
Maximum Margin Planning 

Presenters: 

Ashesh Jain, Michael Hu 

CS6784 Class Presentation 

Nathan Ratliff, Drew Bagnell and Martin Zinkevich 



Jain, Hu 

Theme 

1. Supervised learning 
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3. Reinforcement learning 

– Reward based learning 

Inverse Reinforcement Learning 
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Motivating Example (Abbeel et. al) 
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Reward-based Learning 
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Markov Decision Process (MDP) 

MDP is defined by (X,A, 𝑝, 𝑅) 
 

X        State space 

A       Action space 

𝑝         Dynamics model 
            𝑝(𝑥′|𝑥, 𝑎) 

𝑅        Reward function 

           𝑅(𝑥) or 𝑅(𝑥, 𝑎) 
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MDP is defined by (X,A, 𝑝, 𝑅) 
 

X        State space 

A       Action space 

𝑝         Dynamics model 
            𝑝(𝑥′|𝑥, 𝑎) 

𝑅        Reward function 

           𝑅(𝑥) or 𝑅(𝑥, 𝑎) 
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Markov Decision Process (MDP) 

Policy 

𝜋:X →A 

Example policy 
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𝑥𝑡 𝑥𝑡+1 

𝑎𝑡 𝑎𝑡+1 

𝑅𝑡+1 𝑅𝑡 

𝜋∗ = argmax
𝜋
𝐸  𝛾𝑡𝑅𝑡(𝑥𝑡 , 𝜋(𝑥𝑡))

∞

𝑡=0

 

𝜋:X →A 

Goal: Learn an optimal policy 

Graphical representation of MDP 

𝑥𝑡 , 𝜋 𝑥𝑡 → 𝑥𝑡+1, 𝜋 𝑥𝑡+1 →⋅⋅⋅ 
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Activity – Very Easy!!! 

Draw the optimal Policy! 

Deterministic Dynamics 

1 

0 

0 

0 
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Activity – Very Easy!!! 
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Activity – Solution 
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Optimal Policy 𝜋∗ 
𝜋: 𝑥 → 𝑎 

Optimal Policy 𝜋∗ 
𝜋: 𝑥 → 𝑎 

Reward Function 
R(𝑥, 𝑎) 

Reward Function 
R(𝑥, 𝑎) 

RL to Inverse-RL (IRL) 

RL Algorithm 
Dynamics Model 
𝑝(𝑥′|𝑥, 𝑎) 

• State space: X 
• Action space:A 

Inverse problem: Given optimal policy 𝜋∗ or samples drawn 
from it, recover the reward R(𝑥, 𝑎)  
 

Inverse 
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Reward Function 
R(𝑥, 𝑎) 

Why Inverse-RL? 

RL Algorithm 

• State space: X 
• Action space:A 

Abbeel et. al. Ratliff et. al. Kober et. al. 

Specifying R(𝑥, 𝑎) is 
hard, but samples from 
𝜋∗ are easily available 
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IRL framework 

Expert 

𝜋∗: 𝑥 → 𝑎 

Interacts 

Demonstration 

𝑦∗ = 𝑥1, 𝑎1 → 𝑥2, 𝑎2 → 𝑥3, 𝑎3 → ⋯ → 𝑥𝑛, 𝑎𝑛  

…… + + + + 𝑓 𝑦∗ = 𝑤𝑇 𝑤𝑇 𝑤𝑇 𝑤𝑇 𝑤𝑇 

Reward 
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Paper contributions 

1. Formulated IRL as structural prediction 

 Maximum margin approach 

 

2. Two optimization algorithms 

 Problem specific solver 

 Sub-gradient method 

 

3. Robotic application: 2D navigation etc. 
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Formulation 

Input X𝑖 ,A𝑖 , 𝑝𝑖 , 𝑓𝑖 , 𝑦𝑖 ,L𝑖 𝑖=1
𝑛  

 

X𝑖          State space 

A𝑖         Action space 

𝑝𝑖           Dynamics model 

𝑦𝑖           Expert demonstration 

𝑓𝑖(⋅)       Feature function 

L𝑖(⋅, 𝑦𝑖) Loss function 

 

