Kernel Dependency Estimation

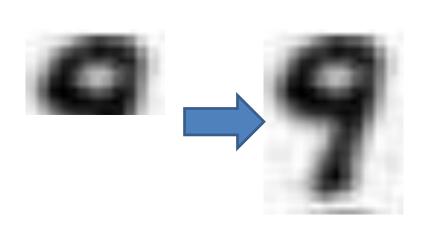
Jason Weston, Oliver Chapelle, Andre Elisseeff, Bernard Scholkopf and Vladmir Vapnik

Presentation by: Nathan Knerr and Anshumali Shrivastava

Example Structured Prediction Problem

X

- Given half a digit, predict the other half
- We have some structure because it's a digit and we want to take advantage.
- We will come back to this near the end.

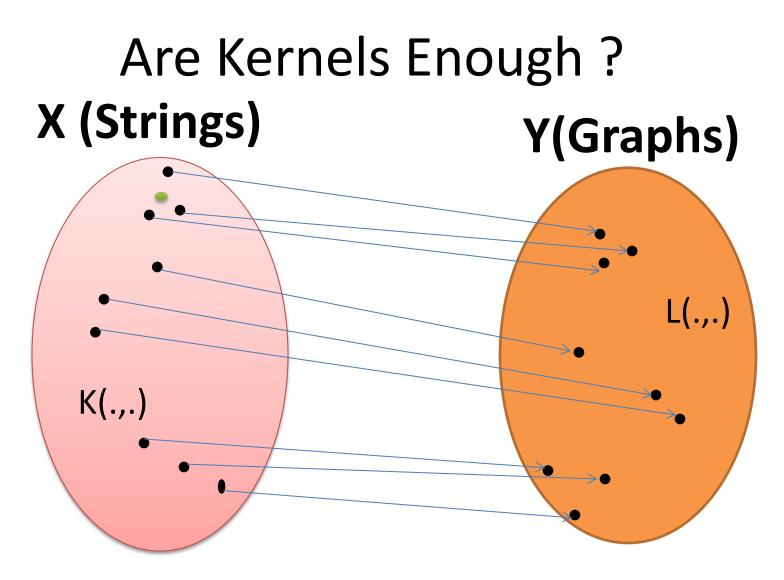


Reminder: Kernels

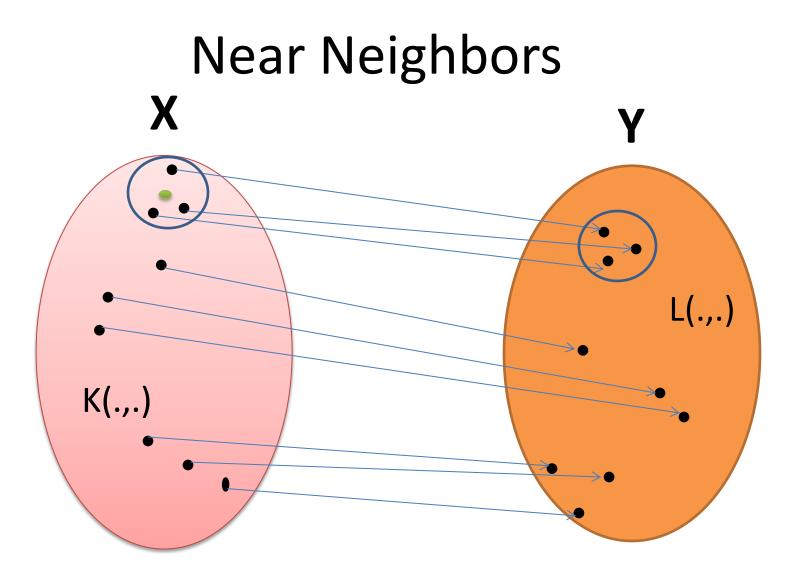
• Is generalized inner products.

• Creates a distance (d). i.e. d(x,y) = k(x,x) + k(y,y) - 2k(x,y)

• Behaves like vector spaces (Hilbert Spaces).



How do we reasonably classify the Green Point ? Nearest Neighbor ?



What is the problem with this approach ?

