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Adaptive Information Systems 

• Retrieval Function: f(q)  r 

– Input: q (query) 

– Output: r (ranking by relevance) 

• Conventional Systems 

– One-size-fits-all 

– Hand-tuned and static 

retrieval function 

• Room for Improvement 

– Different users need different 

retrieval functions 

– Different collections need 

different retrieval functions 

• Machine Learning 

– Learn improved retrieval 

functions 
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Motivation and Outline 
• Setup 

– Corpus of documents [known] 

– Distribution of users and/or queries on corpus [unknown] 

– Set of retrieval functions {f1,…,fK} [design choice] 

– Each retrieval function fi has utility U(fi) [unknown] 

• Question 1: How can one measure utility? 

– Cardinal vs. ordinal utility measurements 

– Eliciting implicit feedback through interactive experiments 

• Question 2: How to efficiently find fi  with max utility? 

– Efficiently  minimizing regret + computationally efficient 

– Minimize exposure to suboptimal results during learning 

– Dueling Bandits Problem with efficient algorithm 



Approaches to Implicit Utility Elicitation 

• Approach 1: Absolute Metrics (cardinal) 

– Do metrics derived from observed user behavior provide 

absolute feedback about retrieval quality of f? 

– For example: 

• U(f) ~ numClicks(f) 

• U(f) ~ 1/abandonment(f) 

• Approach 2: Paired Comparison Tests (ordinal) 

– Do paired comparison tests provide relative preferences 

between two retrieval functions f1 and f2? 

– For example: 

• f1 Â f2  pairedCompTest(f1, f2) > 0 



Paired Comparisons: Balanced Interleaving 

1.  Kernel Machines  
 http://svm.first.gmd.de/ 
2. Support Vector Machine 
 http://jbolivar.freeservers.com/ 
3. An Introduction to Support Vector Machines 
 http://www.support-vector.net/ 
4. Archives of SUPPORT-VECTOR-MACHINES ... 
 http://www.jiscmail.ac.uk/lists/SUPPORT... 
5. SVM-Light Support Vector Machine  
 http://ais.gmd.de/~thorsten/svm light/ 

1.  Kernel Machines  
 http://svm.first.gmd.de/ 
2. SVM-Light Support Vector Machine  
 http://ais.gmd.de/~thorsten/svm light/ 
3. Support Vector Machine and Kernel ... References 
 http://svm.research.bell-labs.com/SVMrefs.html 
4. Lucent Technologies: SVM demo applet  
 http://svm.research.bell-labs.com/SVT/SVMsvt.html 
5. Royal Holloway Support Vector Machine  
 http://svm.dcs.rhbnc.ac.uk 
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 f1(u,q)  r1 f2(u,q)  r2 

Interleaving(r1,r2) 

(u=tj,q=“svm”) 

Interpretation: (r1 Â r2) ↔ clicks(topk(r1)) > clicks(topk(r2)) 

 

 

Invariant:  

For all k, top k of 

balanced interleaving is 

union of top k1 of r1 and 

top k2 of r2 with k1=k2 ±1. 

[Joachims/01] 



Balanced Interleaving: Results 
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Paired Comparison Tests: 

Summary and Conclusions 
 

• All interleaving experiments reflect 

the expected order. 
 

• All differences are significant after 

one month of data. 
 

• Analogous results for Yahoo Search 

and Bing. 
 

• Low impact (always some good 

results). 
 



Motivation and Outline 
• Setup 

– Corpus of documents [known] 

– Distribution of users and/or queries on corpus [unknown] 

– Set of retrieval functions {f1,…,fK} [design choice] 

– Each retrieval function fi has utility U(fi) [unknown] 

• Question 1: How can one measure utility? 

– Cardinal vs. ordinal utility measurements 

– Eliciting implicit feedback through interactive experiments 

• Question 2: How to efficiently find fi  with max utility? 

