Predicting Diverse Subsets Using Structural SVMs

Yisong Yue, Thorsten Joachims

Cornell University Department of Computer Science

Diversified Retrieval

• Ambiguous queries:

- Example query: "SVM"
 - ML method
 - Service Master Company
 - Magazine
 - School of veterinary medicine
 - Sport Verein Meppen e.V.
 - SVM software
 - SVM books
- "submodular" performance measure
 - → make sure each user gets at least one relevant result

• Learning Queries:

- Find all information about a topic
- Eliminate redundant information

Query: SVM

- 1. Kernel Machines
- 2. SVM book
- 3. SVM-liaht

5.

6.

7.

4. Query: SVM

- 1. Kernel Machines
- 2. Service Master Co
- 3. SV Meppen
- 4. UArizona Vet. Med.
- 5. SVM-light
- 6. Intro to SVM

7. .

Generic Structural SVM

- Application Specific Design of Model
 - Loss function $\Delta(y_i, y)$
 - Representation $\Phi(x, y)$
- **Prediction:**

$$\hat{y} = argmax_{y \in Y} \{ \vec{w}^T \Phi(x, y) \}$$

• Training:

$$\min_{\vec{w},\vec{\xi}\geq 0} \quad \frac{1}{2}\vec{w}^T\vec{w} + \frac{C}{n}\sum_{i=1}^n \xi_i \\ s.t. \quad \forall y \in Y \setminus y_1 : \vec{w}^T \Phi(x_1, y_1) \geq \vec{w}^T \Phi(x_1, y) + \Delta(y_1, y) - \xi_1 \\ \dots \\ \forall y \in Y \setminus y_n : \vec{w}^T \Phi(x_n, y_n) \geq \vec{w}^T \Phi(x_n, y) + \Delta(y_n, y) - \xi_n$$

• Applications: Parsing, Sequence Alignment, Clustering, etc.

Applying StructSVM to New Problem

- General
 - SVM-struct algorithm and implementation
 - Theory (e.g. number of iterations independent of n)
- Application specific
 - Loss function $\Delta(y_i, y)$
 - Representation $\Phi(x, y)$
 - Algorithms to compute

$$\hat{y} = argmax_{y \in Y} \{ \vec{w}^T \Phi(x_i, y) \}$$
$$\hat{y} = argmax_{y \in Y} \{ \Delta(y_i, y) + \vec{w}^T \Phi(x_i, y) \}$$

- Properties
 - General framework for discriminative learning
 - Direct modeling, not reduction to classification/regression
 - "Plug-and-play"

Approach

• Prediction Problem:

D2

- Given set \mathbf{x} , predict size k subset \mathbf{y} that satisfies most users.
- Approach: Topic Red. ≈ Word Red. [SwMaKi08]

D3

Users / InfoNeeds

→ $y = \{ D1, D2, D3, D4 \}$

- Weighted Max Coverage: $\mathbf{y} = \underset{y \subset x, |y|=k}{\operatorname{argmax}} \left\{ \sum_{w \in \cup(y)} score(w) \right\}$

- Greedy algorithm is 1-1/e approximation [Khuller et al 97]

 \rightarrow Learn the benefit weights: $score(w) = \mathbf{w}^T \phi(w, x)$

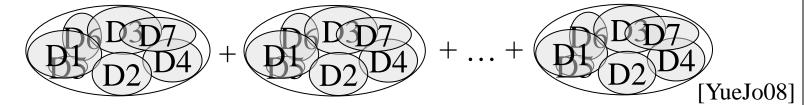
[YueJo08]

Features Describing Word Importance

- How important is it to cover word w
 - w occurs in at least X% of the documents in x
 - w occurs in at least X% of the titles of the documents in x
 - w is among the top 3 TFIDF words of X% of the documents in x
 - w is a verb

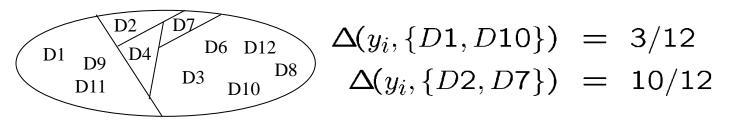
 \rightarrow Each defines a feature in $\phi(w, x)$

- How well a document d covers word w
 - w occurs in d
 - w occurs at least k times in d
 - w occurs in the title of d
 - w is among the top k TFIDF words in d
 - \rightarrow Each defines a separate vocabulary and scoring function



Loss Function and Separation Oracle

- Loss function: $\Delta(y_i, y)$
 - Popularity-weighted percentage of subtopics not covered in y
 →More costly to miss popular topics
 - Example:



- Separation oracle: $\hat{y} = argmax_{y \in Y} \{ \Delta(y_i, y) + \vec{w}^T \Phi(x_i, y) \}$
 - Again a weighted max coverage problem
 - \rightarrow add artificial word for each subtopic with percentage weight

[YueJo08

- Use greedy algorithm again

Experiments

- Data:
 - TREC 6-8 Interactive Track
 - Relevant documents manually labeled by subtopic
 - 17 queries (~700 documents), 12/4/1 training/validation/test
 - Subset size k=5, two feature sets (div, div2)

• Results:

