose you are given a set .S possible sites that would be willing to serve
as locations for the servers. For each site s € S there is a fee fs > 0 for placing a server at that
location. Your goal will be to approximately minimize the cost while providing the service to each
of the customers. So far this is very much like the set-cover problem, the places s are sets, their
weight is fs, and we want to select a subset that covers all users. There is one extra complication:
users u € U can be served from multiple sites, but there is an associated cost d,s for serving user
u from site s. When the value d, is very high, we do not want to serve user u from site s; and
in general the service cost d,s serves as an incentive to serve customers from “nearby” servers
whenever possible.

So here is the algorithmic problem: Given the sets U, and S, and costs f and d, you need to
select a subset A C S to activate (at the cost of > .4 fs), and assign each user u to the active
server where it is cheapest to be served mingc4 dys. The goal is to minimize the overall cost
Yseafs + 2D ucy mingea dys. Give an H(n)-approximation for this problem.

Hint: note that if all service costs d,s are 0 or infinity, than this problem is exactly the setcover
problem: f; is the cost of the set named s, and d,; is 0 if node u is in set s, and infinity otherwise.

(2) (15 points) In class we gave a 2-approximation for a load balancing problem on m machines.
In this problem you will design an improved approximation algorithm in the special case of 2
machines. Recall that the input to the problem had n jobs and m machines, and a processing
times p;; that are the load that job j would present if assigned to machine i. The hart of the
2-approximation algorithm given in class was an algorithm for the following “decision” problem:
given an extra parameter L either show that there is no assignment of jobs to machines with
maximum machine load at most L or find an assignment with load at most 2L.

(a.) Assume that we are given a target load L; for all machines 7, and a value L’. Assume that
for all job j and machines i, the value p;; is either infinite, or < L’. Give a polynomial time
algorithm that,

— either shows that there is no assignment of jobs to machines where the load of machine
1 is at most L; for all 7, or

— finds an assignment where the load of machine 7 is at most L; + L’ for all machines 7.

(b.) Assume that the number of machines m is 2. Give an algorithm that, given an extra parameter
L, either shows that there is no assignment of jobs to machines with maximum machine load
at most L, or finds an assignment with load at most 1.5L. (Note that this leads to a 3/2-
approximation). Hint: use part (a) with L' = L/2.



(3) (15 points) In this problem, we will consider the following simple randomized vertex cover
algorithm.

Start with S =10.

While S is not a vertex cover,
Select an edge e not covered by S.
Select one end of e at random (both end equally likely)
Add selected node to S

Endwhile

We will be interested in the expected cost of a vertex cover selected by this algorithm.

(a.) Is this algorithm a c-approximation algorithm for the minimum weight vertex cover problem
for some constant ¢? Prove your answer.

(b.) Is this algorithm a c-approximation algorithm for the minimum cardinality vertex cover prob-
lem for some constant ¢? Prove your answer.

Hint: For an edge, let p. denote the probability that edge e is selected as a uncovered edge in this
algorithm. Can you express the expected value of the solution in terms of these probabilities? To
bound the value of an optimal solution in terms of the p. probabilities, try to bound the sum of
the probabilities for the edges adjacent to a given vertex v: - adjacent to v Pe-