– Efficiently  minimizing regret + computationally efficient 

– Minimize exposure to suboptimal results during learning 

– Dueling Bandits Problem with efficient algorithm 



Evaluating Many Retrieval Functions 

Task:  
Find f* 2 F that gives best retrieval quality over P(u,q)? 

  

Distribution P(u,q) 

of users u, queries q 

Retrieval Function 1 

 f1(u,q)  r1 

Retrieval Function 2 

 f2(u,q)  r2 

Retrieval Function 2 

 f2(u,q)  r2 

Retrieval Function 2 

 f2(u,q)  r2 

Retrieval Function 2 

 f2(u,q)  r2 

Retrieval Function 2 

 f2(u,q)  r2 

Retrieval Function 2 

 f2(u,q)  r2 

Retrieval Function n 

 fn(u,q)  rn 



Tournament 

• Can you design a tournament that reliably identifies the 

correct winner? 

 Noisy Sorting/Max Algorithms: 

• [Feige et al.]: Triangle Tournament Heap O(n/2 log(1/)) with prob 1- 

• [Adler et al., Karp & Kleinberg]: optimal under weaker assumptions 

 

X1 X2 X3 X4 X5 X6 X7 X8 

X7 X5 X3 X1 

X5 X1 

X1 



Problem: Learning on Operational System 

• Example: 

– 4 retrieval functions: B > G >> Y > A 

– 10 possible pairs for interactive experiment 

• (B,G)  low cost to user 

• (B,Y)  medium cost to user 

• (Y,A)  high cost to user 

• (B,B)  zero cost to user 

• … 

• Miniming Regret 

– Algorithm gets to decide on the sequence of pairwise tests 

– Don’t present “bad” pairs more often than necessary 

– Trade off (long term) informativeness and (short term) cost 

 Dueling Bandits Problem 



Regret for the Dueling Bandits Problem 

• Given: 

– A finite set H of candidate retrieval functions f1…fK 

– A pairwise comparison test f Â f’ on H with P(f Â f’)  

• Regret:  

– R(A) = t=1..T [P(f* Â ft) + P(f* Â ft’) - 1] 

– f*: best retrieval function in hindsight (assume single f* exists) 

– (f,f’): retrieval functions tested at time t 

[with Yisong Yue, Josef Broder, Bobby Kleinberg] 

Example: 
 

Time Step: t1     t2   …  T 

Comparison: (f9,f12)  f9   (f5,f9)  f5    (f1,f3)  f3 

Regret:   P(f*Âf9)+P(f*Âf12)-1  P(f*Âf5)+P(f*Âf9)-1 

   = 0.9    = 0.78    = 0.01 



Tournament 

• Can you design a tournament that has low regret? 

 Don’t know! 

 

X1 X2 X3 X4 X5 X6 X7 X8 

X7 X5 X3 X1 

X5 X1 

X1 



Algorithm: Interleaved Filter 1 

• Algorithm 

  InterleavedFilter1(T,W={f1…fK}) 

• Pick random f’ from W 

• =1/(TK2) 

• WHILE |W|>1 

– FOR f 2 W DO  

» duel(f’,f) 

» update Pf  

– t=t+1  

– ct=(log(1/)/t)0.5 

– Remove all f from W with Pf  < 0.5-ct [WORSE WITH PROB 1-] 

– IF there exists f’’ with Pf’’ > 0.5+ct   [BETTER WITH PROB 1-] 

» Remove f’ from W 

» f‘=f’’; t=0 

• UNTIL T: duel(f’,f’) 
[with Yisong Yue, Josef Broder, Bobby Kleinberg] 

f1 f2 f’=f3 f4 f5 

0/0 0/0 0/0 0/0 

f1 f2 f’=f3 f4 f5 

8/2 7/3 4/6 1/9 

f1 f2 f’=f3 f4 

13/2 11/4 7/8 XX 

f’=f1 f2 f4 

0/0 0/0 XX 0/0 XX 
EXPLORE 

+ 

EXPLOIT 

EXPLOIT 

MATCH 

ROUND 



IF1: Main Result 

• Theorem: The expected regret of IF1 is 

 

 

 

where 12=P(f1 Â f2) – 0.5 and K is the number of bandits. 