 

 

 

 

 

 

𝑋 

𝑌 0.7 

0.1 

0.1 

0.1 
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X |A| 

X |A| 

Max-margin formulation 

min
𝑤,𝜉𝑖

𝜆

2
𝑤 2 +

1

𝑛
 𝛽𝑖𝜉𝑖
𝑖

 

𝑠. 𝑡.  ∀𝑖    𝑤𝑇𝑓𝑖 𝑦𝑖 ≥ max
𝑦∈Y

𝑖

𝑤𝑇𝑓𝑖 𝑦 + L 𝑦, 𝑦𝑖 − 𝜉𝑖  

Features linearly decompose over path 𝑓𝑖 𝑦 = 𝐹𝑖𝜇 

𝑑 𝐹𝑖 = 𝜇   = 

Feature  
map 

Frequency  
counts 
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Max-margin formulation 

min
𝑤,𝜉𝑖

𝜆

2
𝑤 2 +

1

𝑛
 𝛽𝑖𝜉𝑖
𝑖

 

𝑠. 𝑡.  ∀𝑖    𝑤𝑇𝐹𝑖𝜇𝑖 ≥ max
𝜇∈G

𝑖

𝑤𝑇𝐹𝑖𝜇 + 𝑙𝑖
𝑇𝜇 − 𝜉𝑖  

satisfies Bellman-flow constraints 𝜇 

 𝜇𝑥,𝑎𝑝𝑖 𝑥
′ 𝑥, 𝑎 + 𝑠𝑖

𝑥′ = 𝜇𝑥
′,𝑎

𝑎𝑥,𝑎

 ∀𝑥′ 

Outflow Inflow 
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 𝜇𝑥,𝑎𝑝𝑖 𝑥
′ 𝑥, 𝑎 + 𝑠𝑖

𝑥′ = 𝜇𝑥
′,𝑎

𝑎𝑥,𝑎

 ∀𝑖, 𝑥, 𝑎   𝑣𝑖
𝑥 ≥ 𝑤𝑇𝐹𝑖 + 𝑙𝑖

𝑥,𝑎 + 𝑝𝑖 𝑥
′ 𝑥, 𝑎 𝑣𝑖

𝑥′

𝑥′

 

Problem specific QP-formulation 

min
𝑤,𝜉𝑖

𝜆

2
𝑤 2 +

1

𝑛
 𝛽𝑖𝜉𝑖
𝑖

 

𝑠. 𝑡.  ∀𝑖    𝑤𝑇𝐹𝑖𝜇𝑖 ≥ max
𝜇∈G

𝑖

𝑤𝑇𝐹𝑖𝜇 + 𝑙𝑖
𝑇𝜇 − 𝜉𝑖  

∀𝑥′ 

Outflow Inflow 

𝑠. 𝑡.  ∀𝑖    𝑤𝑇𝐹𝑖𝜇𝑖 ≥ 𝑠𝑖
𝑇𝑣𝑖 − 𝜉𝑖  

Can be optimized using off-the-shelf QP solvers 
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Optimizing via Sub-gradient 

min
𝑤,𝜉𝑖

𝜆

2
𝑤 2 +

1

𝑛
 𝛽𝑖𝜉𝑖
𝑖

 

𝑠. 𝑡.  ∀𝑖    𝑤𝑇𝐹𝑖𝜇𝑖 ≥ max
𝜇∈G

𝑖

𝑤𝑇𝐹𝑖𝜇 + 𝑙𝑖
𝑇𝜇 − 𝜉𝑖  

satisfies Bellman-flow constraints 𝜇 

𝜉𝑖 ≥ max
𝜇∈G

𝑖

𝑤𝑇𝐹𝑖𝜇 + 𝑙𝑖
𝑇𝜇 − 𝑤𝑇𝐹𝑖𝜇𝑖 ≥ 0  

𝜉𝑖 = max
𝜇∈G

𝑖

𝑤𝑇𝐹𝑖𝜇 + 𝑙𝑖
𝑇𝜇 − 𝑤𝑇𝐹𝑖𝜇𝑖 

Re-writing 
constraint 

Its tight at 
optimality 
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Optimizing via Sub-gradient 