Highlights of Paper

- Kernels (or distances) in the input and output spaces is sufficient for efficient structured prediction.
- Generic Framework for Structured Prediction
 Need a notion of similarity in input space
 - Loss function serves as kernels in output space.
- Eliminates the need to perform feature extraction when kernels known.

Advantages of Kernels

- Right representation not always available.
 - Strings ?
 - Graphs ?
- Many applications dealing with complex objects have standard notions of similarity.
 - String Distances
 - Graph Kernels
- Feature representation may not be efficient.
 - Radial Basis Functions (RBF)

Example Kernels

• Multi-class pattern recognition:

$$l(y, y') = \frac{1}{2}(y == y')$$

• Regression Estimation:

$$l(y,y') = \vec{y} \cdot \overrightarrow{y'}$$

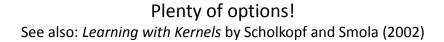
Multinomial

$$l(y, y') = (y \cdot y' + 1)^p$$

Radial Basis functions

$$l(y, y') = \exp\left(-\frac{\left|\left|y - y'\right|\right|^2}{2\sigma^2}\right)$$

• Arbitrary distance matrix($\Delta(y_i, y_j) = D_{ij}$) $l(y_i, y_j) = \frac{\left(|D_{ij}|^2 - \sum_{p=1}^m c_p |D_{ip}|^2 - \sum_{q=1}^m c_q |D_{qj}|^2 + \sum_{p,q=1}^m c_p c_q |D_{pq}|^2\right)}{2}$



ALGORITHM

Problem

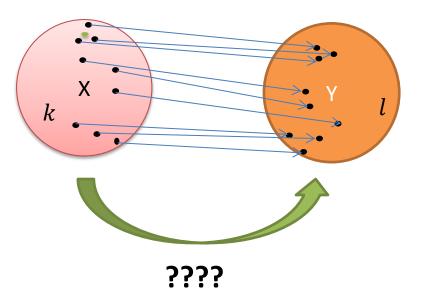
Goals

Givens

- Kernel in input *k*
- Loss Function (*l*)

Output

• A predicted structure y for some arbitrary structured input x.



Approach

X

k

Goals

Givens

- Kernel in input *k*
- Loss Function (*l*)

Output

• A predicted structure y for some arbitrary structured input x.

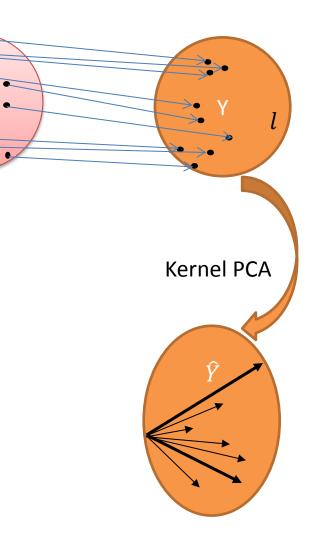
Basic Steps

Learning

- 1) Kernel PCA
- 2) Ridge regression

Testing

1) Finding a "good" output



Approach

Goals

Givens

- Kernel in input *k*
- Loss Function (*l*)

Output

• A predicted structure y for some arbitrary structured input x.

Basic Steps

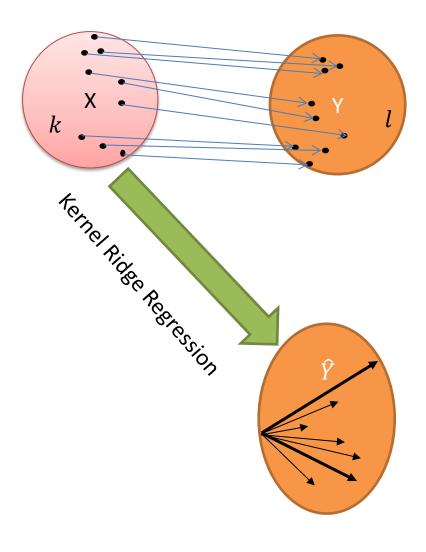
Learning

1) Kernel PCA

2) Ridge regression

Testing

1) Finding a "good" output



Approach

Goals

Givens

- Kernel in input *k*
- Loss Function (*l*)

Output

• A predicted structure y for some arbitrary structured input x.

