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Decide between two Ranking 
Functions 

Distribution P(u,q) 
of users u, queries q 

Retrieval Function 1 
 f1(u,q)  r1 

Retrieval Function 2 
 f2(u,q)  r2 

Which one  
is better? 

 

(tj,”SVM”) 
 

1.  Kernel Machines  
 http://svm.first.gmd.de/ 
2. SVM-Light Support Vector Machine  
 http://svmlight.joachims.org/ 
3. School of Veterinary Medicine at UPenn 
 http://www.vet.upenn.edu/ 
4. An Introduction to Support Vector Machines 
 http://www.support-vector.net/ 
5. Service Master Company 
 http://www.servicemaster.com/ 

⁞ 

1. School of Veterinary Medicine at UPenn 
 http://www.vet.upenn.edu/ 
2. Service Master Company 
 http://www.servicemaster.com/  
3. Support Vector Machine 
 http://jbolivar.freeservers.com/ 
4. Archives of SUPPORT-VECTOR-MACHINES  
 http://www.jiscmail.ac.uk/lists/SUPPORT... 
5. SVM-Light Support Vector Machine  
 http://ais.gmd.de/~thorsten/svm light/ 

⁞ 

U(tj,”SVM”,r1) U(tj,”SVM”,r2) 



Implicit Utility Feedback 

• Approach 1: Absolute Metrics 
– Do metrics derived from observed user behavior 

provide absolute feedback about retrieval quality of f? 
– For example: 

• U(f) ~ numClicks(f) 
• U(f) ~ 1/abandonment(f) 

• Approach 2: Paired Comparison Tests 
– Do paired comparison tests provide relative 

preferences between two retrieval functions f1 and f2? 
– For example: 

• f1 Â f2  pairedCompTest(f1, f2) > 0 



Absolute Metrics: Metrics 
Name Description Aggre-

gation 
Hypothesized 
Change with 
Decreased Quality 

Abandonment Rate % of queries with no click N/A Increase 

Reformulation Rate % of queries that are 
followed by reformulation 

N/A Increase 

Queries per Session Session = no interruption 
of more than 30 minutes 

Mean Increase 

Clicks per Query Number of clicks Mean Decrease 

Click@1 % of queries with clicks at 
position 1 

N/A Decrease 

Max Reciprocal Rank* 1/rank for highest click Mean Decrease 

Mean Reciprocal Rank* Mean of 1/rank for all 
clicks 

Mean Decrease 

Time to First Click* Seconds before first click Median Increase 

Time to Last Click* Seconds before final click Median Decrease 
(*) only queries with at least one click count 



How does User Behavior Reflect  
Retrieval Quality? 

User Study in ArXiv.org 
– Natural user and query population 

– User in natural context, not lab 

– Live and operational search engine 

– Ground truth by construction 
ORIG Â SWAP2 Â SWAP4 
• ORIG: Hand-tuned fielded 

• SWAP2: ORIG with 2 pairs swapped 

• SWAP4: ORIG with 4 pairs swapped 

ORIG Â FLAT Â RAND 
• ORIG: Hand-tuned fielded 

• FLAT: No field weights 

• RAND : Top 10 of FLAT shuffled 



Absolute Metrics:  
Experiment Setup 

• Experiment Setup 
– Phase I: 36 days 

• Users randomly receive ranking from Orig, Flat, Rand 

– Phase II: 30 days 
• Users randomly receive ranking from Orig, Swap2, Swap4 

– User are permanently assigned to one experimental condition 
based on IP address and browser. 

• Basic Statistics 
– ~700 queries per day / ~300 distinct users per day 

• Quality Control and Data Cleaning 
– Test run for 32 days 
– Heuristics to identify bots and spammers 
– All evaluation code was written twice and cross-validated 

 
 



Absolute Metrics: Results 
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Absolute Metrics: 
Summary and Conclusions 

 

• None of the absolute metrics reflects 
expected order. 

 

• Most differences not significant after 
one month of data. 

 

• Absolute metrics not suitable for 
ArXiv-sized search engines. 



Yahoo! Search: Results 

• Retrieval Functions 
– 4 variants of  production 

retrieval function 

• Data 
– 10M – 70M queries for 

each retrieval function 

– Expert relevance 
judgments 

• Results 
– Still not always significant 

even after more than 
10M queries per function 

– Only Click@1 consistent 
with DCG@5. 
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[Chapelle et al., 2012] 



Approaches to Utility Elicitation 

• Approach 1: Absolute Metrics 
– Do metrics derived from observed user behavior 

provide absolute feedback about retrieval quality of f? 
– For example: 

• U(f) ~ numClicks(f) 
• U(f) ~ 1/abandonment(f) 

• Approach 2: Paired Comparison Tests 
– Do paired comparison tests provide relative 

preferences between two retrieval functions f1 and f2? 
– For example: 

• f1 Â f2  pairedCompTest(f1, f2) > 0 



Paired Comparisons:  
What to Measure? 

