The K-armed Dueling Bandits Problem

Yisong Yue, Joseph Broder, Bobby Kleinberg, Thorsten Joachims

> Department of Computer Science Cornell University

Adaptive Information Systems

• Retrieval Function: $f(q) \rightarrow r$

- Input: q (query)
- Output: r (ranking by relevance)

Conventional Systems

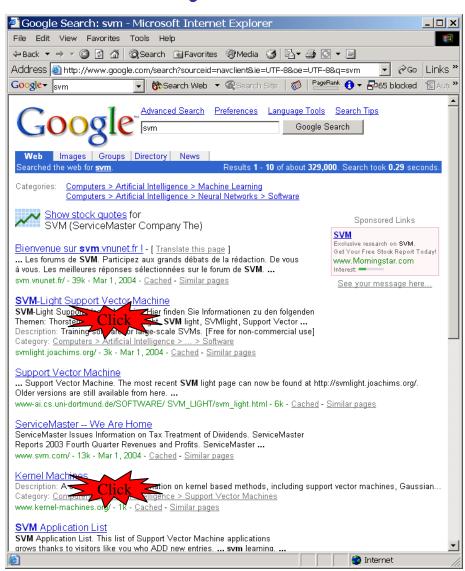
- One-size-fits-all
- Hand-tuned and static retrieval function

Room for Improvement

- Different users need different retrieval functions
- Different collections need different retrieval functions

Machine Learning

Learn improved retrieval functions



Motivation and Outline

Setup

- Corpus of documents [known]
- Distribution of users and/or queries on corpus [unknown]
- Set of retrieval functions $\{f_1,...,f_K\}$ [design choice]
- Each retrieval function f_i has utility $U(f_i)$ [unknown]

Question 1: How can one measure utility?

- Cardinal vs. ordinal utility measurements
- Eliciting implicit feedback through interactive experiments

• Question 2: How to efficiently find f_i with max utility?

- Efficiently → minimizing regret + computationally efficient
- Minimize exposure to suboptimal results during learning
- Dueling Bandits Problem with efficient algorithm

Approaches to Implicit Utility Elicitation

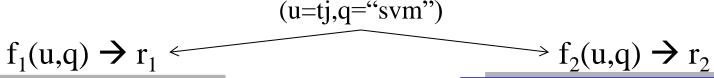
Approach 1: Absolute Metrics (cardinal)

- Do metrics derived from observed user behavior provide absolute feedback about retrieval quality of f?
- For example:
 - $U(f) \sim numClicks(f)$
 - $U(f) \sim 1/abandonment(f)$

Approach 2: Paired Comparison Tests (ordinal)

- Do paired comparison tests provide relative preferences between two retrieval functions f_1 and f_2 ?
- For example:
 - $f_1 \succ f_2 \Leftrightarrow pairedCompTest(f_1, f_2) > 0$

Paired Comparisons: Balanced Interleaving



- Kernel Machines
 - http://svm.first.gmd.de/
- 2. Support Vector Machine http://jbolivar.freeservers.com/
- An Introduction to Support Vector Machines http://www.support-vector.net/
- Archives of SUPPORT-VECTOR-MACHINES ... http://www.jiscmail.ac.uk/lists/SUPPORT...
- 5. SVM-Light Support Vector Machine http://ais.gmd.de/~thorsten/svm light/

- Kernel Machines
- http://svm.first.gmd.de/
- SVM-Light Support Vector Machine http://ais.gmd.de/~thorsten/svm light/
- Support Vector Machine and Kernel ... References http://svm.research.bell-labs.com/SVMrefs.html
- Lucent Technologies: SVM demo applet http://svm.research.bell-labs.com/SVT/SVMsvt.html
- Royal Holloway Support Vector Machine http://svm.dcs.rhbnc.ac.uk

Interleaving (r_1, r_2)

