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Example Structured Prediction 
Problem 

• Given half a digit, 
predict the other half 

• We have some 
structure because it’s a 
digit and we want to 
take advantage. 

• We will come back to 
this near the end. 

X Y 



Reminder: Kernels 

• Is generalized inner products. 

 

• Creates a distance (d). i.e. 
d(x, y) = k x, x + k y, y − 2k(x, y) 

 

• Behaves like vector spaces (Hilbert Spaces). 



Are Kernels Enough ? 

K(.,.) 

L(.,.) 

Y(Graphs) X (Strings) 

How do we reasonably classify the Green Point ? 

Nearest Neighbor ? 



Near Neighbors 

K(.,.) 

L(.,.) 

Y X 

What is the problem with this approach ? 

K(.,.) 



Highlights of Paper 

• Kernels (or distances) in the input and output 
spaces is sufficient for efficient structured 
prediction.  

• Generic Framework for Structured Prediction 

– Need a notion of similarity in input space 

– Loss function serves as kernels in output space. 

• Eliminates the need to perform feature 
extraction when kernels known. 



Advantages of Kernels 

• Right representation not always available. 
– Strings ? 

– Graphs ? 

• Many applications dealing with complex 
objects have standard notions of similarity. 
–  String Distances 

–  Graph Kernels 

• Feature representation may not be efficient. 
– Radial Basis Functions (RBF)  



Example Kernels 

• Multi-class pattern recognition: 

𝑙 𝑦, 𝑦′ =
1

2
𝑦 == 𝑦′  

• Regression Estimation: 

𝑙 𝑦, 𝑦′ = 𝑦 ∙ 𝑦′ 
• Multinomial 

𝑙 𝑦, 𝑦′ = 𝑦 ∙ 𝑦′ + 1 𝑝 
• Radial Basis functions 

𝑙 𝑦, 𝑦′ = exp −
𝑦 − 𝑦′ 2

2𝜎2
 

• Arbitrary distance matrix(Δ 𝑦𝑖 , 𝑦𝑗 = 𝐷𝑖𝑗) 

𝑙 𝑦𝑖 , 𝑦𝑗 =
𝐷𝑖𝑗

2
−  𝑐𝑝 𝐷𝑖𝑝

2𝑚
𝑝=1 −  𝑐𝑞 𝐷𝑞𝑗

2𝑚
𝑞=1 +  𝑐𝑝𝑐𝑞 𝐷𝑝𝑞

2𝑚
𝑝,𝑞=1

2
 

 
 

Plenty of options! 
See also: Learning with Kernels by Scholkopf and Smola (2002) 



ALGORITHM 



Problem 

Goals 
Givens 
• Kernel in input 𝑘 
• Loss Function (𝑙) 
Output 
• A predicted structure y for some 

arbitrary structured input x. 

X Y 

???? 

𝑘 𝑙 



Approach 

Goals 
Givens 
• Kernel in input 𝑘 
• Loss Function (𝑙) 
Output 
• A predicted structure y for some 

arbitrary structured input x. 

Basic Steps 

Learning 

1) Kernel PCA 

2) Ridge regression 

Testing 

1) Finding a “good” output 

X Y 

Kernel PCA 

𝑘 𝑙 

𝑌  



Approach 

Goals 
Givens 
• Kernel in input 𝑘 
• Loss Function (𝑙) 
Output 
• A predicted structure y for some 

arbitrary structured input x. 

Basic Steps 

Learning 

1) Kernel PCA 

2) Ridge regression 

Testing 

1) Finding a “good” output 

X Y 
𝑘 𝑙 

𝑌  



Approach 

Goals 
Givens 
• Kernel in input 𝑘 
• Loss Function (𝑙) 
Output 
• A predicted structure y for some 

arbitrary structured input x. 

Basic Steps 

Learning 

1) Kernel PCA 

2) Ridge regression 

Testing 

1) Finding a “good” output 

X Y 

𝑓 (𝑥) 

Ridge Regression 

??? 

𝑘 𝑙 

𝑌  



Kernel PCA on Outputs - Goal 

• Basically finding a set of 
vectors that yield a 
good representation of 
the labels. 

– Represents the output 
space as vectors that can 
learned in the next step 

– Kernelized analog of 
Principal Component 
Analysis 

X Y 

Kernel PCA 

Projected 
structures (𝑦 ) 

 
 

𝑘 𝑙 

𝑌  

Y 



Kernel PCA-Setting 

• Input: Data objects 𝑦𝑖 with defined kernel 
functions 𝑙(𝑦𝑖 , 𝑦𝑗). 

• Output: A vector representation Φ𝑙 𝑦  ∈ 𝑅𝑝  

 s. t.  𝑙 𝑦, 𝑦′ ≅ Φ𝑙 𝑦 ∙ Φ𝑙 𝑦′  

 

Note: Only access to 𝑙  ∙,∙  allowed. How to 
compute such Φ𝑙 𝑦  ? 



