The Design and Analysis of Algorithms Problem Set 3
CS 681 Fall 2003 Due Friday, October 10, 2003

Solve 3 of the following 4 problems. You may solve all 4 for extra credit. We will maintain a
FAQ for the problem set on the course Web page.

(1) (15 points) In class we talked about the Splay-tree data structure. The data structure
maintains a sorted set of elements in a binary search tree, allowing search, insertion, and deletion
of elements. We proved that starting with an empty tree, a sequence of m operations involving
a total on n elements takes at most O(mlogn) time. Here we explore version of this statement
without assuming that we start from an empty tree.

(a.) Assume you are given a binary search tree T' (may not be balanced). Starting from this tree,
we want to do a sequence of m search, insertion, and deletion operations. Let n denote the number
of elements involved (in the original tree T' or inserted later). If the tree is not balanced, any single
operation can take much more than O(logn) time. Prove that for any tree T, there is a number my
so that a sequence of m operations for any m > myp takes at most O(mlogn) time (the constant
in the big O(.) should not depend on the tree T').

(b.) Assume you are given a binary search tree T (may not be balanced). As in part (a.) we want
to do a sequence of m search, insertion, and deletion operations starting from this tree. Assume
that the tree includes a number of ”outdated” entries. More precisely, let N be the number of
elements in the tree, and assume that the sequence of m operations involves only a subset of n
elements. Prove that for any tree T', there is a number mp so that a sequence of m operations
involving a subset of n elements, for any m > myp takes at most O(mlogn) time (the constant in
the big O(.) should not depend on the tree 7). Hint: you may want to start by proving this for
a sequence of m splay operations. All other operations can be composed of splay operations, note
however, that delete and insert involves splay on items other than the one we want to insert or
delete.

(2) (15 points) Here we consider a popular heuristic for the Traveling Salesman Problem (TSP).
We consider a version of this problem, where you are given a set V' of n cities, with pairwise distances
between them, and two distinguished cities s and ¢t. We assume that distances are symmetric (that
is, dist(u,v) = dist(v,u) for any pair of nodes u,v € V'). The problem is to find an ordering of the
cities that starts at s ends at ¢, visits all cities exactly once, and so that the sum of the distances
of consecutive cities is as low as possible. More formally, we want to order the nodes of V as
v1,...,U, SO that v1 = s, v, = ¢, and Z?;ll dist(vi, vi+1) is as low as possible. (It is customary
to assume that the distances satisfy the triangle inequality. We do not need this assumption for
this problem. It is also common to add the distance dist(vy,v1), i.e., to assume that the salesman
needs to go home to v; after visiting all cities. Here we will consider a path for simplicity.) The
Traveling Salesman Problem is a well-known hard problem. Here we will not be concerned with
finding a good quality solution (we’ll consider this later in the course), rather we will consider an
efficient implementation of a popular heuristic: 2-Opt. The idea is to start with any ordering of the
vertices, and improve them via simple changes. Consider an order vy, ..., v,. One simple change is
to consider any subsequence v;, . .., v;j forsome 1 < i < j < n, and reorder the tour by reversing this
subsequence. The resulting order vy, ..., v;_1,vj,vj_1,..., Vit1, Vi, Vj41, - - ., Uy shown on the Figure



Figure 1: A 2-Opt improvement for the Traveling Salesman Problem.

1. The new ordering changed by deleting the two edges (v;—1, v;) and (v;, vj41), and replacing them
by (vi—1,v;), and (vj11,v;). (Note that the sequence v;, ..., v; is now visited in the reverse order,
but we assumed that distances are symmetric, so this does not change their contribution to the
sum.) The 2-Opt heuristic starts with any tour from s to ¢, and changes it via 2-opt moves, while
improving 2-opt moves can be found. In this problem we will develop an implementation that
allows us to implement each 2-Opt move in O(logn) time on the average. More precisely, given a
proposed edge (i, j) to add, we want to be able to decide if the swapping the order of the sequence
between ¢ + 1 and j would improve the total distance, and do the swap if it does improve. (Note
that it maybe take many such steps to select an edge that will improve the tour.) To be able to do
this efficiently, we would like to have a data structure to maintain the current order so that we can
find the node right after and right before node v in the order, and be able to swap subsequences in
O(logn) time on the average.

Assume that we keep the current tour as a linked list with next and previous pointers. Now
we can get the next and previous node in O(1) time, but reversing a subsequence takes time
proportional to the length of the sequence (as we need to swap previous and next pointers). An
alternate idea is to keep the current tour as a balanced binary search tree ordered in the order
that the tour visits the vertices (with s the leftmost node, and ¢ the rightmost node of the tree).
With this data structure, finding the previous and next node takes O(logn) time, and certain
subsequences are easy to reverse. Assume you want to reverse the order of the initial segment,
nodes v1, ..., v, and assume that this set {v1,...,v;} is exactly the set of nodes under the node
v; in the binary search tree. Then we can "reverse” the subsequence, by adding an extra bit to
the node v; that indicates that in the subtree under node v; the rolls of left and right nodes are
reversed, that is, we need to visit the nodes right subtrees first, and then only the left subtrees.
See the Figure 2. In fact, this trick would allow us to reverse subsequences other than initial ones
by noticing that we get the sequence i...j reversed by the following 3 operations: reverse 1..j, then
reverse the segment j..i, which is now at the beginning, and then reverse the segment i..j,i-1..1.
You get exactly 1..i-1,j..i,j4+1..n as required. However, to be able to do this, we need to be rather
lucky, and have all initial subsequences form the descendants of a single node. Use a Splay tree,
and Splay operations to implement the data structure in O(logn) time per reordering sequences,
and looking up previous and next nodes in the sequence.