Interpretation: (r1 Â r2) ↔ clicks(r1) > clicks(r2) 
 

 

1.  Kernel Machines  
 http://svm.first.gmd.de/ 
2. Support Vector Machine 
 http://jbolivar.freeservers.com/ 
3. An Introduction to Support Vector Machines 
 http://www.support-vector.net/ 
4. Archives of SUPPORT-VECTOR-MACHINES ... 
 http://www.jiscmail.ac.uk/lists/SUPPORT... 
5. SVM-Light Support Vector Machine  
 http://ais.gmd.de/~thorsten/svm light/ 

1.  Kernel Machines  
 http://svm.first.gmd.de/ 
2. SVM-Light Support Vector Machine  
 http://ais.gmd.de/~thorsten/svm light/ 
3. Support Vector Machine and Kernel ... References 
 http://svm.research.bell-labs.com/SVMrefs.html 
4. Lucent Technologies: SVM demo applet  
 http://svm.research.bell-labs.com/SVT/SVMsvt.html 
5. Royal Holloway Support Vector Machine  
 http://svm.dcs.rhbnc.ac.uk 

 f1(u,q)  r1 f2(u,q)  r2 

(u=tj, q=“svm”) 



Paired Comparison: 
Balanced Interleaving 

1.  Kernel Machines  
 http://svm.first.gmd.de/ 
2. Support Vector Machine 
 http://jbolivar.freeservers.com/ 
3. An Introduction to Support Vector Machines 
 http://www.support-vector.net/ 
4. Archives of SUPPORT-VECTOR-MACHINES ... 
 http://www.jiscmail.ac.uk/lists/SUPPORT... 
5. SVM-Light Support Vector Machine  
 http://ais.gmd.de/~thorsten/svm light/ 

1.  Kernel Machines  
 http://svm.first.gmd.de/ 
2. SVM-Light Support Vector Machine  
 http://ais.gmd.de/~thorsten/svm light/ 
3. Support Vector Machine and Kernel ... References 
 http://svm.research.bell-labs.com/SVMrefs.html 
4. Lucent Technologies: SVM demo applet  
 http://svm.research.bell-labs.com/SVT/SVMsvt.html 
5. Royal Holloway Support Vector Machine  
 http://svm.dcs.rhbnc.ac.uk 

1.  Kernel Machines  1 
 http://svm.first.gmd.de/ 
2. Support Vector Machine 2 
 http://jbolivar.freeservers.com/ 
3. SVM-Light Support Vector Machine  2 
 http://ais.gmd.de/~thorsten/svm light/ 
4. An Introduction to Support Vector Machines 3 
 http://www.support-vector.net/ 
5. Support Vector Machine and Kernel ... References 3 
 http://svm.research.bell-labs.com/SVMrefs.html 
6. Archives of SUPPORT-VECTOR-MACHINES ... 4 
 http://www.jiscmail.ac.uk/lists/SUPPORT... 
7. Lucent Technologies: SVM demo applet  4 
 http://svm.research.bell-labs.com/SVT/SVMsvt.html 
 
 

 f1(u,q)  r1 f2(u,q)  r2 

Interleaving(r1,r2) 

(u=tj, q=“svm”) 

Interpretation: (r1 Â r2) ↔ clicks(topk(r1)) > clicks(topk(r2)) 
 see also [Radlinski, Craswell, 2012] [Hofmann, 2012]  

 

 

Invariant:  
For all k, top k of 

balanced interleaving is 
union of top k1 of r1 and 

top k2 of r2 with k1=k2 ± 1. 

[Joachims, 2001] [Radlinski et al., 2008] 

Model of User:  
Better retrieval functions 
is more likely to get more 

clicks. 



Balanced Interleaving: a Problem 
• Example: 

– Two rankings r1 and r2 that are 
identical up to one insertion (X) 

– “Random user” clicks uniformly 
on results in interleaved 
ranking 

1. “X”  r2 wins 

2. “A”  r1 wins 

3. “B”  r1 wins 

4. “C”  r1 wins 

5. “D”  r1 wins 

 biased 
 

A 
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D 

⁞ 

X 
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X 1  

A 1 

B 2 

C 3 

D 4 

⁞ 

r1 r2 



Paired Comparisons:  
Team-Game Interleaving 

1.  Kernel Machines  
 http://svm.first.gmd.de/ 
2. Support Vector Machine 
 http://jbolivar.freeservers.com/ 
3. An Introduction to Support Vector Machines 
 http://www.support-vector.net/ 
4. Archives of SUPPORT-VECTOR-MACHINES ... 
 http://www.jiscmail.ac.uk/lists/SUPPORT... 
5. SVM-Light Support Vector Machine  
 http://ais.gmd.de/~thorsten/svm light/ 