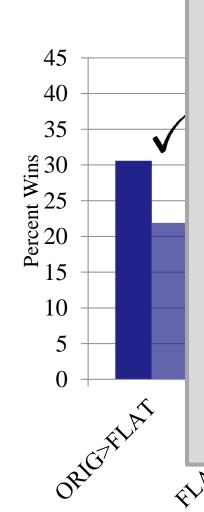
- Kernel Machines
- http://svm.first.gmd.de/
- 2. Support Vector Machine http://jbolivar.freeservers.com/
- 3. SVM-Light Support Vector Machine http://ais.gmd.de/~thorsten/svm light/
- An Introduction to Support Vector Machines http://www.support-vector.net/
- Support Vector Machine and Kernel ... References http://svm.research.bell-labs.com/SVMrefs.html
- 6. Archives of SUPPORT-VECTOR-MACHINES ... http://www.jiscmail.ac.uk/lists/SUPPORT...
- 7. Lucent Technologies: SVM demo applet http://svm.research.bell-labs.com/SVT/SVMsvt.html

Invariant:

For all k, top k of balanced interleaving is union of top k_1 of r_1 and top k_2 of r_2 with $k_1=k_2\pm 1$.

Interpretation: $(r_1 > r_2) \leftrightarrow \text{clicks}(\text{topk}(r_1)) > \text{clicks}(\text{topk}(r_2))$

Balanced Interleaving: Results



Paired Comparison Tests: Summary and Conclusions

- All interleaving experiments reflect the expected order.
- All differences are significant after one month of data.
- Analogous results for Yahoo Search and Bing.
 - Low impact (always some good results).

BL ORIG' SWAR

Motivation and Outline

Setup

- Corpus of documents [known]
- Distribution of users and/or queries on corpus [unknown]
- Set of retrieval functions $\{f_1,...,f_K\}$ [design choice]
- Each retrieval function f_i has utility $U(f_i)$ [unknown]

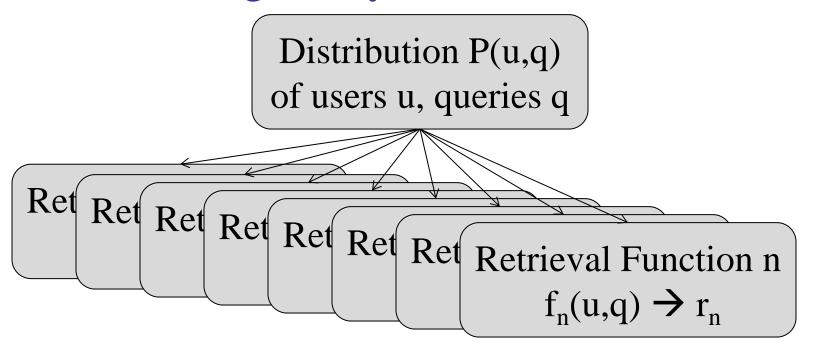
Question 1: How can one measure utility?

- Cardinal vs. ordinal utility measurements
- Eliciting implicit feedback through interactive experiments

• Question 2: How to efficiently find f_i with max utility?

- Efficiently → minimizing regret + computationally efficient
- Minimize exposure to suboptimal results during learning
- Dueling Bandits Problem with efficient algorithm

Evaluating Many Retrieval Functions

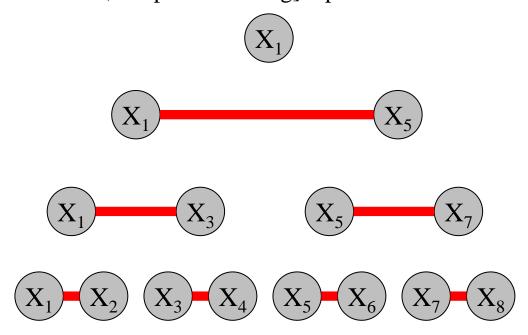


Task:

Find $f^* \in F$ that gives best retrieval quality over P(u,q)?