Kernel PCA-Idea 

• Mercers Theorem: Every kernel 𝑙(∙,∙) has an 
associated feature space 𝜙(∙), such that  

𝑙 𝑦𝑖 , 𝑦𝑗 = 𝜙 𝑦𝑖
𝑇𝜙 𝑦𝑗 . 

 𝜙 ∙  exist but we don’t know how to find it.  

 

• But we can get the PCA representation of  

𝜙(∙), using only access to 𝑙(∙,∙) !! 



𝑙(∙,∙) 

Mercer 

𝑌 ∈ Rp  

Y 𝜙 ∙ ∈ 𝑅∞ 



𝑙(∙,∙) 

Mercer 

𝑌 ∈ Rp  

Vanilla PCA in 𝜙(∙) 

• 𝝓 𝒚𝒊 = 𝝓 𝒚𝒊 −
𝟏

𝒎
 𝝓 𝒚𝒌

𝒏
𝒌=𝟏  

• Solve 𝐶𝜈𝑗 = 𝜆𝑗𝜈𝑗            

𝐶 =
1

𝑚
 𝜙 𝑦𝑖 𝜙 𝑦𝑖

𝑇𝑚
𝑖=1  

• The 𝑗𝑡ℎ component  of  
𝑦𝑖     

y𝑖 
𝑗  = 𝜙 𝑦𝑖

𝑇𝜈𝑗  

• Ensure 𝜈𝑗
𝑇𝜈𝑗 = 1 

 
Key observation :  𝝂𝒋 =  𝜶𝒋

𝒊𝝓(𝒚𝒊)
𝒎
𝒊=𝟏  

𝝓 𝒚𝒊
𝑻𝝓 𝒚𝒋 = 𝒍(𝒚𝒊, 𝒚𝒋) 

𝜙 ∙ ∈ 𝑅∞ 

𝑦𝑖  𝜙(𝑦𝑖) 

𝑦𝑖  



𝑙(∙,∙) 

Mercer 

𝑌 ∈ Rp  

Kernel PCA 

• 𝐿′ = 𝐼 −
1

𝑚
1𝑚𝑚 𝐿 𝐼 −

1

𝑚
1𝑚𝑚  

𝐿 is gram matrix, Li,j = 𝑙 𝑦𝑖 , 𝑦𝑗 .  

1mm 𝑚 × 𝑚 matrix of 1’s. 𝐼 is the identity. 

 

• Solve 
1

𝑚
𝐿′𝛼𝑗 = 𝜆𝑗𝛼𝑗 

 

• y 𝑗 =  𝛼𝑗
𝑖𝑙(𝑦𝑖 , 𝑦)

𝑚
𝑖=1   

where𝛼𝑗
𝑖is the 𝑖𝑡ℎ component of 𝛼𝑗. 

 

• Ensure 𝛼𝑗
𝑇𝐿′𝛼𝑗 = 1. 

𝜙 ∙ ∈ 𝑅∞ 

𝑦𝑖  

𝜙(𝑦𝑖) 

𝑦𝑖  

𝝓(∙) never used !! 



Substitution Activity  

Materialize 𝝓(𝒚) - PCA  
  

• Solve 𝐶𝜈𝑗 = 𝜆𝑗𝜈𝑗 where  

             𝐶 =
1

𝑚
 𝜙 𝑦𝑖 𝜙 𝑦𝑖

𝑇𝑚
𝑖=1  

 

• The 𝑗𝑡ℎ component  of  𝑦     

y 𝑗 = 𝜙 𝑦 𝑇𝜈𝑗 

 

• Ensure 𝜈𝑗
𝑇𝜈𝑗 = 1 

Just use 𝒍(∙,∙) – Kernel PCA 

• Solve 
1

𝑚
𝐿′𝛼𝑗 = 𝜆𝑗𝛼𝑗 

 

 

• y 𝑗 =  𝛼𝑗
𝑖𝑙(𝑦𝑖 , 𝑦)

𝑚
𝑖=1  where  

𝛼𝑗
𝑖 is the 𝑖𝑡ℎ component of 𝛼𝑗. 

 

• Ensure 𝛼𝑗
𝑇𝐿′𝛼𝑗 = 1. 

 

 
Key connection :  𝝂𝒋 =  𝜶𝒋

𝒊𝝓(𝒚𝒊)
𝒎
𝒊=𝟏  

𝝓 𝒚𝒊
𝑻𝝓 𝒚𝒋 = 𝒍(𝒚𝒊, 𝒚𝒋) 



Kernel Ridge Regression 

• Recall we know a 
‘kernelized’ version of 
the input (X) 

 
• Want to map the input 

feature space to 
vectorized outputs 

• 𝑥 →
𝑦 1

…
𝑦 𝑝

   𝑦  

X Y 
𝑘 𝑙 



Kernel Ridge Regression 

• Objective (primal version): 

min
𝑤

𝛾 𝑤
2
+

1

𝑚
  𝑦 𝑖 − 𝛽 ∙ Φ𝑘 𝑥𝑖

2
𝑚

𝑖=1

 

• Convert to dual form and solve to find the predicted 
location in the projected y space: 

𝑓𝑛 𝑥 =  𝛽𝑖
𝑛𝑘 𝑥𝑖 , 𝑥

𝑚

𝑖=1

 

Where  
𝛽𝑛 = 𝐾 + 𝛾𝐼 −1𝑦 𝑛 



Activity 

• I don’t know Kernel 
(Ridge) regression 

 

• But I know Kernel PCA 
and Linear  (Ridge) 
Regression  

 

• Can I still make it work ? 