1.  Kernel Machines  
 http://svm.first.gmd.de/ 
2. SVM-Light Support Vector Machine  
 http://ais.gmd.de/~thorsten/svm light/ 
3. Support Vector Machine and Kernel ... References 
 http://svm.research.bell-labs.com/SVMrefs.html 
4. Lucent Technologies: SVM demo applet  
 http://svm.research.bell-labs.com/SVT/SVMsvt.html 
5. Royal Holloway Support Vector Machine  
 http://svm.dcs.rhbnc.ac.uk 

 f1(u,q)  r1 f2(u,q)  r2 

Interleaving(r1,r2) 

(u=tj,q=“svm”) 

Interpretation: (r1 Â r2) ↔ clicks(T1) > clicks(T2) 

 

 

Invariant:  

For all k, in expectation 

same number of team 

members in top k from 

each team. 

NEXT 

PICK 

1.  Kernel Machines  T2 
 http://svm.first.gmd.de/ 
2. Support Vector Machine T1 
 http://jbolivar.freeservers.com/ 
3. SVM-Light Support Vector Machine  T2 
 http://ais.gmd.de/~thorsten/svm light/ 
4. An Introduction to Support Vector Machines T1 
 http://www.support-vector.net/ 
5. Support Vector Machine and Kernel ... References T2 
 http://svm.research.bell-labs.com/SVMrefs.html 
6. Archives of SUPPORT-VECTOR-MACHINES ... T1 
 http://www.jiscmail.ac.uk/lists/SUPPORT... 
7. Lucent Technologies: SVM demo applet  T2 
 http://svm.research.bell-labs.com/SVT/SVMsvt.html 
 
 



Paired Comparisons:  
Experiment Setup 

• Experiment Setup 

– Phase I: 36 days 

• Balanced Interleaving of (Orig,Flat) (Flat,Rand) 
(Orig,Rand) 

– Phase II: 30 days 

• Balanced Interleaving of (Orig,Swap2) (Swap2,Swap4) 
(Orig,Swap4) 

• Quality Control and Data Cleaning 

– Same as for absolute metrics 

 

 



Balanced Interleaving: Results 
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Paired Comparison Tests: 
Summary and Conclusions 

 

• All interleaving experiments reflect 
the expected order. 

 

• All differences are significant after 
one month of data. 

 

• Same results also for alternative 
data-preprocessing. 

 



Team-Game Interleaving: Results 
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Paired Comparison Tests: 

Summary and Conclusions 
 

• All interleaving experiments reflect 
the expected order. 

• Results similar to Balanced 
Interleaving. 

 

• Most differences are significant after 
one month of data. 
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Yahoo and Bing: Interleaving Results 

• Yahoo Web Search [Chapelle et al., 2012] 
– Four retrieval functions (i.e. 6 paired comparisons) 
– Balanced Interleaving 
  All paired comparisons consistent with ordering 
by NDCG. 

 
• Bing Web Search [Radlinski & Craswell, 2010] 

– Five retrieval function pairs 
– Team-Game Interleaving 
  Consistent with ordering by NDGC when NDCG 
significant. 



Efficiency: Interleaving vs. Absolute  

• Yahoo Web Search  
– More than 10M queries for  

absolute measures 
– Approx 700k queries for  

interleaving 

• Experiment 
– REPEAT 

• Draw bootstrap sample  
S of size x 

• Evaluate metric on S for  
pair (P,Q) of retrieval  
functions 

– Estimate y = P(P >m Q|x) 
  

 Interleaving by factor ~10 more efficient than Click@1. 

[Chapelle, Joachims, Radlinski, Yue, to appear] 



Efficiency: Interleaving vs. Explicit 

• Bing Web Search 
– 4 retrieval function 

pairs 
– ~12k manually  

judged queries 
– ~200k interleaved  

queries 

• Experiment 
– p = probability that NDCG is correct on subsample of size y 
– x = number of queries needed to reach same p-value with 

interleaving 

 Ten interleaved queries are equivalent to one 
manually judged query. 

[Radlinski & Craswell, 2010] 



Summary and Conclusions 

• Interleaving agrees better with expert 
assessment than absolute metrics 

– Design as pairwise comparison 

• All interleaving techniques seem to do roughly 
equally well 

• Efficiency of interleaving compared to expert 
assessment and Click@1 

 

 

 

 