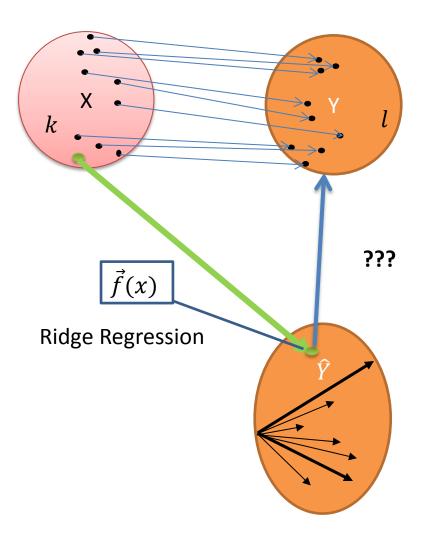
Basic Steps

Learning

- 1) Kernel PCA
- 2) Ridge regression

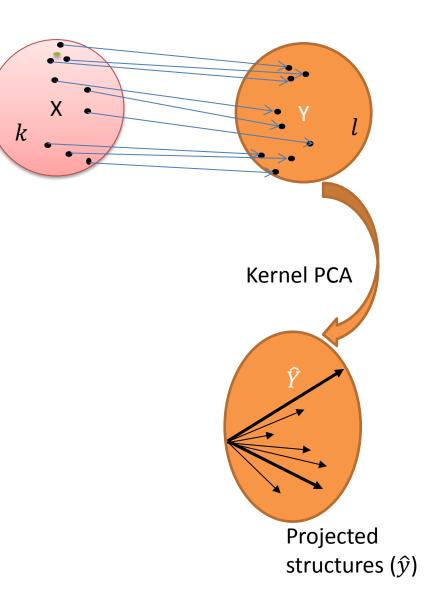
Testing

1) Finding a "good" output



Kernel PCA on Outputs - Goal

- Basically finding a set of vectors that yield a good representation of the labels.
 - Represents the output space as vectors that can learned in the next step
 - Kernelized analog of
 Principal Component
 Analysis



Kernel PCA-Setting

- Input: Data objects y_i with defined kernel functions $l(y_i, y_j)$.
- Output: A vector representation $\Phi_l(y) \in R^p$ s.t. $l(y, y') \cong \Phi_l(y) \cdot \Phi_l(y')$

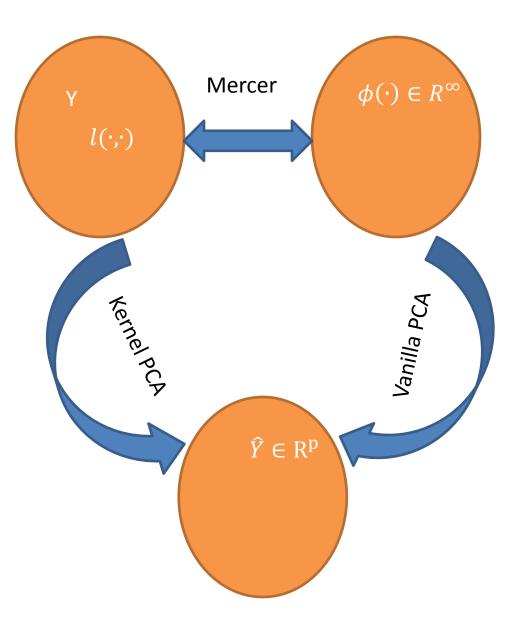
Note: Only access to $l(\cdot, \cdot)$ allowed. How to compute such $\Phi_l(y)$?

Kernel PCA-Idea

• Mercers Theorem: Every kernel $l(\cdot, \cdot)$ has an associated feature space $\phi(\cdot)$, such that $l(y_i, y_j) = \phi(y_i)^T \phi(y_j)$.

 $\phi(\cdot)$ exist but we don't know how to find it.

• But we can get the PCA representation of $\phi(\cdot)$, using only access to $l(\cdot, \cdot)$!!



