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Adaptive Information Systems

Retrieval Function: f(q) 2 r

— Input: g (query)
— Output: r (ranking by relevance)

Conventional Systems
— One-size-fits-all
— Hand-tuned and static
retrieval function
Room for Improvement

— Different users need different
retrieval functions

— Different collections need
different retrieval functions

Machine Learning

— Learn improved retrieval
functions
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Motivation and Outline

e Setup
— Corpus of documents [known]
— Distribution of users and/or queries on corpus [unknown]
— Set of retrieval functions {f,,....f, .} [design choice]
— Each retrieval function f; has utility U(f;) [unknown]
« Question 1: How can one measure utility?
— Cardinal vs. ordinal utility measurements
— Eliciting implicit feedback through interactive experiments
« Question 2: How to efficiently find f; with max utility?
— Efficiently = minimizing regret + computationally efficient
— Minimize exposure to suboptimal results during learning
— Dueling Bandits Problem with efficient algorithm




Approaches to Implicit Utility Elicitation

« Approach 1. Absolute Metrics (cardinal)

— Do metrics derived from observed user behavior provide
absolute feedback about retrieval quality of f?

— For example:
« U(f) ~ numClicks(f)
« U(f) ~ 1/abandonment(f)
« Approach 2: Paired Comparison Tests (ordinal)

— Do paired comparison tests provide relative preferences
between two retrieval functions f, and f,?

— For example:
« f, > f, & pairedCompTest(f,, f,) >0




Paired Comparisons: Balanced Interleaving

(u=tj,g="svm”)

f,(u,q) 2, f,(u,q) 2 1,
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Interpretation: (r; > r,) < clicks(topk(r,)) > clicks(topk(r,))

[Joachims/01]




Balanced Interleaving: Results

Paired Comparison Tests:
Summary and Conclusions
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Motivation and Outline

e Setup
— Corpus of documents [known]
— Distribution of users and/or queries on corpus [unknown]
— Set of retrieval functions {f,,....f, .} [design choice]
— Each retrieval function f; has utility U(f;) [unknown]
« Question 1: How can one measure utility?
— Cardinal vs. ordinal utility measurements
— Eliciting implicit feedback through interactive experiments
« Question 2: How to efficiently find f; with max utility?
— Efficiently = minimizing regret + computationally efficient
— Minimize exposure to suboptimal results during learning
— Dueling Bandits Problem with efficient algorithm




Evaluating Many Retrieval Functions
[ Distribution P(u,q) }

of users u, queries q

Rel Re R T e
e Re —
u ( ( (RG(RG(RG(Retrieval Function n}

f.(u,q) 2> r,

Task:
Find f* € F that gives best retrieval quality over P(u,q)?




Tournament

« Can you design a tournament that reliably identifies the
correct winner?

—> Noisy Sorting/Max Algorithms:
« [Feige et al.]: Triangle Tournament Heap O(n/e? log(1/d)) with prob 1-5
« [Adler et al., Karp & Kleinberg]: optimal under weaker assumptions

)




Problem: Learning on Operational System

« Example:
— 4 retrieval functions: B>G>>Y > A

— 10 possible pairs for interactive experiment
« (B,G) = low cost to user
* (B,Y) = medium cost to user
« (Y,A) - high cost to user
« (B,B) = zero cost to user

* Miniming Regret
— Algorithm gets to decide on the sequence of pairwise tests
— Don’t present “bad” pairs more often than necessary
— Trade off (long term) informativeness and (short term) cost

=» Dueling Bandits Problem




Regret for the Dueling Bandits Problem

« Given:
— A finite set H of candidate retrieval functions f,...f,
— A pairwise comparison test f = f* on H with P(f > )
« Regret:
— R(A) = 2oy 7 [P(FF = ) + P(F* - £) - 1]
— T*: best retrieval function in hindsight (assume single f* exists)
— (f,f): retrieval functions tested at time t

Example:

Time Step: t, T
Comparison: (f,,f,) =2 T, (fs.fg) = T2 (f.fy) = 1,
Regret: P(f*~fy)+P(f*~f,)-1  P(f*-f)+P(f*>-fy)-1

=0.9 =0.78 =0.01

[with Yisong Yue, Josef Broder, Bobby Kleinberg]




Tournament

« Can you design a tournament that has low regret?

- Don’t know!




MATCH

Algorithm: Interleaved Filter 1

« Algorithm
InterleavedFilterl(T,W={f,...f,}) 0/0

* Pick random f’ fi
Pick random mmWROUND-— --- f,

. 5=1/(TK?)

—+ WHILE |W|>1
_FOR f e W DO ----
5 duel(f’,f) 13/2 11/4 XX
» update P, -----
EXPLORE _
. — t=t+1 0/0 XX 00 XX
_ - 0.5
EXPLOIT c=(log(1/5)h)

— Remove all f from W with P; < 0.5-c,[WORSE WITH PROB 1-9]
— IF there exists f*” with P.. >0.5+c, [BETTER WITH PROB 1-9]
» Remove f* from W
» £*=17; t=0
EXPLOIT=L « UNTIL T: duel(f.f)

[with Yisong Yue, Josef Broder, Bobby Kleinberg]




IF1: Main Result

« Theorem: The expected regret of IF1 is

KlogK
E[RT]=O( ° logT)
€1,2

where g,,=P(f, > f,) — 0.5 and K is the number of bandits.