Tournament

- Can you design a tournament that reliably identifies the correct winner?
 - → Noisy Sorting/Max Algorithms:
 - [Feige et al.]: Triangle Tournament Heap $O(n/\epsilon^2 \log(1/\delta))$ with prob 1- δ
 - [Adler et al., Karp & Kleinberg]: optimal under weaker assumptions



Problem: Learning on Operational System

Example:

- -4 retrieval functions: B > G >> Y > A
- 10 possible pairs for interactive experiment
 - $(B,G) \rightarrow low cost to user$
 - $(B,Y) \rightarrow \text{medium cost to user}$
 - $(Y,A) \rightarrow high cost to user$
 - $(B,B) \rightarrow zero cost to user$
 - ...

Miniming Regret

- Algorithm gets to decide on the sequence of pairwise tests
- Don't present "bad" pairs more often than necessary
- Trade off (long term) informativeness and (short term) cost

→ Dueling Bandits Problem

Regret for the Dueling Bandits Problem

• Given:

- A finite set H of candidate retrieval functions $f_1...f_K$
- A pairwise comparison test f > f' on H with P(f > f')

• Regret:

- $R(A) = \sum_{t=1...T} [P(f^* \succ f_t) + P(f^* \succ f_t') 1]$
- f*: best retrieval function in hindsight (assume single f* exists)
- (f,f'): retrieval functions tested at time t

Example:

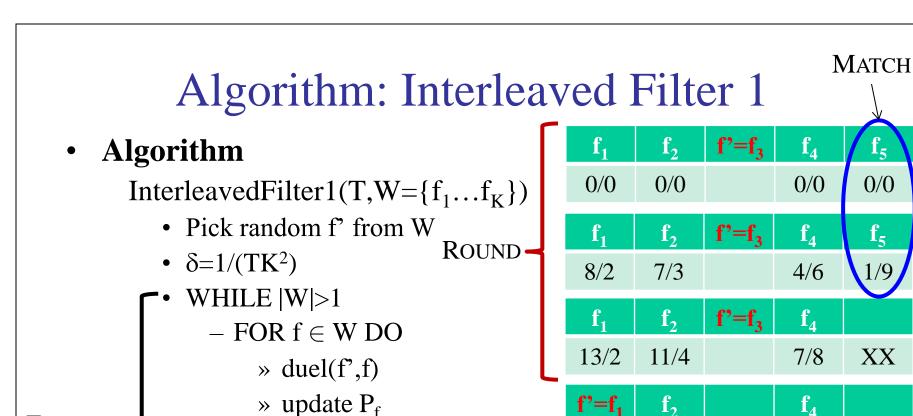
Time Step:
$$t_1$$
 t_2 ... T Comparison: $(f_9, f_{12}) \rightarrow f_9$ $(f_5, f_9) \rightarrow f_5$ $(f_1, f_3) \rightarrow f_3$ Regret: $P(f^* \succ f_9) + P(f^* \succ f_{12}) - 1$ $P(f^* \succ f_5) + P(f^* \succ f_9) - 1$ $= 0.01$

[with Yisong Yue, Josef Broder, Bobby Kleinberg]

Tournament

- Can you design a tournament that has low regret?
 - → Don't know!





EXPLORE

EXPLOIT

 $-c_t = (\log(1/\delta)/t)^{0.5}$

- t = t + 1

- Remove all f from W with $P_f < 0.5$ - c_t [WORSE WITH PROB 1- δ]

0/0

0/0

XX

0/0

XX

- IF there exists f'' with $P_{f''} > 0.5 + c_t$ [BETTER WITH PROB 1- δ]
 - » Remove f' from W

EXPLOIT \leftarrow UNTIL T: duel(f',f')

[with Yisong Yue, Josef Broder, Bobby Kleinberg]

IF1: Main Result

• **Theorem:** The expected regret of IF1 is

$$E[R_T] = O\left(\frac{KlogK}{\epsilon_{1,2}}logT\right)$$

where $\varepsilon_{12} = P(f_1 > f_2) - 0.5$ and K is the number of bandits.