Vanilla PCA in $\phi(\cdot)$

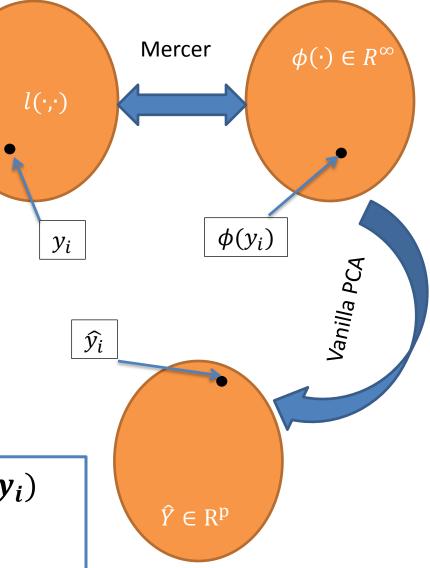
•
$$\phi(y_i) = \phi(y_i) - \frac{1}{m} \sum_{k=1}^n \phi(y_k)$$

- Solve $C\nu_j = \lambda_j \nu_j$ $C = \frac{1}{m} \sum_{i=1}^m \phi(y_i) \phi(y_i)^T$
- The j^{th} component of \widehat{y}_i

$$\widehat{y_i}^j = \phi(y_i)^T v_j$$

• Ensure $v_j^T v_j = 1$

Key observation : $v_j = \sum_{i=1}^m \alpha_j^i \phi(y_i)$ $\phi(y_i)^T \phi(y_j) = l(y_i, y_j)$



Kernel PCA

•
$$L' = \left(I - \frac{1}{m} \mathbf{1}_{mm}\right) L\left(I - \frac{1}{m} \mathbf{1}_{mm}\right)$$

L is gram matrix, $L_{i,j} = l(y_i, y_j)$. $1_{mm} m \times m$ matrix of 1's. *I* is the identity.

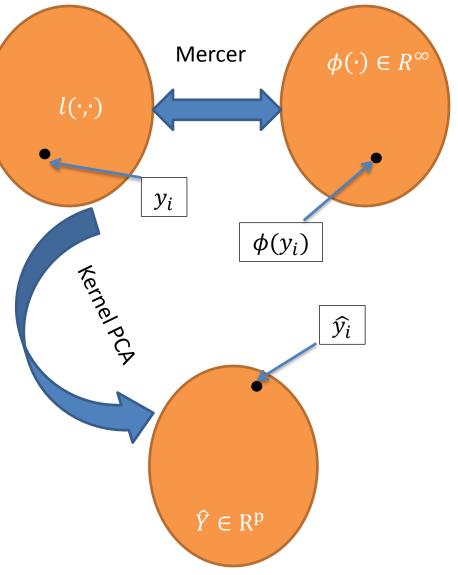
• Solve
$$\frac{1}{(m)}L'\alpha_j = \lambda_j \alpha_j$$

•
$$\hat{\mathbf{y}}^j = \sum_{i=1}^m \alpha_j^i l(y_i, y)$$

where α_i^i is the i^{th} component of α_j .

• Ensure
$$\alpha_j^T L' \alpha_j = 1$$
.

$\pmb{\phi}(\cdot)$ never used !!



Substitution Activity

Materialize $oldsymbol{\phi}(y)$ - PCA

- Solve $Cv_j = \lambda_j v_j$ where $C = \frac{1}{m} \sum_{i=1}^m \phi(y_i) \phi(y_i)^T$
- The j^{th} component of \hat{y} $\hat{y}^j = \phi(y)^T v_j$

Just use $l(\cdot, \cdot)$ – Kernel PCA

• Solve
$$\frac{1}{(m)}L'\alpha_j = \lambda_j\alpha_j$$

•
$$\hat{y}^{j} = \sum_{i=1}^{m} \alpha_{j}^{i} l(y_{i}, y)$$
 where α_{j}^{i} is the i^{th} component of α_{j} .

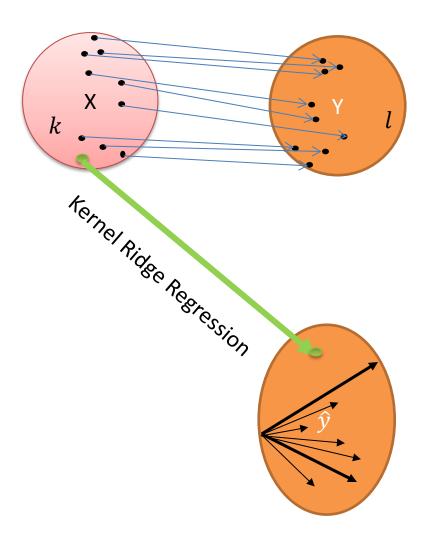
• Ensure $v_j^T v_j = 1$ • Ensure $\alpha_j^T L' \alpha_j = 1$.