X Y 

Kern
el P

C
A

 

𝑘 𝑙 

𝑌  



Activity 

• Yes !! 

 

• Use kernel PCA on input 
space to get vector 
representation 

 

• Input output both 
vector spaces.  Use 
linear regression. 

 

 

 

𝑥 1

…
𝑥 𝑝

→
𝑦 1

…
𝑦 𝑝

   

X Y 

Kern
el P

C
A

 

Kern
el P

C
A

 

Any Regression 

𝑘 𝑙 



Inference 

• Just found a way to 
estimate what we think 
the input (x) should 
map to in the projected 
space 

• Need to find the actual 
structured output y that 
most closely matches 

𝑓 (𝑥).  

 

 

X Y 

𝑓 (𝑥) 

Kernel PCA 

?? 

𝑘 

𝑌  



Inference 

• Project all Ys to 𝑦  

 

 

• Find 𝑦𝑛  nearest to 𝑓 (𝑥) 
in the vector space 𝑦 .  

 

 

X Y 

𝑓 (𝑥) 

𝑦 

𝑦 𝑛 

Kern
el P

C
A

 

𝑘 𝑙 

𝑌  



Inference 

• Formally: 

𝑦 𝑥 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑦∈𝑌

𝑦1 
…
𝑦𝑝 

−

𝑓1 𝑥
…

𝑓𝑝 𝑥
 

• Where 𝑦 → 𝑦1 ,𝑦2 ,… , 𝑦𝑝  via Kernel PCA. 
• 𝑓𝑛 𝑥  is done from learned Kernel Ridge 

Regression. 
• Some kernels can be inverted explicitly 
• Paper simply searched all possible y’s 

More info: Scholkopf et. al. “Input space Vs feature space in kernel-based methods” 
 



Expensive 

• Formally: 

𝑦 𝑥 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑦∈𝑌

𝑦1 
…
𝑦𝑝 

−

𝑓1 𝑥
…

𝑓𝑝 𝑥
 

• Note: slow.  
The recall the formula for kernel PCA is:  

𝑦𝑗 =  𝛼𝑗
𝑖𝑙(𝑦𝑖 , 𝑦)

𝑚
𝑖=1   

That is, for each 𝑦 ∈ 𝑌 sum over all training data 
• Must be done each time we look at a new 𝑦 ∈ 𝑌 
 

 



EXPERIMENTS 



Strings to Strings 

• All outputs subject to a 0.3 chance of a random insert/delete and a 0.15 
chance of 2 random inserts/delete 

• 200 strings, 5 fold cross validated 
• Substring Kernel, normalized in both input and output 
• Loss is computed via the kernel in the output. 
• In the space induced by the input kernel, used RBF kernel 

Class Base output Uniform or Prefer Repeat Input Alphabet 

1 abad Uniform [a,b,c,d] 

2 dbbd 0.7 repeat. Uniform otherwise [a,b,c,d] 

3 aabc 0.7 repeat. Uniform otherwise [c,d] 

Kernel Dependency Est. K-Nearest Neighbors 

String Loss 0.676 +/- 0.030 0.985 +/- 0.029 

Classification Loss 0.125 +/- 0.012 0.205 +/- 0.026 

For more details see the paper 



USPS Image Reconstruction 

• Given top half of a USPS 
digit want the lower half  

• Not given the digit—have to 
infer from top half 

• The tricky part is choosing a 
good loss function 

• Use an RBF kernel with a 
width designed to match k-
means 

• 1000 digits 5-fold Cross 
Validated 

• Hopfield net is a neural 
network 

Loss 

Kernel Dependency 
Estimation 

0.8384+/-0.0077 

K Nearest 
Neighbors 

0.8960+/-0.0052 

Hopfield Net 1.2190+/-0.0072 



USPS Optical Character Recognition 

• Same USPS database as before 
• Different Expiriment 
• Classifying handwritten digits 
• 1000  16x16 pixel digits with 5 

folds. 
• Variables for all algorithms 

optimized on one fold 
• RBF kernel for input 
• 0-1 loss multi-class loss on the 

output 

Kernel Dependency Est 1-vs-rest SVM K-Nearest Neighbors 

0-1 loss 0.0798 +/- 0.0067 0.0847 +/- 0.0064 0.1250 +/- 0.0075 

For reference (from Learning with Kernels from Smola): 
One-versus rest SVM trains one classifier per class and then assigns it to the maximal class: 



Conclusions 

• Structured Output Prediction  

• only need a loss function kernel and a kernel in the 
input space. 

• Kernels are capable of modeling things that would 
require infinitely many features to represent 

• Kernels PCA gives an implicit feature 
representation 

 
Any Questions? 

 


