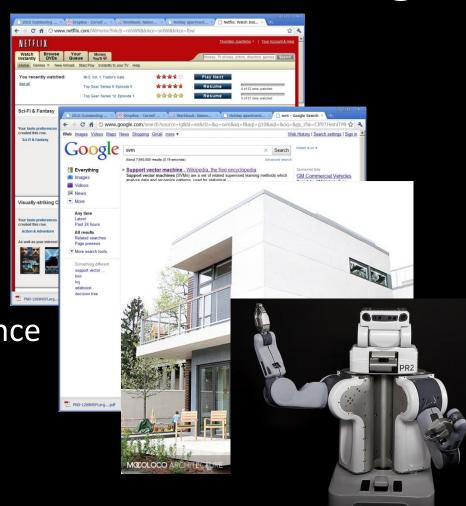
Online Structured Prediction via Coactive Learning

P. Shivaswamy, T. Joachims

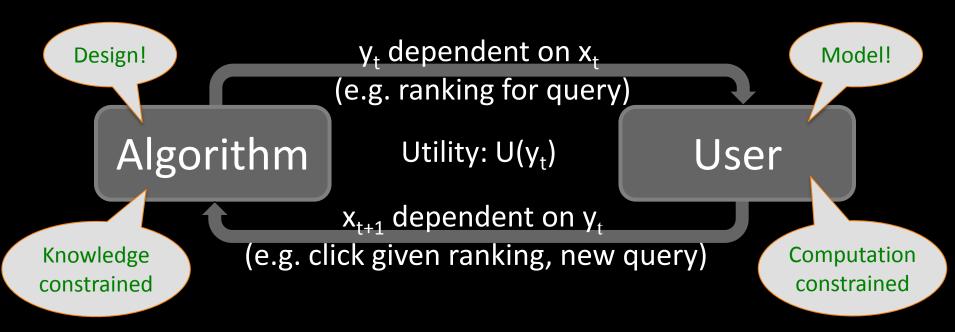
Department of Computer Science
Cornell University

User-Facing Machine Learning

- Examples
 - Search Engines
 - Netflix
 - Smart Home
 - Robot Assistant
- Learning
 - Gathering and maintenance of knowledge
 - Measure and optimize performance
 - Personalization



Interactive Learning System

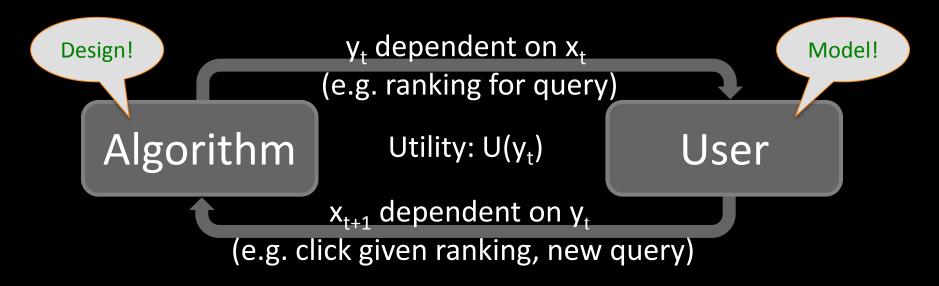


- Observed Data ≠ Training Data
 - Observed data is user's decisions
 - Need to understand decision process to infer feedback
- Decisions