Key connection : $v_j = \sum_{i=1}^m \alpha_j^i \phi(y_i)$ $\phi(y_i)^T \phi(y_j) = l(y_i, y_j)$

Kernel Ridge Regression

- Recall we know a 'kernelized' version of the input (X)
- Want to map the input feature space to vectorized outputs

•
$$x \rightarrow \begin{bmatrix} \hat{y}^1 \\ \dots \\ \hat{y}^p \end{bmatrix}$$



Kernel Ridge Regression

• Objective (primal version):

$$\min_{w} \left(\gamma \left| |w| \right|^2 + \frac{1}{m} \sum_{i=1}^m \left(\hat{y}_i - \left(\beta \cdot \Phi_k(x_i) \right) \right)^2 \right)$$

• Convert to dual form and solve to find the predicted location in the projected y space:

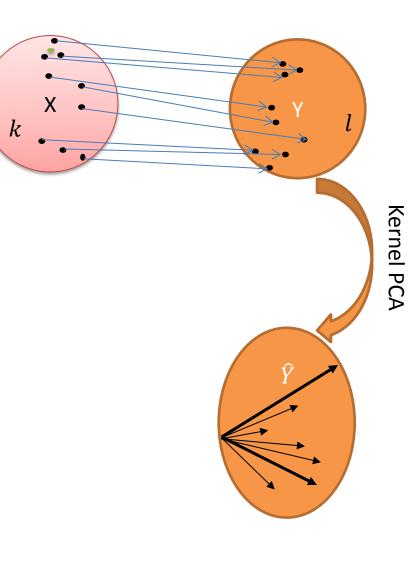
$$f_n(x) = \sum_{i=1}^m \beta_i^n k(x_i, x)$$

Where

$$\beta^n = (K + \gamma I)^{-1} \hat{y}^n$$

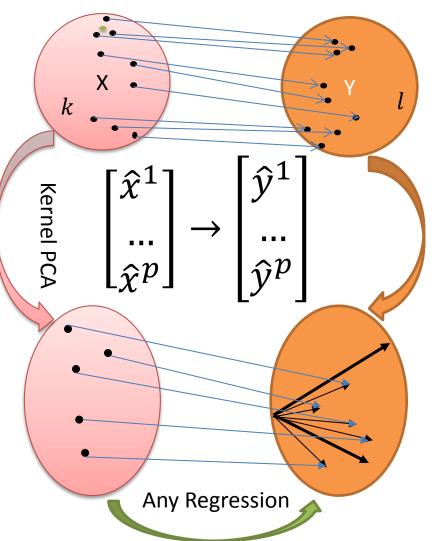
Activity

- I don't know Kernel (Ridge) regression
- But I know Kernel PCA and Linear (Ridge) Regression
- Can I still make it work ?



Activity

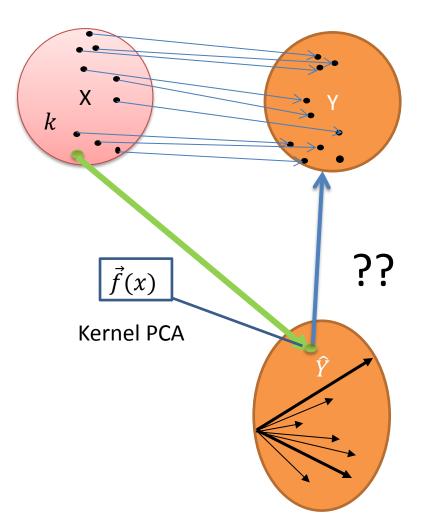
- Yes !!
- Use kernel PCA on input space to get vector representation
- Input output both vector spaces. Use linear regression.