• Assumptions:

- Strong Stochastic Transitivity: $\varepsilon_{i,k} \ge \max{\{\varepsilon_{i,j}, \varepsilon_{j,k}\}}$
- Stochastic Triangle Inequality: $\varepsilon_{i,k} \le \varepsilon_{i,j} + \varepsilon_{j,k}$
- ε-winner exists

Assumptions

- Preference Relation: $f_i > f_j \Leftrightarrow P(f_i \text{ beats } f_j) = 0.5 + \epsilon_{i,j} > 0.5$
- Weak Stochastic Transitivity: $f_i \succ f_j$ and $f_j \succ f_k \rightarrow f_i \succ f_k$

$$f_1 \succ f_2 \succ f_3 \succ f_4 \succ f_5 \succ f_6 \succ \dots \succ f_K$$

• Strong Stochastic Transitivity: $\epsilon_{i,k} \ge \max{\{\epsilon_{i,j}, \epsilon_{j,k}\}}$

$$\varepsilon_{1,4} \ge \varepsilon_{2,4} \ge \varepsilon_{3,4} \ge 0.5 \ge \varepsilon_{5,4} \ge \varepsilon_{6,4} \ge \dots \ge \varepsilon_{K,4}$$

- Stochastic Triangle Inequality: $f_i > f_j > f_k \Rightarrow \epsilon_{i,k} \le \epsilon_{i,j} + \epsilon_{j,k}$ $\epsilon_{1,2} = 0.01$ and $\epsilon_{2,3} = 0.01 \Rightarrow \epsilon_{1,3} \le 0.02$
- ϵ -Winner exists: $\epsilon = \max_{i} \{ P(f_1 \text{ beats } f_i) 0.5 \} = \epsilon_{1,2} > 0$

IF1: Proof Outline

$$E[R_T] \le \left(1 - \frac{1}{T}\right) E[R_T^{IF1}] + \frac{1}{T}O(T) = O(E[R_T^{IF1}])$$

- 1. The probability that IF1 returns suboptimal bandit is less than 1/T
- \rightarrow a) Probability that a match has wrong winner is at most $\delta=1/(T K^2)$.
- \rightarrow b) Upper bound on the number of matches: $K^{2^{0/0}}$
 - 2. Bound expected regret $E[R_T^{IF1}]$ of IF1
 - a) Bound number of duels in a match: $O(1/\epsilon^2 \frac{f_1}{0/0} \frac{...}{0/0} \frac{f^2 = f_{K-2}}{0/0} \frac{f_{K-1}}{0/0} \frac{f_K}{XX} \frac{f_K}{XX}$

 $f'=f_K$

XX

0/0

0/0

0/0

0/0

0/0

0/0

- b) Bound regret per match
- c) Bound the number of rounds before IF1 terminates

Lemma 1a: Probability that a Match has Wrong Winner is at most $\delta=1/(T\ K^2)$

Proof:

- Reminder: Confidence interval $c_t = (\log(1/\delta)/t)^{0.5}$
- If we declare the wrong winner between f_i and f_j, then observed P_t must have been outside confidence interval.
- $P(|P_t E[P_t]| \ge c_t) \le 2 \exp(-2 t c_t^2) = 2\delta^2 = 2/(T^2 K^4)$
- Union bound over all time steps: $2T/(T^2 K^4) \le 1/(T K^2) = \delta$

IF1: Proof Outline

$$E[R_T] \le \left(1 - \frac{1}{T}\right) E[R_T^{IF1}] + \frac{1}{T}O(T) = O(E[R_T^{IF1}])$$

- 1. The probability that IF1 returns suboptimal bandit is less than 1/T.
 - a) Probability that a match has wrong winner is at most $\delta=1/(T K^2)$.
 - b) Upper bound on the number of matches: K²
- 2. Bound expected regret $E[R_T^{IF1}]$ of IF1
- → a) Bound number of duels in a match
 - b) Bound regret per match
 - c) Bound the number of rounds before IF1 terminates

Lemma 2a: Bound Number of Duels in a Match

- Consider: match between f_i and f_j with $P(f_i \text{ beats } f_j) = 0.5 + \epsilon_{i,j}$
- If match is t duels long, then $P_t c_t \le 0.5$, otherwise the match would terminate.
- $P(n > t) \le P(P_t c_t \le 0.5) = P(E[P_t] P_t \ge \varepsilon_{i,j} c_t)$
- For any m \geq 4 and t=(m log(TK²)/ $\epsilon^2_{i,j}$), we have $c_t \leq 0.5 \epsilon^2_{i,j}$.
- − Hoeffding bound → $O(1/ε_{i,i}^2 log(TK))$ whp

