The Design and Analysis of Algorithms Problem Set 2
CS 681 Fall 2003 Due Monday, September 29, 2002

Solve 4 of the following 5 problems. You may solve all 5 for extra credit. We will maintain a,
FAQ for the problem set on the course Web page.

(1) (15 points) Assume you are trying to create a spanning tree connected graph G, where
each edge has a difficulty level (e.g., nodes are points on a map, and the difficulty level of the edge
represents how difficult is the trail hike from one edge end the other). Difficulty levels are expressed
as numbers, with higher number indicating a more difficult edge. Assume G has n nodes and m
edges.

(a) Suppose you decide to view an edge difficult if its difficulty level is at least a. Give an O(m)
time algorithm that finds a spanning tree with as few difficult edges as possible.

(b) Now suppose that you want to distinguish k different levels of difficulties a1 < ... < ag. (E.g.,
old people view edges with difficulty at least o1 difficult, really small kids view edges with difficulty
level at least aq difficult, etc., while experienced hikers only view edges with difficulty level at
least ay, difficult.) You would love to have a single tree that simultaneously has as few edges with
difficulty at least a; as possible for all 7. Does such a tree always exists? If it exists, can you find
it in O(mlogn) time?

(2) (15 points) Let’s go back to the original motivation for the minimum spanning tree problem:
we are given a connected, undirected graph G = (V, E') with positive edge lengths {/.}, and we
want to find a spanning subgraph of it. Now, suppose we are willing to settle for a subgraph
H = (V, F) that is “denser” than a tree, and we are interested in guaranteeing that for each pair
of vertices u, v € V, the length of the shortest u-v path in H is not much longer than the length of
the shortest u-v path in G. By the length of a path P here, we mean the sum of ¢, over all edges e
in P.

Here’s a variant of Kruskal’s algorithm designed to produce such a subgraph.

e First, we sort all the edges in order of increasing length. (You may assume all edge lengths
are distinct.)

e We then construct a subgraph H = (V, F') by considering each edge in order.

e When we come to edge e = (u,v), we add e to the subgraph H if there is currently no u-v
path in H. (This is what Kruskal’s algorithm would do as well.) On the other hand, if there
is a u~v path in H, we let d,, denote the total length of the shortest such path; again, length
is with respect to the values {¢.}. We add e to H if 30, < dy,.

In other words, we add an edge even when u and v are already in the same connected component,
provided that the addition of the edge reduces their shortest-path distance by a sufficient amount.
Let H = (V. F) be the subgraph of G returned by the algorithm.

(a) Prove that for every pair of nodes u,v € V, the length of the shortest u-v path in H is at
most 3 times the length of the shortest u-v path in G.

(b) Despite its ability to approximately preserve shortest-path distances, the subgraph H pro-
duced by the algorithm cannot be too dense. Let f(n) denote the maximum number of edges that



can possibly be produced as the output of this algorithm, over all n-node input graphs with edge
lengths. Prove that
lim M = 0.

n—oo n2

Hint: can you show that the minimum degree in this graph cannot be bigger than \/n?

(3) (15 points) Consider a directed graph G = (V, E) with a root r € V and nonnegative costs
on the edges. In this problem we consider variants of the min-cost arborescence algorithm.

(a) The algorithm discussed in class works as follows: we modify the costs, consider the subgraph
of zero-cost edges, look for a directed cycle in this subgraph, and contract it (if one exists). Argue
briefly that instead of looking for cycles, we can instead identify and contract strongly connected
components of this subgraph.

(b) In the course of the algorithm, we defined y, to be the min cost of an edge entering v, and
we modified the costs of all edges e entering node v to be ¢, = c. — y,. Suppose we instead use
the following modified cost: ¢2 = max(0, ¢, — 2y,). This new change is likely to turn more edges 0
cost. Suppose, now we find an arborescence T of 0 cost. Prove that this T" has cost at most twice
the cost of the minimum cost arborescence in the original graph.

(c) Assume you do not find an arborescence of 0 cost. Contract all O-cost strongly connected
components, and recursively apply the same procedure on the resulting graph till an arborescence
is found. Prove that this T" has cost at most twice the cost of the minimum cost arborescence in
the original graph.

(4) (15 points) You are in charge of CluNet, a company working to build a service that will
provide connectivity via a fiber-optic cable. They modeled the problem as a minimum cost spanning
tree problem. There are n nodes that they need to connect, and they determined a set of m edges
that they consider building (the other edges are either impossible to build, or are prohibitively
expensive). These nodes and possible connections form an undirected graph G' = (V, E), and each
possible edge e € E comes with a cost ¢, > 0. They have also determined a minimum cost spanning
tree T™ in this graph. However, to build the connection corresponding to edge e they need to enter
negotiations with authorities in the region where the edge is traveling. Before they start these
negotiations, they would like to know how important each edge is for the tree.

We define the wvitality of an edge e € T™ as the increase in the cost of the MST caused by
deleting edge e from the graph (i.e., the increased cost if the negotiations fail). The vitality is oo
is after deleting edge e the graph is no longer connected. For example, in the graph below, the
MST of the dark edges costs 3, and each edge in the tree has vitality .6 as any single edge can be
replaced by the edge (a,d) at a .6 increase in the total cost.



(a) Assume you are given an MST T in the above graph G. Give an algorithm that computes the
vitality of a given edge e € T™ in O(m) time.

(b) Assume for now that the MST is a path. Give an algorithm that processes the path left to
right, uses a priority queue (say a variant of a binomial heap) and computes the vitality of all edge
of the path in O(mlogn) time.

(c) Give an algorithm that computes the vitality of all edge of the MST in O(mlogn) time.
Hint: One can extend the solution from part (b) to trees. Alternatively, you can follow Kruskal’s
algorithm for MST, and compute vitalities at the times Kruskal encounters the alternate edges.

(5) (15 points) Consider the Fibonacci heap data structure from Wednesday’s class (Sept 17th).
Here we consider a delayed version of this data structure. It is implemented just like the regular
Fibonacci heap with one change: we cut a node only after its third child is cut out (rather than the
second). The cutting operation may cause cascading cuts up the tree as before.

Does this delayed version of the Fibonacci heap still have the same asymptotic cost for each
operation as before? Either show that a sequence of a inserts, b delete-mins, ¢ merges, and d
decrements still costs O(a 4+ blogn + ¢ + d) time, or show that an arbitrary long sequence of
operations can violate this bound.