• Assumptions: 

– Strong Stochastic Transitivity: i,k ≥ max{i,j, j,k}  

– Stochastic Triangle Inequality: i,k ≤ i,j+j,k  

– -winner exists 



Assumptions 

• Preference Relation: fi Â fj  P(fi beats fj) = 0.5+i,j > 0.5 
 

• Weak Stochastic Transitivity: fi Â fj and fj Â fk  fi Â fk  
 

  f1 Â f2 Â f3 Â f4 Â f5 Â f6 Â … Â fK  
 

• Strong Stochastic Transitivity: i,k ≥ max{i,j, j,k} 
 

   1,4 ≥ 2,4 ≥ 3,4 ≥ 0.5 ≥ 5,4 ≥ 6,4 ≥ … ≥ K,4  
 

 

• Stochastic Triangle Inequality: fi Â fj Â fk  i,k ≤ i,j+j,k 

 

   1,2 = 0.01 and 2,3 = 0.01  1,3 ≤ 0.02  
 

• -Winner exists:  = maxi{ P(f1 beats fi)-0.5 } = 1,2 > 0   

 



IF1: Proof Outline 

 

 

1. The probability that IF1 returns suboptimal bandit is 

less than 1/T 

a) Probability that a match has wrong winner is at most  

=1/(T K2). 

b) Upper bound on the number of matches:   

2. Bound expected regret E[RT
IF1] of IF1 

a) Bound number of duels in a match: O(1/2
i,j log(TK)) whp 

b) Bound regret per match 

c) Bound the number of rounds before IF1 terminates 

f1 … fK-2 fK-1 f’=fK 

0/0 0/0 0/0 0/0 

f1 … fK-2 f’=fK-1 fK 

0/0 0/0 0/0 0/0 XX 

f1 … f’=fK-2 fK-1 fK 

0/0 0/0 0/0 XX XX 

K2 



Lemma 1a: Probability that a Match has 

Wrong Winner is at most =1/(T K2) 
• Proof: 

– Reminder: Confidence interval ct=(log(1/)/t)0.5 

– If we declare the wrong winner between fi and fj, then 

observed P
t
 must have been outside confidence interval. 

– P(|Pt – E[Pt]| ≥ ct) ≤ 2 exp(-2 t ct
2) = 22 = 2/(T2 K4) 

– Union bound over all time steps: 2T/(T2 K4) ≤ 1/(T K2) =  



IF1: Proof Outline 

 

 

1. The probability that IF1 returns suboptimal bandit is 

less than 1/T 

a) Probability that a match has wrong winner is at most  

=1/(T K2). 

b) Upper bound on the number of matches:  K2 

 

2. Bound expected regret E[RT
IF1] of IF1 

a) Bound number of duels in a match 

b) Bound regret per match 

c) Bound the number of rounds before IF1 terminates 



Lemma 2a:  

Bound Number of Duels in a Match 
 

– Consider: match between fi and fj with P(fi beats fj) = 0.5 + i,j 

– If match is t duels long, then Pt – ct ≤ 0.5, otherwise the match 

would terminate. 

– P(n > t) ≤ P(Pt – ct ≤ 0.5) = P(E[Pt] – Pt ≥ i,j – ct)  

– For any m ≥ 4 and t=(m log(TK2)/2
i,j), we have ct ≤ 0.5 2

i,j.  