Kernel PCA

Inference

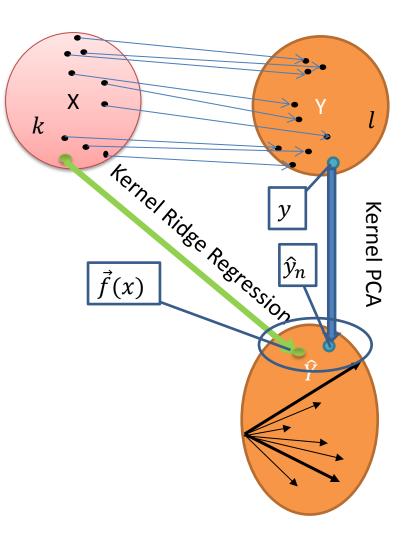
- Just found a way to estimate what we think the input (x) should map to in the projected space
- Need to find the actual structured output y that most closely matches $\vec{f}(x)$.



Inference

• Project all Ys to \hat{y}

• Find $\widehat{y_n}$ nearest to $\vec{f}(x)$ in the vector space \hat{y} .



Inference

• Formally:

$$y(x) = argmin_{y \in Y} \left\| \begin{bmatrix} \widehat{y_1} \\ \dots \\ \widehat{y_p} \end{bmatrix} - \begin{bmatrix} f_1(x) \\ \dots \\ f_p(x) \end{bmatrix} \right\|$$

- Where $y \rightarrow [\widehat{y_1}, \widehat{y_2}, ..., \widehat{y_p}]$ via Kernel PCA.
- $f_n(x)$ is done from learned Kernel Ridge Regression.
- Some kernels can be inverted explicitly
- Paper simply searched *all possible y's*

More info: Scholkopf et. al. "Input space Vs feature space in kernel-based methods"

Expensive

• Formally:

$$y(x) = argmin_{y \in Y} \left\| \begin{bmatrix} \widehat{y_1} \\ \dots \\ \widehat{y_p} \end{bmatrix} - \begin{bmatrix} f_1(x) \\ \dots \\ f_p(x) \end{bmatrix} \right\|$$

• Note: slow. The recall the formula for kernel PCA is:

$$\widehat{y}_j = \sum_{i=1}^m \alpha_j^i l(y_i, y)$$

That is, for each $y \in Y$ sum over all training data

• Must be done each time we look at a new $y \in Y$

EXPERIMENTS

Strings to Strings

Class	Base output	Uniform or Prefer Repeat	Input Alphabet
1	abad	Uniform	[a,b,c,d]
2	dbbd	0.7 repeat. Uniform otherwise	[a,b,c,d]
3	aabc	0.7 repeat. Uniform otherwise	[c,d]

- All outputs subject to a 0.3 chance of a random insert/delete and a 0.15 chance of 2 random inserts/delete
- 200 strings, 5 fold cross validated
- Substring Kernel, normalized in both input and output
- Loss is computed via the kernel in the output.
- In the space induced by the input kernel, used RBF kernel

	Kernel Dependency Est.	K-Nearest Neighbors
String Loss	0.676 +/- 0.030	0.985 +/- 0.029
Classification Loss	0.125 +/- 0.012	0.205 +/- 0.026

For more details see the paper

USPS Image Reconstruction

- Given top half of a USPS digit want the lower half
- Not given the digit—have to infer from top half
- The tricky part is choosing a good loss function
- Use an RBF kernel with a width designed to match kmeans
- 1000 digits 5-fold Cross Validated
- Hopfield net is a neural network

	Loss
Kernel Dependency Estimation	0.8384+/-0.0077
K Nearest Neighbors	0.8960+/-0.0052
Hopfield Net	1.2190+/-0.0072

USPS Optical Character Recognition

- Same USPS database as before
- Different Expiriment
- Classifying handwritten digits
- 1000 16x16 pixel digits with 5 folds.
- Variables for all algorithms optimized on one fold
- RBF kernel for input
- 0-1 loss multi-class loss on the output

	Kernel Dependency Est	1-vs-rest SVM	K-Nearest Neighbors
0-1 loss	0.0798 +/- 0.0067	0.0847 +/- 0.0064	0.1250 +/- 0.0075

For reference (from Learning with Kernels from Smola):

One-versus rest SVM trains one classifier per class and then assigns it to the maximal class:

Conclusions

- Structured Output Prediction
- only need a loss function kernel and a kernel in the input space.
- Kernels are capable of modeling things that would require infinitely many features to represent
- Kernels PCA gives an implicit feature representation

Any Questions?