IF1: Proof Outline

$$E[R_T] \le \left(1 - \frac{1}{T}\right) E[R_T^{IF1}] + \frac{1}{T}O(T) = O(E[R_T^{IF1}])$$

- 1. The probability that IF1 returns suboptimal bandit is less than 1/T.
 - a) Probability that a match has wrong winner is at most $\delta=1/(T\ K^2)$.
 - b) Upper bound on the number of matches: K²
- 2. Bound expected regret $E[R_T^{IF1}]$ of IF1
 - a) Bound number of duels in a match: $O(1/\epsilon^2_{i,j} \log(TK))$ whp
- → b) Bound regret per match
 - c) Bound the number of rounds before IF1 terminates

Lemma 2b: Bound Regret per Match

Proof:

 f_1

Let current incumbant f'=f_i:

$\mathbf{f_1}$	•••	f'=f _j	•••	$\mathbf{f}_{\mathbf{K}}$
0/0	0/0		0/0	0/0

- Note: no match involving f_j is longer than $O(1/\epsilon^2_{1,j} \log(TK))$ whp (Lemma 2a)
- Each duel(f_i , f_i) incurs ($\varepsilon_{1,i} + \varepsilon_{1,i}$) regret:

• Case $f_i \prec f_j$ and $\epsilon_{j,i} \leq \epsilon_{1,j}$: Then $\epsilon_{1,j} + \epsilon_{1,i} \leq \epsilon_{1,j} + \epsilon_{1,j} + \epsilon_{j,i} \leq 3$ $\epsilon_{1,j}$ due to STI.

 $3\epsilon_{1,j} O(1/\epsilon_{1,j}^2 \log(TK)) = O(1/\epsilon_{1,j} \log(TK)) \le O(1/\epsilon_{1,2} \log(TK))$

 $3\epsilon_{j,i} O(1/\epsilon_{j,i}^2 \log(TK)) = O(1/\epsilon_{1,j} \log(TK)) \le O(1/\epsilon_{1,2} \log(TK))$

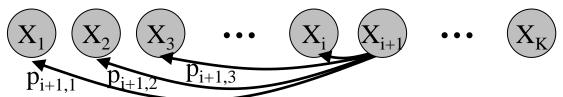
IF1: Proof Outline

$$E[R_T] \le \left(1 - \frac{1}{T}\right) E[R_T^{IF1}] + \frac{1}{T}O(T) = O(E[R_T^{IF1}])$$

- 1. The probability that IF1 returns suboptimal bandit is less than 1/T.
 - a) Probability that a match has wrong winner is at most $\delta=1/(T\ K^2)$.
 - b) Upper bound on the number of matches: K²
- 2. Bound expected regret $E[R_T^{IF1}]$ of IF1
 - a) Bound number of duels in a match: $O(1/\epsilon^2_{i,j} \log(TK))$ whp
 - b) Bound regret per match: $O(1/\epsilon_{1,2} \log(TK))$ whp
- -> c) Bound the number of rounds before IF1 terminates

Lemma 2c: Bound the Number of Rounds before IF1 Terminates

- Random walk: $X_i=1$ if f_i becomes incumbant, $X_i=0$ else



- $\rightarrow \sum X_i$ = number of steps in random walk = number of rounds
- Note: If IF1 does not make a mistake, then only forward steps.
- Strong Stochastic Transitivity: \forall i: $p_{i+1,1} \ge p_{i+1,2} \ge ... \ge p_{i+1,i}$ → Worst case: $p_{i+1,1} = p_{i+1,2} = ... = p_{i+1,i} = 1/i$

$$(X_1)$$
 (X_2) (X_3) (X_4) (X_5) (X_6) (X_7) (X_8) \cdots (X_K)