– Hoeffding bound  O(1/2
i,j log(TK)) whp 



IF1: Proof Outline 

 

 

1. The probability that IF1 returns suboptimal bandit is 

less than 1/T 

a) Probability that a match has wrong winner is at most  

=1/(T K2). 

b) Upper bound on the number of matches:  K2 

 

2. Bound expected regret E[RT
IF1] of IF1 

a) Bound number of duels in a match: O(1/2
i,j log(TK)) whp 

b) Bound regret per match 

c) Bound the number of rounds before IF1 terminates 



Lemma 2b: Bound Regret per Match 

• Proof: 

– Let  current incumbant f’=fj:  

– Note: no match involving fj is longer than O(1/2
1,j log(TK)) 

whp (Lemma 2a) 

– Each duel(fi,fj) incurs (1,j+1,i) regret: 

• Case fi Â fj: Then 1,j + 1,i ≤ 2 1,j (SST) and regret is bounded 

21,j O(1/2
1,j log(TK)) = O(1/1,j log(TK)) ≤ O(1/1,2 log(TK)) 

• Case fi Á fj and j,i ≤ 1,j: Then 1,j + 1,i ≤ 1,j + 1,j + j,i ≤ 3 1,j  

due to STI.  

31,j O(1/2
1,j log(TK)) = O(1/1,j log(TK)) ≤ O(1/1,2 log(TK)) 

• Case fi Á fj and j,i > 1,j: Then 1,j + 1,i ≤ 1,j + 1,j + j,i ≤ 3 j,i at 

most O(1/i,j log(TK)) duels. 

 3j,i O(1/2
j,i log(TK)) = O(1/1,j log(TK)) ≤ O(1/1,2 log(TK)) 

f1 … f’=fj … fK 

0/0 0/0 0/0 0/0 

f1 fj fi 

f1 fj fi 

f1 fj 
fi 



IF1: Proof Outline 

 

 

1. The probability that IF1 returns suboptimal bandit is 

less than 1/T 

a) Probability that a match has wrong winner is at most  

=1/(T K2). 

b) Upper bound on the number of matches:  K2 

 

2. Bound expected regret E[RT
IF1] of IF1 

a) Bound number of duels in a match: O(1/2
i,j log(TK)) whp 

b) Bound regret per match: O(1/1,2 log(TK)) whp 

c) Bound the number of rounds before IF1 terminates 



Lemma 2c: Bound the Number of Rounds 

before IF1 Terminates 
 

– Random walk: Xi=1 if fi becomes incumbant, Xi=0 else 

 

 

 

 Xi = number of steps in random walk = number of rounds 

– Note: If IF1 does not make a mistake, then only forward steps. 

– Strong Stochastic Transitivity: 8 i: pi+1,1 ≥ pi+1,2 ≥ … ≥ pi+1,i 

 Worst case: pi+1,1 = pi+1,2 = … = pi+1,i = 1/i 

  

 

–  Xi = O(log K) rounds whp 

 

X1 X2 X3 XK 
… … Xi 

pi+1,1 
pi+1,3 pi+1,2 

X1 X2 X3 X4 X5 X6 X7 X8 
… XK 

Xi+1 



IF1: Proof Outline 

 

 

1. The probability that IF1 returns suboptimal bandit is 

less than 1/T 

a) Probability that a match has wrong winner is at most  

=1/(T K2). 

b) Upper bound on the number of matches:  K2 

 

2. Bound expected regret E[RT
IF1] of IF1 

a) Bound number of duels in a match: O(1/2
i,j log(TK)) whp 

b) Bound regret per match: O(1/1,2 log(TK)) whp 

c) Bound rounds before IF1 terminates: O(log K) whp 

Theorem: IF1 incurs expected regret bounded by 
 



Lower Bound 

• Theorem: Any algorithm for the dueling bandits problem 

has regret 

 

 

 

 

• Proof: [Karp/Kleinberg/07][Kleinberg/etal/07] 

• Intuition: 

– Magically guess the best bandit, just verify guess 

– Worst case: 8 fi Â fj: P(fi Â fj)=0.5+ 

– Lemma 2a: Need O(1/2 log T) duels to get 1-1/T confidence. 