« Assumptions:
— Strong Stochastic Transitivity: g;, > max{g;;, &}
— Stochastic Triangle Inequality: g;, < &; ;t;
— g-winner exists




Assumptions
Preference Relation: f; - f; & P(f; beats f;) = 0.5+¢;;> 0.5
Weak Stochastic Transitivity: f; - f;and f; = f, > f; > f,
fo-f =t =1 =f =f .. >f
Strong Stochastic Transitivity: g;, > max{g;;, &}

€142 €42834200>85,>86,4>...2 8¢y

Stochastic Triangle Inequality: f; > f; > f, 2 &, <¢g;;+g;,

=0.0land &,5=0.01 2 ¢,,<0.02

e-Winner exists: ¢ = max;{ P(f, beats f;)-05}=¢,,>0




|F1: Proof Outline

BlRr] < (1- %) BIRYFY + ~0(T) = O(BIR™)

1. The probability that IF1 returns suboptimal bandit is
less than 1/T

—> a) Probability that a match has wrong winner is at most

6=1/(T K2). -—---

—> b) Upper bound on the number of matches: K2.°/ ™
) Upp R —
2. Bound expected regret E[R;IF1] of IF1 o0 a0 o0 o0 xx
a) Bound number of duels in a match: 0(1/82?$
b) Bound regret per match

c) Bound the number of rounds before IF1 terminates




Lemma 1a: Probability that a Match has
Wrong Winner is at most 6=1/(T K?)

* Proof:
— Reminder: Confidence interval c,=(log(1/5)/t)°*

— If we declare the wrong winner between f; and f;, then
observed P must have been outside confidence interval.

— P(IP,— E[P,]| = ¢, <2 exp(-2 t c2) = 282 = 2/(T2 K4
— Union bound over all time steps: 2T/(T? K*) < 1/(T K?) =5




|F1: Proof Outline

BlRr) < (1- ) BIREY

_O(T) = O(BIRY)

1. The probability that IF1 returns suboptimal bandit is

less than 1/T\/

a) Probability that a match has wrong winner is at most

5=1/(T K2),

b) Upper bound on the number of matches: KZ\/

2. Bound expected regret E[RF1] of IF1
—> a) Bound number of duels in a match

b) Bound regret per match

c) Bound the number of rounds before IF1 terminates




L emma 2a:
Bound Number of Duels in a Match

— Consider: match between f; and f; with P(f; beats f;) = 0.5 + g;;

— If match is t duels long, then P, — ¢, < 0.5, otherwise the match
would terminate.

— P(n>1) <P(P,— ¢, <0.5)=P(E[P] - P, > g~ C)
— For any m > 4 and t=(m log(TK?)/¢%;), we have ¢, < 0.5 &%
— Hoeffding bound > O(1/¢%; log(TK)) whp

j-




|F1: Proof Outline

BlRr) < (1- ) BIREY

_O(T) = O(BIRY)

1. The probability that IF1 returns suboptimal bandit is

less than 1/T\/

a) Probability that a match has wrong winner is at most

5=1/(T K2),

b) Upper bound on the number of matches: KZ\/

2. Bound expected regret E[RF1] of IF1
a) Bound number of duels in a match: O(1/¢%j log(TK)) Whp\/

—> p) Bound regret per match

c) Bound the number of rounds before IF1 terminates




Lemma 2b: Bound Regret per Match
* Proof: e

— Let current incumbant f’=fj: 0/0 0/0 0/0  0/0

— Note: no match involving f; is longer than O(1/e4; ; log(TK))

whp (Lemma 2a)
— Each duel(f;,f;) incurs (g, j+¢, ;) regret:
 Case f; > fi: Theng,; + & ;<2 ¢;; (SST) and regret is bounded
% f 2¢,; O(1/e? ; 10g(TK)) = O(1/e, ; log(TK)) < O(1/e, , log(TK))
« Casefy<fjandg;<¢g i Theng ;+e ;<g ;+&;+¢&;<3 g,
b 5% duetoSTI

3g;; O(1/e?) ; 10g(TK)) = O(1/ey ; log(TK)) < O(1/gy , log(TK))
« Casefy <fjandg;>¢ ;: Theng;;+g;;<g ;+g;+¢g,;<3¢g;at
f.  f i most O(1/g;; log(TK)) duels.

3g;; O(1/€%; log(TK)) = O(1/ey  log(TK)) < O(1/e, , og(TK))




|F1: Proof Outline

BlRr) < (1- ) BIREY

_O(T) = O(BIRY)

1. The probability that IF1 returns suboptimal bandit is

less than 1/T\/

a) Probability that a match has wrong winner is at most

5=1/(T K2),

b) Upper bound on the number of matches: KZ\/

2. Bound expected regret E[RF1] of IF1
a) Bound number of duels in a match: O(1/¢%j log(TK)) Whp\/
b) Bound regret per match: O(1/¢, , log(TK)) whp \/
—> ¢) Bound the number of rounds before IF1 terminates




Lemma 2c¢: Bound the Number of Rounds
before IF1 Terminates

— Random walk: X;=1 if f; becomes incumbant, X.=0 else

=22 X; = number of steps in random walk = number of rounds
— Note: If IF1 does not make a mistake, then only forward steps.