 $-\sum X_i = O(\log K)$ rounds whp

IF1: Proof Outline

$$E[R_T] \le \left(1 - \frac{1}{T}\right) E[R_T^{IF1}] + \frac{1}{T}O(T) = O(E[R_T^{IF1}])$$

1. Theorem: IF1 incurs expected regret bounded by

$$E(R_T) \le O\left(\frac{K\log K}{\epsilon_{1,2}}\log T\right)$$

2. Bound expected regret $E[R_T^{IF1}]$ of IF1

b

- a) Bound number of duels in a match: $O(1/\epsilon^2_{i,j} \log(TK))$ whp
- b) Bound regret per match: $O(1/\epsilon_{1,2} \log(TK))$ whp
- c) Bound rounds before IF1 terminates: O(log K) whp

Lower Bound

• Theorem: Any algorithm for the dueling bandits problem has regret

$$R_T \le \Omega\left(\frac{K}{\epsilon_{1,2}}\log T\right)$$

- Proof: [Karp/Kleinberg/07][Kleinberg/etal/07]
- Intuition:
 - Magically guess the best bandit, just verify guess
 - Worst case: $\forall f_i \succ f_j$: $P(f_i \succ f_j) = 0.5 + \varepsilon$
 - Lemma 2a: Need O($1/\epsilon^2 \log T$) duels to get 1-1/T confidence.

Algorithm: Interleaved Filter 2

Algorithm

InterleavedFilter1(T,W= $\{f_1...f_K\}$)

- Pick random f' from W
- $\delta = 1/(TK^2)$
- WHILE |W|>1
 - FOR $b \in W$ DO
 - » duel(f',f)
 - » update P_f
 - t=t+1
 - $c_t = (\log(1/\delta)/t)^{0.5}$

$\mathbf{f_1}$	$\mathbf{f_2}$	f'=f ₃	$\mathbf{f_4}$	\mathbf{f}_{5}
0/0	0/0		0/0	0/0
$\mathbf{f_1}$	$\mathbf{f_2}$	f'=f ₃	$\mathbf{f_4}$	\mathbf{f}_5
8/2	7/3		4/6	1/9
$\mathbf{f_1}$	$\mathbf{f_2}$	f'=f ₃	$\mathbf{f_4}$	
f ₁ 13/2	f ₂ 11/4	f'=f ₃	f ₄	XX
		f'=f ₃		XX

- Remove all f from W with $P_f < 0.5-c_t$ [WORSE WITH PROB $1-\delta$]
- IF there exists f'' with $P_{f''} > 0.5 + c_t$

[BETTER WITH PROB $1-\delta$]

- » Remove f' from W
- >> Remove all f from W that are empirically inferior to f'
 - » f'=f''; t=0
- UNTIL T: duel(f',f')

[with Yisong Yue, Josef Broder, Bobby Kleinberg]

Why is it Safe to Remove Empirically Inferior Bandits?

• Lemma: Mistakenly pruning a bandit has probability at most $\delta=1/(T K^2)$.

Proof:

- Mistake: $f_p > f_w > f_i$ (pruned: f_p , winner: f_w , incumbant: f_i)
- $B_{n,w,p}$: Given w is winner after n duels, f_p mistakenly pruned.
- − To show: $P(B_{n,w,p}) \le 1-\delta$ for all n and w.
- Suppose $P(b_w \succ b_i) = \alpha$ and given $B_{n,w,p} : P(b_p \succ b_i) \ge \alpha$. $\rightarrow E(S_{w,i} + S_{i,p}) \le n$.
- Duels won $S_{w,i}$ 0.5n < sqrt(n log(1/ δ)) and $S_{i,p}$ > 0.5n \Rightarrow $S_{w,i}$ + $S_{i,p}$ - n > sqrt(n log(1/ δ))
- Hoeffding $P(S_{w,i} + S_{i,p} n > sqrt(n \log(1/\delta)) \le \delta$

Bound the Number of Matches of IF2

- Lemma: Assuming IF2 is mistake free, then it plays O(K) matches in expectation.
- Intuition:

Regret Bound for IF2

$$E[R_T] \le \left(1 - \frac{1}{T}\right) E[R_T^{IF1}] + \frac{1}{T}O(T) = O(E[R_T^{IF1}])$$

