
Large-Scale Validation and Analysis of Interleaved Search Evaluation

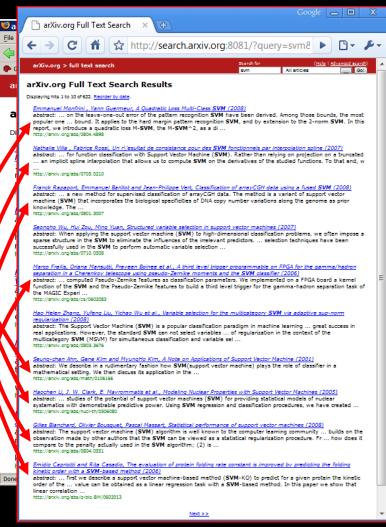
Olivier Chapelle, Thorsten Joachims Filip Radlinski, Yisong Yue

Department of Computer Science Cornell University

Implicit Utility Feedback

- Approach 1: Absolute Metrics
 - Do metrics derived from observed user behavior provide absolute feedback about retrieval quality of f?
 - For example:
 - U(f) ~ numClicks(f)
 - U(f) ~ 1/abandonment(f)
- Approach 2: Paired Comparison Tests
 - Do paired comparison tests provide relative preferences between two retrieval functions f₁ and f₂?
 - For example:
 - $f_1 \succ f_2 \Leftrightarrow pairedCompTest(f_1, f_2) > 0$

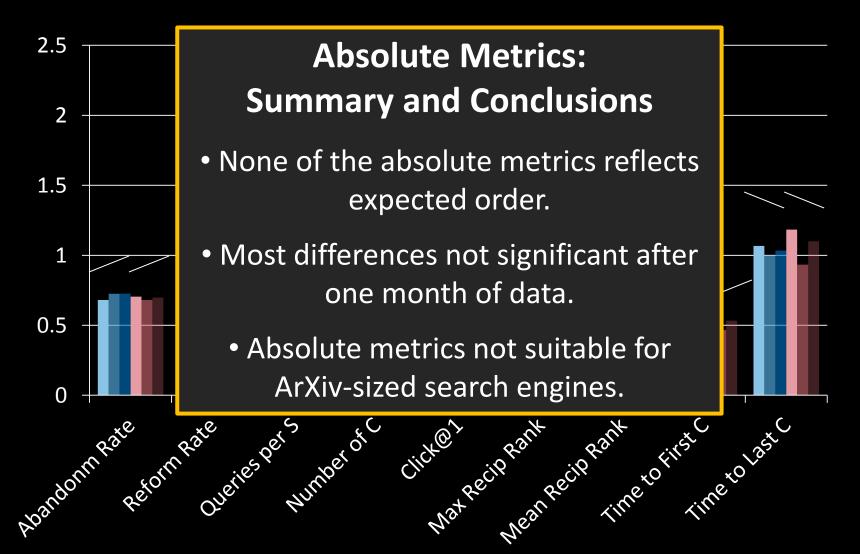
Absolute Metrics: Metrics


Name	Description	Aggre- gation	Hypothesized Change with Decreased Quality
Abandonment Rate	% of queries with no click	N/A	Increase
Reformulation Rate	% of queries that are followed by reformulation	N/A	Increase
Queries per Session	Session = no interruption of more than 30 minutes	Mean	Increase
Clicks per Query	Number of clicks	Mean	Decrease
Click@1	% of queries with clicks at position 1	N/A	Decrease
Max Reciprocal Rank*	1/rank for highest click	Mean	Decrease
Mean Reciprocal Rank*	Mean of 1/rank for all clicks	Mean	Decrease
Time to First Click*	Seconds before first click	Median	Increase
Time to Last Click*	Seconds before final click	Median	Decrease th at least one click count