— Strong Stochastic Transitivity: V 11 Diyq 1 2 Piuto = -+ = Pisgi
—> Worst case: pi,y 1 = Piro = --- = Pirri = Ui

0) () () (%) (%) (%) () @ -+ (%

— 2. X; = O(log K) rounds whp




IF1: Proof Outline

BlRy] < (1- ) BB + 20(7) = O(BIRF)

1. TTheorem: IF1 incurs expected regret bounded by
[

K log K
2) E(R;) <O ( I8 109 T)
€1,2

o)

2. Bound expected regret E[R,IF1] of IF1
a) Bound number of duels in a match: O(1/¢%j log(TK)) Whp\/
b) Bound regret per match: O(1/¢, , log(TK)) Whp\/
c) Bound rounds before IF1 terminates: O(log K) Whp\/




Lower Bound

Theorem: Any algorithm for the dueling bandits problem
has regret

K
RT < Q2 (— l0g T)
€1,2

Proof: [Karp/Kleinberg/07][Kleinberg/etal/07]

Intuition:

— Magically guess the best bandit, just verify guess

— Worst case: V f; - f;: P(f; > f;)=0.5+¢

— Lemma 2a: Need O(1/¢? log T) duels to get 1-1/T confidence.




Algorithm: Interleaved Filter 2
« Algorithm -
InterleavedFilter1(T,W={f;...T }) 0/0  0/0 0/0 0/0

¢ Pick random > from W -
82 713 4/6  1/9

. 5=1/(TK2)
« WHILE |W|>1
~ FORb € W DO ) e
» duel(f,) 13/2  11/4 “H XX

» update P
e -----

~ ¢=(log(1/8)/)5 el R R
— Remove all f from W with P; <0.5-c, [WORSE WITH PROB 1-0]
— IF there exists £’ with Pg. > 0.5+c; [BETTER WITH PROB 1-9]
» Remove f* from W
=3 » Remove all f from W that are empirically inferior to f’
» £'=1; t=0

o UNTIL T: duel(f,f)
[with Yisong Yue, Josef Broder, Bobby Kleinberg]




Why Is It Safe to Remove Empirically

Inferior Bandits?
« Lemma: Mistakenly pruning a bandit has probability at most
0=1/(T K?).
* Proof:
— Mistake: f, - f,, = f; (pruned: f;, winner: f,,, incumbant: f;)
— Bpw,p: Glven w is winner after n duels, f, mistakenly pruned.
— Toshow: P(B,,,,) < 1-5 for all n and w.
— Suppose P(b,, = b;) = aand given B, , : P(b, = b)) > a.
- E(SW’i+Si’p) <n.

— Duels won S, ; — 0.5n < sqrt(n log(1/5)) and S; ; > 0.5n
2 Syt Sip— N >sart(n log(1/0))

— Hoeffding P(S,,; + S;, — n > sqrt(n log(1/5)) <6




Bound the Number of Matches of IF2

« Lemma: Assuming IF2 is mistake free, then it plays O(K)

matches in expectation.

e |ntuition:

) 06) () (%) (%) 156) () 1] =+




Regret Bound for IF2

BlRy] < (1- ) BB + 20(7) = O(BIRF)

Lemma: Mistakenly pruning a bandit has probability at
most 6=1/(T K?).

Lemma: Assuming IF2 is mistake free, then it plays O(K)
matches in expectation.

Theorem: IF2 incurs expected regret bounded by

K
E(Rr) <0 (— log T)
€1.2




Experiments: Synthetic Data
« Lower- Bound data v T - i P(f — ;)= 05+8
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Experiment: Simulated Web Search

« Microsoft Web Search Data (Chris Burges) with manual
relevance assessment
» Feedback f; > f;:

— Draw query at random
— Preference f; > f; (probabilistically) based on NDCG
difference of rankings produced by f; and f;

—_
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Why not a log-Gap?

« To achieve log-gap:
— Log number of rounds need to be played

— Most inferior bandits must not get eliminated anyway without
pruning.

« Experiment results
— Typically 2-4 rounds largely independent of number of bandits
— Many bandits much worse, so eliminated before round ends




Summary

« Dueling Bandits Problem
— Only ordinal information about payoffs
— Algorithms proposes two alternatives, user provides noisy preference.
— Preference can be interleaving, direct comparison, etc.
* Interleaved Filter Algorithm
— Regret based on win/loss against optimal bandit
— Strategy: keep incumbent, compare against others, prune inferior
— O(K/e log T) regret like for bandits with absolute feedback
* Further Question

— Beat-the-Mean-Bandit algorithm for K-armed dueling bandits
problem [Yue & Joachims, 2011]
« Lower variability
 Relax strong stochastic transitivity

— Algorithm for finite and convex sets of bandit [Yue & Joachims,
2009]