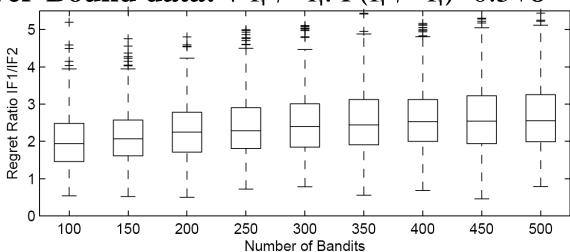
- **Lemma:** Mistakenly pruning a bandit has probability at most $\delta=1/(T K^2)$.
- Lemma: Assuming IF2 is mistake free, then it plays O(K) matches in expectation.

Theorem: IF2 incurs expected regret bounded by

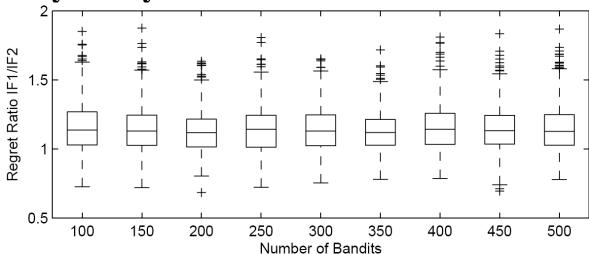
$$E(R_T) \le O\left(\frac{K}{\epsilon_{1,2}} \log T\right)$$

Experiments: Synthetic Data

• Lower-Bound data: $\forall f_i > f_i$: $P(f_i > f_i) = 0.5 + \epsilon$

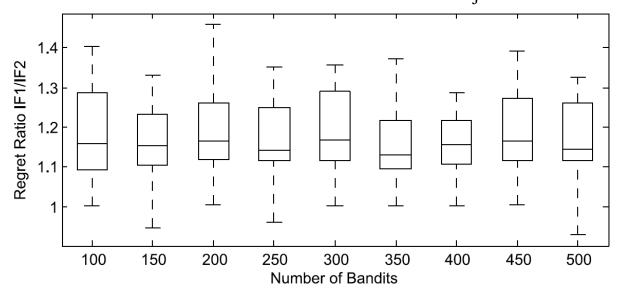


Bradley-Terry data



Experiment: Simulated Web Search

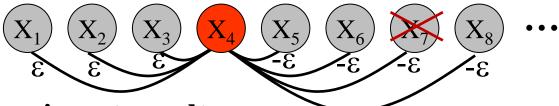
- Microsoft Web Search Data (Chris Burges) with manual relevance assessment
- Feedback $f_i > f_j$:
 - Draw query at random
 - Preference $f_i > f_j$ (probabilistically) based on NDCG difference of rankings produced by f_i and f_i



Why not a log-Gap?

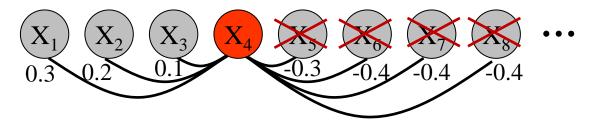
To achieve log-gap:

- Log number of rounds need to be played
- Most inferior bandits must not get eliminated anyway without pruning.



• Experiment results

- Typically 2-4 rounds largely independent of number of bandits
- Many bandits much worse, so eliminated before round ends



Summary

Dueling Bandits Problem

- Only ordinal information about payoffs
- Algorithms proposes two alternatives, user provides noisy preference.
- Preference can be interleaving, direct comparison, etc.

Interleaved Filter Algorithm

- Regret based on win/loss against optimal bandit
- Strategy: keep incumbent, compare against others, prune inferior
- $O(K/\epsilon \log T)$ regret like for bandits with absolute feedback

Further Question

- Beat-the-Mean-Bandit algorithm for K-armed dueling bandits problem [Yue & Joachims, 2011]
 - Lower variability
 - Relax strong stochastic transitivity
- Algorithm for finite and convex sets of bandit [Yue & Joachims,
 2009]