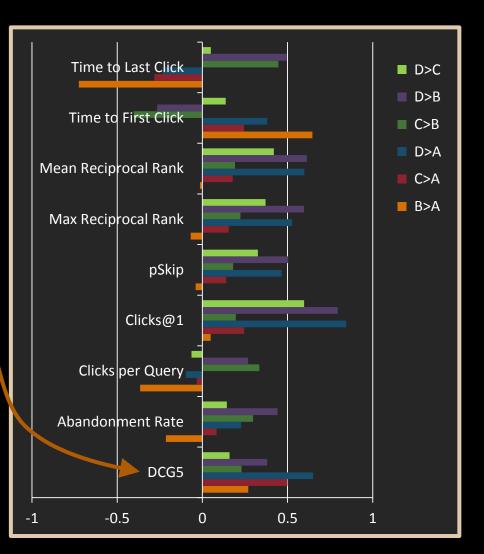
*) only queries with at least one click coun

How does User Behavior Reflect Retrieval Quality?

User Study in ArXiv.org


- Natural user and query population
- User in natural context, not lab
- Live and operational search engine
- Ground truth by construction
 - $\mathsf{Orig}\succ\mathsf{Swap2}\succ\mathsf{Swap4}$
 - ORIG: Hand-tuned fielded
 - Swap2: ORIG with 2 pairs swapped
 - SWAP4: ORIG with 4 pairs swapped
 - $\mathsf{Orig}\succ\mathsf{Flat}\succ\mathsf{Rand}$
 - ORIG: Hand-tuned fielded
 - FLAT: No field weights
 - RAND : Top 10 of FLAT shuffled

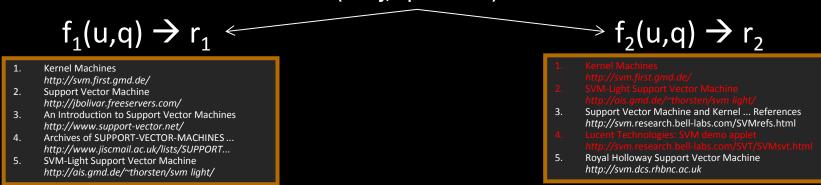
Absolute Metrics: Experiment Setup


- Experiment Setup
 - Phase I: 36 days
 - Users randomly receive ranking from Orig, Flat, Rand
 - Phase II: 30 days
 - Users randomly receive ranking from Orig, Swap2, Swap4
 - User are permanently assigned to one experimental condition based on IP address and browser.
- Basic Statistics
 - ~700 queries per day / ~300 distinct users per day
- Quality Control and Data Cleaning
 - Test run for 32 days
 - Heuristics to identify bots and spammers
 - All evaluation code was written twice and cross-validated

Absolute Metrics: Results

Yahoo! Search: Results

- Retrieval Functions
 - 4 variants of production retrieval function
- Data
 - 10M 70M queries for each retrieval function
 - Expert relevance judgments
- Results
 - Still not always significant even after more than 10M queries per function
 - Only Click@1 consistent with DCG@5.



Approaches to Utility Elicitation

- Approach 1: Absolute Metrics
 - Do metrics derived from observed user behavior provide absolute feedback about retrieval quality of f?
 - For example:
 - U(f) ~ numClicks(f)
 - U(f) ~ 1/abandonment(f)
 - Approach 2: Paired Comparison Tests
 - Do paired comparison tests provide relative preferences between two retrieval functions f₁ and f₂?
 - For example:
 - f₁ ≻ f₂ ⇔ pairedCompTest(f₁, f₂) > 0

Paired Comparisons: What to Measure?