𝑐 𝑤 = min
𝑤,𝜉𝑖

𝜆

2
𝑤 2 +

1

𝑛
 𝛽𝑖
𝑖

max
𝜇∈G

𝑖

𝑤𝑇𝐹𝑖𝜇 + 𝑙𝑖
𝑇𝜇 − 𝑤𝑇𝐹𝑖𝜇𝑖  

Ratliff, PhD Thesis 
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𝜇∗ = argmax
𝜇∈G

𝑖

𝑤𝑡
𝑇𝐹𝑖 + 𝑙𝑖

𝑇 𝜇 

min
𝑤,𝜉𝑖

𝜆

2
𝑤 2 +

1

𝑛
 𝛽𝑖
𝑖

max
𝜇∈G

𝑖

𝑤𝑇𝐹𝑖𝜇 + 𝑙𝑖
𝑇𝜇 − 𝑤𝑇𝐹𝑖𝜇𝑖  

Weight update via Sub-gradient 

𝑤𝑡+1 ← 𝑤𝑡 − 𝛼𝛻𝑤𝑡𝑐(𝑤) 

Standard gradient descent update 

𝑤𝑡+1 ← 𝑤𝑡 − 𝛼𝑔𝑤𝑡  

𝑔𝑤𝑡 = 𝜆𝑤𝑡 +
1

𝑛
 𝛽𝑖𝐹𝑖(𝜇

∗ − 𝜇𝑖)

𝑖

  

Loss-augmented reward 
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Convergence summary 

𝑐 𝑤 =
𝜆

2
𝑤 2 +

1

𝑛
 𝑟𝑖 𝑤

𝑛

𝑖=1

 
𝑤 ← 𝑤 − 𝛼𝑔𝑤 

How to chose 𝛼? 

∀𝑤  ‖𝑔𝑤‖ ≤ 𝐺 0 < 𝛼 ≤
1

𝜆
 If then a constant step size 

gives linear convergence to a region around the minimum 

𝑤𝑡+1 −𝑤
∗ 2 ≤ 𝜅𝑡+1 𝑤0 −𝑤

∗ 2 +
𝛼𝐺2

𝜆
 

Optimization error 

0 < 𝜅 < 1 
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Substitute 
𝜆

2
𝑤𝑡 −𝑤

∗ 2 ≤ 𝑔𝑡
𝑇(𝑤𝑡 −𝑤

∗) 

Convergence proof 

𝑤𝑡+1 −𝑤
∗ 2 = 𝑤𝑡 − 𝛼𝑔𝑡 −𝑤

∗ 2 

                              = 𝑤𝑡 −𝑤
∗ 2 + 𝛼2 𝑔𝑡

2 − 2𝛼𝑔𝑡
𝑇(𝑤𝑡 −𝑤

∗) ? 

                             ≤ 1 − 𝛼𝜆 𝑤𝑡 −𝑤
∗ 2 + 𝛼2𝐺2 

∀𝑤  ‖𝑔𝑤‖ ≤ 𝐺 We know 

𝑐 𝑤 ≥ 𝑐 𝑤′ + 𝑔𝑤′
𝑇 𝑤 −𝑤′ +

𝜆

2
𝑤 − 𝑤′ 2 

𝑤′ 

𝑤 
𝑤 ← 𝑤∗ 𝑤′ ← 𝑤𝑡 

𝑐 𝑤∗ ≤ 𝑐(𝑤𝑡) Use 

𝑐(𝑤) 
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2D path planning 

Expert’s 
Demonstration 

Learned 
Reward 

Planning in a new 
Environment 
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Car driving (Abbeel et. al) 

 



Jain, Hu 

Bad driver (Abbeel et. al) 
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Questions 

• Summary of key points: 

– Reward-based learning can be modeled by the 
MDP framework. 

– Inverse Reinforcement Learning takes perception 
features as input and outputs a reward function. 

– The max-margin planning problem can be 
formulated as a tractable QP. 

– Sub-gradient descent solves an equivalent 
problem with provable convergence bound. 

 