 Feedback

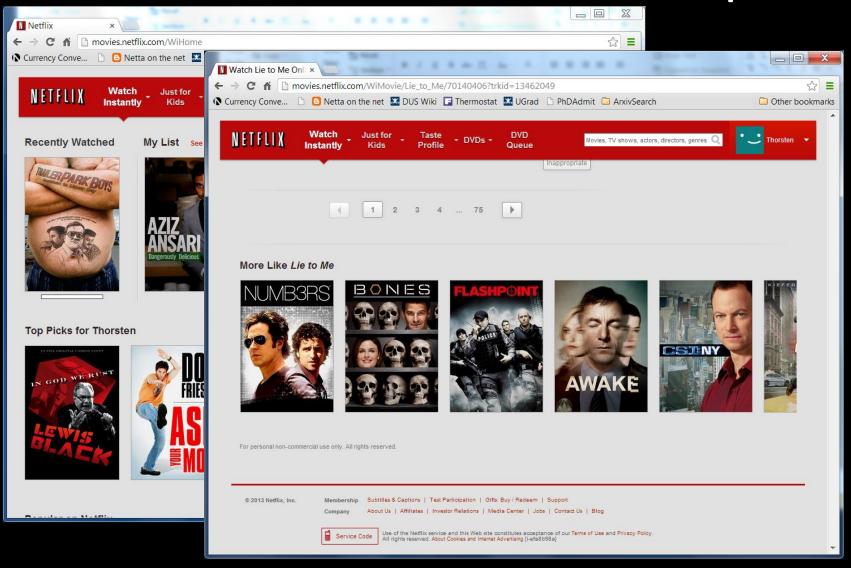
 Learning Algorithm

Interactive Learning System

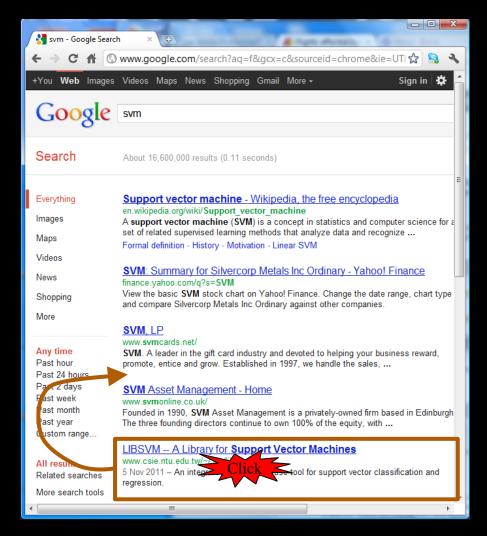


- Observed Data ≠ Training Data
- Decisions → Feedback → Learning Algorithm
 - Model the users decision process to extract feedback
 → Pairwise comparison test P(y_i > y_j | U(y_i)>U(y_j))
 - Design learning algorithm for this type of feedback
 → Dueling Bandits problem and algorithms (e.g. IF1 and IF2)

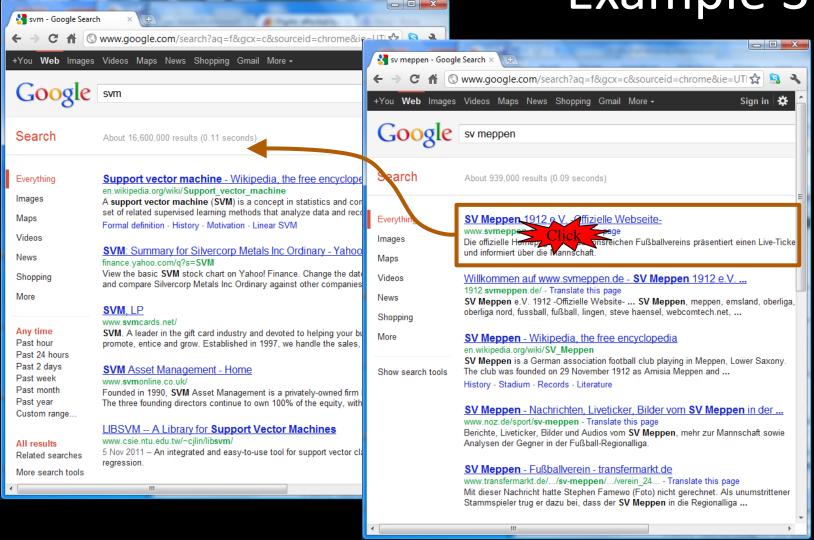
Who does the exploring? Example 1



Who does the exploring? Example 2

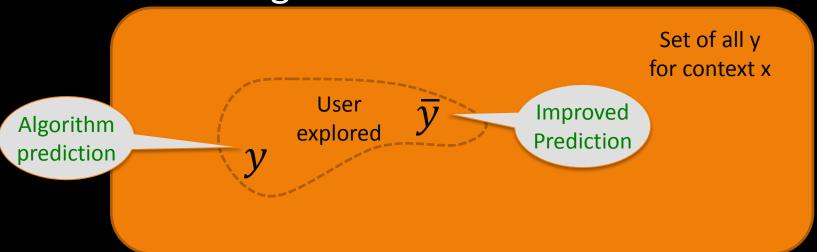


Who does the exploring? Example 3



Coactive Feedback Model

Interaction: given x



- Feedback:
 - Improved prediction \bar{y}_t $U(\bar{y}_t|x_t) > U(y_t|x_t)$
 - Supervised learning: optimal prediction y_t^* $y_t^* = \operatorname{argmax}_y U(y|x_t)$

Machine Translation

 X_t

We propose Coactive Learning as a model of interaction between a learning system and a human user, where both have the common goal of providing results of maximum utility to the user.

yt

Wir schlagen vor, koaktive Learning als ein Modell der Wechselwirkung zwischen einem Lernsystem und menschlichen Benutzer, wobei sowohl die gemeinsame Ziel, die Ergebnisse der maximalen Nutzen für den Benutzer.