(u=tj, q="svm")

Interpretation: $(r_1 \succ r_2) \leftrightarrow \text{clicks}(r_1) > \text{clicks}(r_2)$

Paired Comparison: Balanced Interleaving

(u=tj, q="svm")

$f_1(u,q) \rightarrow r_1 \leftarrow$		\rightarrow f ₂ (u,q) \rightarrow r ₂
 Kernel Machines http://svm.first.gmd.de/ Support Vector Machine http://jbolivar.freeservers.com/ An Introduction to Support Vector Machines http://www.support-vector.net/ Archives of SUPPORT-VECTOR-MACHINES http://www.jiscmail.ac.uk/lists/SUPPORT SVM-Light Support Vector Machine http://ais.gmd.de/~thorsten/svm light/ Model of User: Better retrieval functions is more likely to get more clicks.	Interleaving(r ₁ ,r ₂) 1. Kernel Machines http://svm.first.gmd.de/ 2. Support Vector Machine http://jbolivar.freeservers.com/ 3. SVM-Light Support Vector Machine http://jolis.gmd.de/~thorsten/svm light/ 4. An Introduction to Support Vector Machines http://www.support-vector.net/ 5. Support Vector Machine and Kernel References http://www.support-vector.net/ 6. Archives of SUPPORT-VECTOR-MACHINES 4 http://www.jiscmail.ac.uk/lists/SUPPORT 7. Lucent Technologies: SVM demo applet http://svm.research.bell-labs.com/SVT/SVMsvt.html	 Invariant: For all k, top k of balanced interleaving is

Interpretation: $(r_1 \succ r_2) \leftrightarrow clicks(topk(r_1)) > clicks(topk(r_2))$ \rightarrow see also [Radlinski, Craswell, 2012] [Hofmann, 2012]

Balanced Interleaving: a Problem

 \mathbf{r}_1

А

B

 \mathbf{C}

D

A

 \mathbf{B}^{2}

 \mathbf{C}^3

D

 \mathbf{r}_2

Х

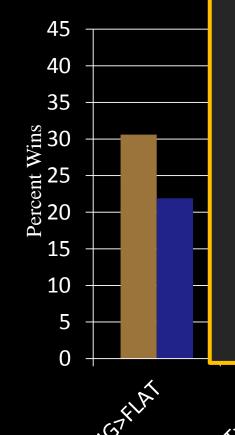
A

B

 \cap

- Example:
 - Two rankings r₁ and r₂ that are identical up to one insertion (X)
 - "Random user" clicks uniformly on results in interleaved ranking
 - 1. "X" \rightarrow r₂ wins
 - 2. "A" \rightarrow r₁ wins
 - 3. "B" \rightarrow r₁ wins
 - 4. "C" \rightarrow r₁ wins
 - 5. "D" \rightarrow r₁ wins