(3) (15 points) Let’s consider a very simplified model of a cellular phone network in a sparsely
populated area.

We are given the locations of n base stations, specified as points by, ..., b, in the plane. We are
also given the locations of n cellular phones, specified as points p1, ..., p, in the plane. Finally, we



8 8

4 12 12
° ;9/ ?im — ¥ 8 ?/ )}im
13 éDg}ilgls 7 531911 1315

Figure 2: A balanced binary search tree, and a new tree with the descendants of node 4 reversed.
The reversed order is obtained by making the dark nodes visit their right subtree before the left
subtree in the original tree.

by

Figure 3: The configuration on cell phones and base stations in the example below, and the graph
corresponding to the initial configuration.

are given a range parameter A > 0. We call the set of cell phones fully connected if it is possible to
assign each phone to a base station in such a way that

e Each phone is assigned to a different base station, and

e If a phone at p; is assigned to a base station at b;, then the straight-line distance between
the points p; and b; is at most A.

A standard application of maximum flow computation is to decide if the set of cell phones fully
connected. To do this consider a graph whose nodes are the cell phones and the base stations with
an edge from a cell phone ¢ to a base station b if ¢ is in range from station b. We add a source s
and connect it to each cell phone via an edge of capacity 1, and add a sink ¢ and connect each base
station to t with an edge of capacity 1. See the Figure 3 below for an example. We claim that a
set of n cell phones is fully connected if and only if the maximum flow in this network has value
n. (You do not have to prove this, but you need to understand this construction for the rest of the
problem to make sense.)

Suppose that the owner of the cell phone at point p; decides to go for a drive, traveling con-
tinuously for a total of z units of distance due east. As this cell phone moves, we may have to
update the assignment of phones to base stations (possibly several times) in order to keep the set
of phones fully connected.



Give a polynomial-time algorithm to decide whether it is possible to keep the set of phones
fully connected at all times during the travel of this one cell phone. (You should assume that all
other phones remain stationary during this travel.) If it is possible, you should report a sequence of
assignments of phones to base stations that will be sufficient in order to maintain full connectivity; if
it is not possible, you should report a point on the traveling phone’s path at which full connectivity
cannot be maintained. You should try to make your algorithm run in O(n?) time if possible.

Example: Suppose we have phones at p; = (0,0) and ps = (2,1); we have base stations at
by = (1,1) and by = (3,1); and A = 2. Now consider the case in which the phone at p; moves due
east a distance of 4 units, ending at (4,0). The graph arising in the initial state is depicted on the
Figure 3. Then it is possible to keep the phones fully connected during this motion: We begin by
assigning p; to by and po to by, and we re-assign p; to by and po to by during the motion. (For
example, when p; passes the point (2,0).)

(4) (15 points) In class we considered pre-flow push algorithm, and discussed one particular
selection rule for considering vertices. Here we will explore a different selection rule. We will also
consider variants of the algorithm that terminate early (and find a cut that is close to the minimum
possible.)

(a.) Let f be any preflow. As f is not a valid flow it is possible that the value f°“!(s) is must
higher than the maximum flow value in G. Show however, that f™(t) is a lower bound on the
maximum flow value.

(b.) Consider a preflow f and a compatible labeling h. Recall that the set A = {v : there isan s—v
path in the residual graph G}, and B =V \ A defines an s — ¢ cut for any a preflow f that has a
compatible labeling k. Show that the capacity of the (A, B) cut is equal to cap(A, B) = 3 ,cp ef(v).

Combining (a.) and (b.) allows the algorithm to terminate early and return (A, B) as an
approximately minimum capacity cut, assuming cap(A, B) — f™(t) is sufficiently small. Next we
consider an implementation that will work on decreasing this value by trying to push flow out of
nodes that have a lot of excess.

(c.) The scaling version of the preflow push algorithm maintains a scaling parameter A. We set
A initially as a large power of 2. The algorithm at each step selects a node with excess at least A
with as small height as possible. When no nodes (other than ¢) have excess at least A we divide A
by 2, and continue. Note that this is a valid implementation of the generic preflow-push algorithm.
The algorithm runs in phases. A single phase is while A is unchanged. Note that A starts out at
the largest capacity, and the algorithm terminated when A = 1. So there are at most O(logC')
scaling phases. Show how to implement this variant of the algorithm, so that the running time can
be bounded by O(mn 4+ nlogC + K) if the algorithm has K non-saturating push operations.

(d.) Show that the number of nonsaturating push operations in the above algorithm is at most
O(n?log 0). Recall that O(logC) bounds the number of scaling phases. To bound the number
of non-saturating push operations in a single scaling phase, consider the potential function ¢ =
> vev h(v)ef(v)/A. What is the effect of a non-saturating push on ®? What operation can make
d increase?



