The Design and Analysis of Algorithms Final
CS 681 Fall 2002 Due Friday, December 12 at 4pm, 2003

The final is individual work. Please do not discuss these questions with anyone expect with
Swamy, Tom and Eva. We will do our best to answer your emails promptly during the week, and
also will have office hours every day (see Web).

In writing down your solutions you may use any algorithm we discussed in class without writ-
ing out the details of the algorithm. In proving a problem NP-complete, you may use the NP-
completeness of any of the problems that we proved NP-complete in class or as a homework.
Please do not search the Web for answers. You may use the course packet, Kozen’s book, hand-
outs, or any of the recommended books. If you use books other than the course packet, or Kozen’s
book in your solutions, please give clear reference to the source you used.

(1) Suppose you are managing a system in which asynchronous processes make use of shared
resources. Thus, the system has a set of n processes and a set of m resources. At any given point
in time, each process specifies a set of resources that it requests to use. Each resource might be
requested by many processes at once; but it can only be used by a single process at a time. Your
job is to allocate resources to processes that request them. If a process is allocated all the resources
it requests, then it is active; otherwise it is blocked. You want to perform the allocation so that as
many processes as possible are active. Thus, we phrase the RESOURCE RESERVATION problem as
follows: given a set of process and resources, the set of requested resources for each process, and a
number k, is it possible to allocate resources to processes so that at least k processes will be active?

Consider the following list of problems, and for each problem either give a polynomial time
algorithm or prove that the problem is NP-complete.

(a) The general RESOURCE RESERVATION problem defined above.
(b) The special case of the problem when k=2.

(¢) The special case of the problem when there are two types of resources, say rooms and equip-
ments, each process requires at most one resource of each type.

(d) The special case of the problem when each resource is requested by at most two processes.

(2) Some of your friends with jobs out West decide they really need some extra time each day
to sit in front of their laptops, and the morning commute from Woodside to Palo Alto seems like
the only option. So they decide to car-pool to work.

Unfortunately, they all hate to drive, so they want to make sure that any car-pool arrangement
they agree upon is fair, and doesn’t overload any individual with too much driving. Some sort of
simple round-robin scheme is out, because none of them goes to work every day, and so the subset
of them in the car varies from day to day.

Here’s one way to define fairness. Let the people be labeled S = {p1,...,pr}. We say that
the total driving obligation of p; over a set of days is the expected number of times that p; would



have driven, had a driver been chosen uniformly at random from among the people going to work
each day. More concretely, suppose the car-pool plan lasts for d days, and on the i** day a subset
S; € S of the people go to work. Then the above definition of the total driving obligation A; for p;
can be written as A; = Zilpje S; ﬁ Ideally, we'd like to require that p; drives at most A; times;
unfortunately, A; may not be an integer.

So let’s say that a driving schedule is a choice of a driver for each day i.e. a sequence
Diys Digs - - - Piy With p;, € S¢ — and that a fair driving schedule is one in which each p; is chosen
as the driver on at most [A;] days.

(a) Give an algorithm to compute a fair driving schedule, if one exists, with running time
polynomial in £ and d.

(b) Prove that for any sequence of sets Si, ..., Sq, there exists a fair driving schedule.

(c) One could expect k to be a much smaller parameter than d (e.g. perhaps k = 5 and d = 365).
So it could be worth reducing the dependence of the running time on d even at the expense of a
much worse dependence on k. Give an algorithm to compute a fair driving schedule whose running
time has the form O(f(k) - d), where f(-) can be an arbitrary function. (The function f(k) does
not have to be polynomial in k.)

(3) We say that a graph G = (V, F) is a outerplanar graph if it consists of the vertices of a
convex n-gon in the plane all edges drawn as straight lines in the plane with no edges crossing
in other words, if it can be drawn in the plane as follows.

The vertices are all placed on the boundary of a convex set in the plane (we may assume on the
boundary of a circle), with each pair of consecutive vertices on the circle joined by an edge. The
remaining edges are then drawn as straight line segments through the interior of the circle, with
no pair of edges crossing in the interior. An outerplanar graph is pictured below.

Prove that every outerplanar graph has a tree decomposition of width at most 2, and describe
an efficient algorithm to construct such a decomposition. Hint: recall that cycles have a tree
decomposition of width at most 2. In the tree decomposition of the cycle we discussed in class,
each edge of the cycle is contained in exactly one node of the decomposition tree. You may want
to construct a tree decomposition for outerplanar graphs where each edge on the outside n-gon is
contained in exactly one node of the decomposition.

(4) Assume you have n balls and n bins, and each ball is placed in a bin selected independently at
random (with each bin equally likely). Throughout this problem use the approximation (1—1/n)" =~
1/e whenever it is useful.



(a.)

(b.)

Prove that the expected number of empty bins is approaches n/e for large n. Hint: remember
that expectation is linear.

Assume that you have n jobs and n machines, and each job selects a machine independently
at random (with each machine equally likely). Assume that if a machine is selected by more
than one job, it will do the first job, and reject the rest. What is the expected number of
rejected jobs?

Now assume in the above job-machine example each machine will do the first two jobs, and
reject the rest if more than two jobs are assigned to it. What is the expected number of
rejected jobs now?