Wir schlagen vor, koaktive Learning als ein Modell der Wechselwirkung des Dialogs zwischen einem Lernsystem und menschlichen Benutzer, wobei sowohl die beide das gemeinsame Ziel haben, die Ergebnisse der maximalen Nutzen für den Benutzer zu liefern.

Coactive Learning Model

- Unknown Utility Function: U(y|x)
 - Boundedly rational user
- Algorithm/User Interaction:
 - LOOP FOREVER
 - Observe context x (e.g. quere
 - Learning algorithm resents y (e.g. ranking)
 - User returns y with $U(\bar{y}|x) > U(y|x)$
 - Regret = Regret + [U(y*|x) U(y|x)]

Never revealed:

- cardinal feedback
- optimal y*

Loss for prediction ŷ

Optimal prediction y*=argmax_v { U(x,y) }

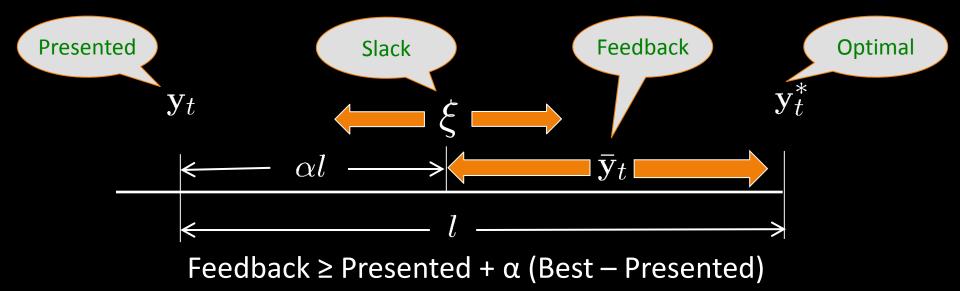
- Relationship to other online learning models
 - Expert setting: receive U(y|x) for all y
 - Bandit setting: receive U(y|x) only for selected y
 - Dueling bandits: for selected y and \bar{y} , receive $U(\bar{y}|x) > U(y|x)$
 - Coactive setting: for selected y, receive \bar{y} with $U(\bar{y}|x) > U(y|x)$

Preference Perceptron: Algorithm

- Model
 - Linear model of user utility: $U(y|x) = w^T \phi(x,y)$
- Algorithm
 - Set $w_1 = 0$
 - FOR t = 1 TO T DO
 - Observe x_t
 - Present $y_t = \operatorname{argmax}_{y} \{ w_t^T \phi(x_t, y) \}$
 - Obtain feedback y
 _t
 - Update $W_{t+1} = W_t + \phi(X_t, \overline{y}_t) \phi(X_t, y_t)$
- This may look similar to a multi-class Perceptron, but
 - Feedback \bar{y}_t is different (not get the correct class label)
 - Regret is different (misclassifications vs. utility difference)

$$\frac{1}{T} \sum_{t=1}^{T} [U(y_t^*|x) - U(y_t|x)]$$

<u>α-Informative</u> Feedback



• Definition: Strict α -Informative Feedback

$$U(\mathbf{x}_t, \bar{\mathbf{y}}_t) \ge U(\mathbf{x}_t, \mathbf{y}_t) + \alpha(U(\mathbf{x}_t, \mathbf{y}_t^*) - U(\mathbf{x}_t, \mathbf{y}_t))$$

• Definition: α -Informative Feedback

Slacks both pos/neg

$$U(\mathbf{x}_t, \bar{\mathbf{y}}_t) = U(\mathbf{x}_t, \mathbf{y}_t) + \alpha(U(\mathbf{x}_t, \mathbf{y}_t^*) - U(\mathbf{x}_t, \mathbf{y}_t)) - \xi_t$$

Preference Perceptron: Regret Bound

- Assumption
 - $U(y|x) = w^{T} \phi(x,y)$, but w is unknown
- Theorem

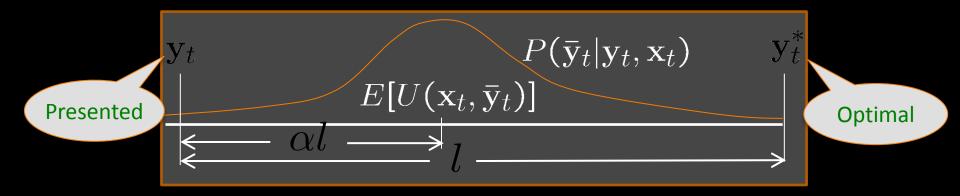
For user feedback \bar{y} that is α -informative, the average regret of the Preference Perceptron is bounded by

$$\frac{1}{T} \sum_{t=1}^{T} \left[U(\mathbf{y}_t^* | \mathbf{x}) - U(\mathbf{y}_t | \mathbf{x}) \right] \le \frac{1}{\alpha T} \sum_{t=1}^{T} \xi_t + \frac{2R \| \mathbf{w} \|}{\alpha \sqrt{T}}$$