Algorithm: Interleaved Filter 2 
• Algorithm 

  InterleavedFilter1(T,W={f1…fK}) 

• Pick random f’ from W 

• =1/(TK2) 

• WHILE |W|>1 

– FOR b 2 W DO  

» duel(f’,f) 

» update Pf  

– t=t+1  

– ct=(log(1/)/t)0.5 

– Remove all f from W with Pf  < 0.5-ct [WORSE WITH PROB 1-] 

– IF there exists f’’ with Pf’’ > 0.5+ct   [BETTER WITH PROB 1-] 

» Remove f’ from W 

» Remove all f from W that are empirically inferior to f’ 

» f‘=f’’; t=0 

• UNTIL T: duel(f’,f’) 
[with Yisong Yue, Josef Broder, Bobby Kleinberg] 

f1 f2 f’=f3 f4 f5 

0/0 0/0 0/0 0/0 

f1 f2 f’=f3 f4 f5 

8/2 7/3 4/6 1/9 

f1 f2 f’=f3 f4 

13/2 11/4 7/8 XX 

f’=f1 f2 f4 

0/0 0/0 XX XX XX 



Why is it Safe to Remove Empirically 

Inferior Bandits? 
• Lemma: Mistakenly pruning a bandit has probability at most 

=1/(T K2). 

• Proof: 

– Mistake: fp Â fw Â fi (pruned: fp, winner: fw, incumbant: fi) 

– Bn,w,p: Given w is winner after n duels, fp mistakenly pruned. 

– To show: P(Bn,w,p) ≤ 1- for all n and w.  

– Suppose P(bw Â bi) =  and given Bn,w,p : P(bp Â bi) ≥ . 

 E(Sw,i+Si,p) ≤ n. 

– Duels won Sw,i – 0.5n < sqrt(n log(1/)) and Si,p > 0.5n 

 Sw,i + Si,p – n > sqrt(n log(1/)) 

– Hoeffding P(Sw,i + Si,p – n > sqrt(n log(1/)) ≤  



Bound the Number of Matches of IF2 

• Lemma: Assuming IF2 is mistake free, then it plays O(K) 

matches in expectation. 

• Intuition: 

 

X1 X2 X3 X4 X5 X6 X7 X8 
… 



Regret Bound for IF2 

 

 

• Lemma: Mistakenly pruning a bandit has probability at 

most =1/(T K2). 

• Lemma: Assuming IF2 is mistake free, then it plays O(K) 

matches in expectation. 

 
Theorem: IF2 incurs expected regret bounded by 

 



Experiments: Synthetic Data 
• Lower-Bound data: 8 fi Â fj: P(fi Â fj)=0.5+ 

 

 

 

 

 

• Bradley-Terry data 



Experiment: Simulated Web Search 

• Microsoft Web Search Data (Chris Burges) with manual 

relevance assessment 

• Feedback fi Â fj:  

– Draw query at random 

– Preference fi Â fj (probabilistically) based on NDCG 

difference of rankings produced by fi and fj 



Why not a log-Gap? 

• To achieve log-gap: 

– Log number of rounds need to be played 

– Most inferior bandits must not get eliminated anyway without 

pruning. 

 

 

• Experiment results 

– Typically 2-4 rounds largely independent of number of bandits 

– Many bandits much worse, so eliminated before round ends 

X1 X2 X6 X7 X8 
… X3 X4 X5 

   - - - - 

X1 X2 X6 X7 X8 
… X3 X4 X5 

0.3 0.2 0.1 -0.3 -0.4 -0.4 -0.4 



Summary 
• Dueling Bandits Problem 

– Only ordinal information about payoffs 

– Algorithms proposes two alternatives, user provides noisy preference. 

– Preference can be interleaving, direct comparison, etc. 

• Interleaved Filter Algorithm 

– Regret based on win/loss against optimal bandit 

– Strategy: keep incumbent, compare against others, prune inferior 

– O(K/² log T) regret like for bandits with absolute feedback 

• Further Question 

– Beat-the-Mean-Bandit algorithm for K-armed dueling bandits 

problem [Yue & Joachims, 2011] 

• Lower variability 

• Relax strong stochastic transitivity 

– Algorithm for finite and convex sets of bandit [Yue & Joachims, 

2009] 