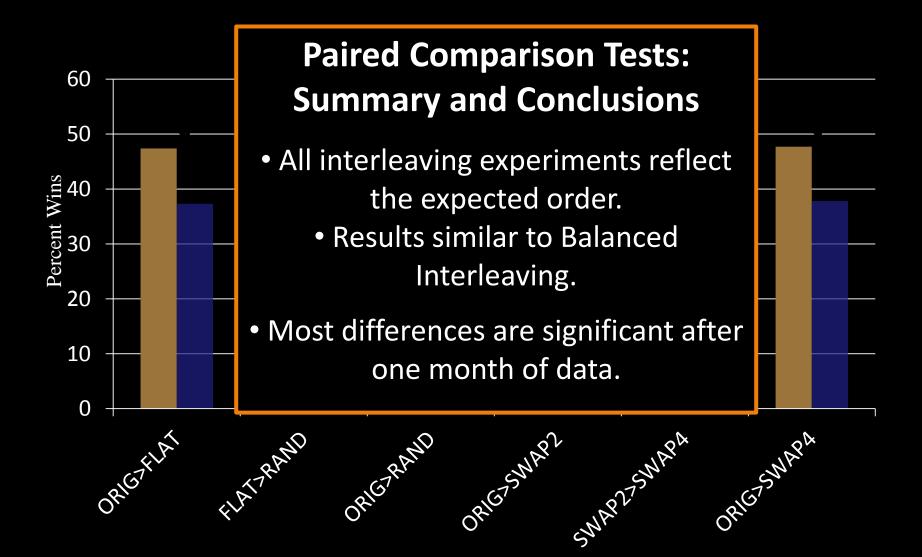
 \rightarrow biased



Interpretation: $(r_1 \succ r_2) \leftrightarrow clicks(T_1) > clicks(T_2)$

Paired Comparisons: Experiment Setup

- Experiment Setup
 - Phase I: 36 days
 - Balanced Interleaving of (Orig,Flat) (Flat,Rand) (Orig,Rand)
 - Phase II: 30 days
 - Balanced Interleaving of (Orig,Swap2) (Swap2,Swap4) (Orig,Swap4)
- Quality Control and Data Cleaning
 - Same as for absolute metrics


Balanced Interleaving: Results

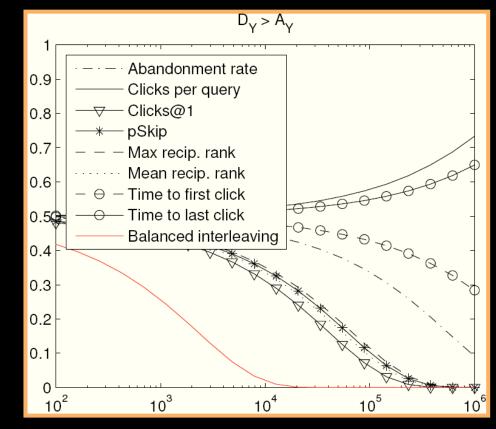
Paired Comparison Tests: Summary and Conclusions

- All interleaving experiments reflect the expected order.
- All differences are significant after one month of data.
 - Same results also for alternative data-preprocessing.

Team-Game Interleaving: Results

Yahoo and Bing: Interleaving Results

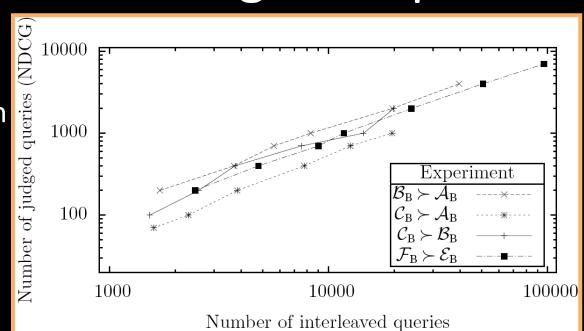
- Yahoo Web Search [Chapelle et al., 2012]
 - Four retrieval functions (i.e. 6 paired comparisons)
 - Balanced Interleaving


 \rightarrow All paired comparisons consistent with ordering by NDCG.

- Bing Web Search [Radlinski & Craswell, 2010]
 - Five retrieval function pairs
 - Team-Game Interleaving

 \rightarrow Consistent with ordering by NDGC when NDCG significant.

Efficiency: Interleaving vs. Absolute


- Yahoo Web Search
 - More than 10M queries for absolute measures
 - Approx 700k queries for interleaving
- Experiment
 - REPEAT
 - Draw bootstrap sample
 S of size x
 - Evaluate metric on S for pair (P,Q) of retrieval functions
 - Estimate $y = P(P >_m Q|x)$

Interleaving by factor ~10 more efficient than Click@1.

Efficiency: Interleaving vs. Explicit

- Bing Web Search
 - 4 retrieval function pairs
 - ~12k manually judged queries
 - ~200k interleaved queries
- Experiment

- p = probability that NDCG is correct on subsample of size y
- x = number of queries needed to reach same p-value with interleaving
- Ten interleaved queries are equivalent to one manually judged query.

Summary and Conclusions

• Interleaving agrees better with expert assessment than absolute metrics

Design as pairwise comparison

- All interleaving techniques seem to do roughly equally well
- Efficiency of interleaving compared to expert assessment and Click@1