- Other Algorithms and Results
 - Feedback that is α -informative only in expectation
 - General convex loss functions of $U(y^*|x)-U(\hat{y}|x)$
 - Regret that scales log(T)/T instead of T^{-0.5} for strongly convex

→ zero

Expected α-Informative Feedback



• Definition: Expected α -Informative Feedback $E[U(\mathbf{x}_t, \bar{\mathbf{y}}_t)] \ge U(\mathbf{x}_t, \mathbf{y}_t) + \alpha(U(\mathbf{x}_t, \mathbf{y}_t^*) - U(\mathbf{x}_t, \mathbf{y}_t)) - \bar{\xi}_t$

Theorem: Coactive Pref Perceptron achieves

$$E[REG_T] \le \frac{1}{\alpha T} \sum_{t=1}^{T} \bar{\xi}_t + \frac{2R||w||}{\alpha \sqrt{T}}$$

Lower Bound

• Theorem: For any coactive learning algorithm A with linear utility, there exist \mathbf{x}_t , objects Y, and \mathbf{w} such that REG_T of A in T steps is $\Omega(1/T^{0.5})$.

Preference Perceptron: Experiment

Experiment:

Automatically optimize Arxiv.org Fulltext Search

Analogous to DCG

Model

• Utility of ranking y for query x: $U_t(y|x) = \sum_i \gamma_i w_t^T \phi(x, y^{(i)})$ [~1000 features] • Omputing argmax ranking: sort by $w_t^T \phi(x, y^{(i)})$

Feedback

Construct y

t from y

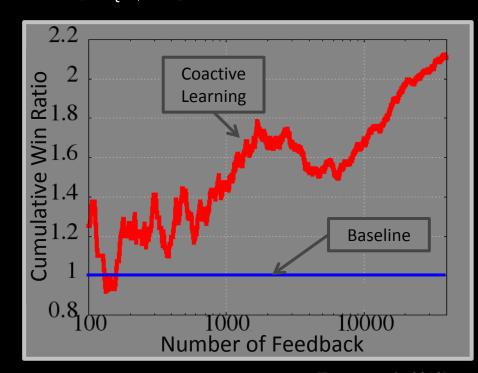
t by moving clicked links one position higher.

Baseline

• Handtuned W_{base} for $U_{base}(y|x)$

Evaluation

 Interleaving of ranking from U_t(y|x) and U_{base}(y|x)

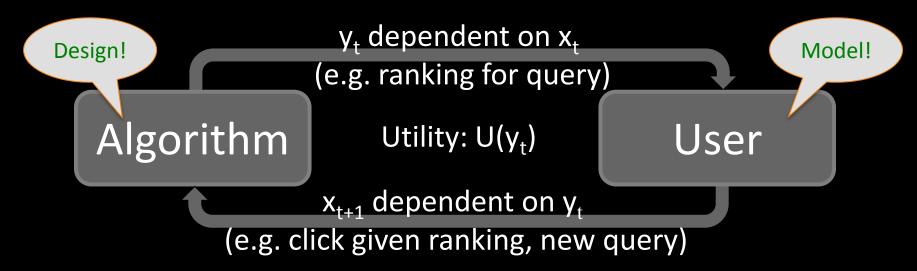


Related Models

- Ordinal Regression (Crammer & Singer 2001)
 - Examples: (x_i,r_i) , r_i is numeric rank
- Pair Preference Learning (Herbrich et al., 1999; Freund et al. 2003)
 - Examples: (x_i, x_i')
 - i.i.d. assumption, batch
- Ranking (Joachims, 2002; Liu 2009)
 - Examples: (x_i,y_i*),
 y_i* is optimal ranking
 - Structured Prediction, listwise ranking

- Expert Model
 - Cardinal feedback for all arms / optimal $\mathbf{y_i}^*$
- Bandit Model
 - Cardinal feedback only for chosen arm
- Dueling Bandit Model (Yue et al. 2009; Yue, Joachims 2009)
 - Preference feedback between two arms chosen by algorithm

Summary and Conclusions



	Utility model	Decision model	Actions y _t / Experiment	Feedback	Exploration	Regret
Dueling Bandits	Ordinal	Noisy rational	Comparison pairs	Noisy comparison	Algorithm	Lost comparisons
Coactive Learning	Linear	Bounded rational	Structured object	α -informa- tive \bar{y}	User	Cardinal utility
	:	:	•	•	:	•