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Object Localization

* Main disadvantages of sliding window
— Inefficient to scan over the entire image
* 320 x 240 image —> one billion rectangular sub-images

— Not clear how to optimally train a discriminant function

* main contribution of this paper

* utilizes structured learning




Parameterization of Bounding Box
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Rectangle [l,i,r,b]
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Y ={(w,t,,b,1)|w € {+1,—1},(t, L, b,7) € R*}

 If w = —1, the coordinate vector is ignored.



Structured Regression

e a structured regression rather than classification



Structured Regression

e a structured regression rather than classification

e outputs are not independent of each other
— right coordinate > left coordinate
— bottom coordinate > top coordinate

— overlapping boxes should have similar objective
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Object Localization as Structured Learning

* Given
— Input images
{x{, .., x,} X

— Associated annotations
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_ W € {+1,—1},} |:|
Y = {((l), L, l; b, T) (t, l, b, T') = R4 b=




Object Localization as Structured Learning

* Given
— Input images
{x{, .., x,} X

— Associated annotations
Wy b Y -

w € {+1,—1}, t [:::]
YE{(a),t,l,b,r) (.1 IE ) EIR34} hw

* @Goalis to learn a mapping
g:X-Y
g(x) = argmax f (x,y)
y
[XXY->R

f,y) = (w, ¢(x,¥))
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Object Localization as Structured Learning

* To train a discriminant function f
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Object Localization as Structured Learning

* To train a discriminant function f
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Object Localization as Structured Learning

* To train a discriminant function f
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Loss Function

* Measure of overlap

{1 Area(y; N vy) 1t Yiw = Y = 1

~ Area(y; Uv)

Alyi.y) =
(b 1— (%(yg;wyw + 1)) otherwise
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Loss Function

* Measure of overlap

{1 _ Area(yi (1) if Yiw = Yo = 1

Area(y: Uy)
1— (%(yiwyw + 1)) otherwise
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Loss Function

* Measure of overlap

Area(y; |Jv)

1 — (%( ViwYw + 1)) otherwise

| — Area(:iv) if i = Yo = 1
Alyi.y) = { |

: no object
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Loss Function

* Measure of overlap

Area(y: (Jy)

1 — (%( ViwYw + 1)) otherwise

| — Area(:iv) if i = Yo = 1
Alyi.y) = { |
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Joint Kernel Map

Vv vV
Bag of Words; Spatial Pyramids;
Histogram of Oriented Gradients...




Joint Kernel Map for Localization

Slide from Blaschko and Lampert
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Joint Kernel Map for Localization

could also be large.

Slide from Blaschko and Lampert 22



Maximization Step

Training stage: max4(y;,y) + (w, p(x;,y))

Testing stage:  arg max (w, ¢(x;,y))
yeY

Exhaustive search computationally infeasible

Branch-and-bound optimization algorithm



Branch-and-bound: bounding box splitting

Branch-and-Bound works with subsets of the search space.

o Instead of four numbers y = [, t, r, b], store four intervals

Y = [L. T, R, B:

L= [ll::llhl] ) R= [rm,rm]

L=1[L1I . Largest possibia rectangle [l brtern]
T — [ﬁ 7 Smallest possible rectangle [tnbio,ln.io]
R=r7|

B=bb




Branch-and-bound: branch step

Set of All Possible
Bounding Boxes

R

Subsetl Su

t2

t11l Subsetl2

N\

* Branching can be done by splitting image
coordinates (left/right; top/bottom)

* Branch-and-bound is efficient because only
the upper bound of a branch (a set of boxes)
needs to be computed!

Su

Each branch corresponds
to a set of bounding
boxes



Branch-and-bound: splitting examples
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Splitting right coordinates

Splitting left coordinates
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Branch-and-bound: splitting examples
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Splitting left coordinates

Splitting right coordinates
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Branch-and-bound: splitting examples
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Splitting left coordinates

Splitting right coordinates
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Branch-and-bound: bounding box splitting

T = [t b]
B = b be]
Ve
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Branch-and-bound: quality function

A quality function to compute the &=
upper bound for a set of boxes:

FR) = £* R + F~ o
]

All positive Maximum All negative Minimum

features  bounding features  bounding
box in a set box in a set




Branch-and-bound: bound step

1. For each branching step, only keep the branch (set
of boxes) with higher upper bound.

2. Create sub-branch for the current branch. Repeat 1
until there is only one box left.




Experiment: Dataset

 TU Darmstadt cows
— 111 training images
— 557 test images

* PASCAL VOC 2006

— 5,304 images of 10 classes

— Evenly split into a train/validation
and a test part




Experiment: Setup

* Local SURF descriptors from feature points
— 10,000 descriptors from training images
— 3,000 entry visual codebook

e SVMStUe package was used.

 Benchmark against standard sliding window
approach
— Binary training
— Linear image kernel over bag-of-visual-word histogram



Results: TU Darmstadt Cows

Performance at equal error rate (EER).
Performance at ERR
Implicit Shape Model (ISM) 96.1%

Local Kernels (LK) 95.3%
LK + ISM 97.1%
Binary training 97.3% Tighter contour
Structured training 98.2%
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Results: PASCAL VOC 2006

Precision-recall curves and example detections

Precision=TP/(TP+FP)
Recall=TP/(TP+FN)

a5 VOC 2006 bicycle o VOC 2006 bus : VOC 2006 cat
' - Structured training ) : - structured training ' - Structured training
= binary training - binary training - binary training
0.8 - 0.8 : : 0.8 I
c | = c
00.6 00.6( ©00.6
v v wn
2 S ‘O
0.4 0.4 o4
0.2 0.2 0.2
0-8% 0.2 0.4 0.6 0.8 i0o %86 0.2 0.4 0.6 0.8 io %% 0.2 0.4 0.6 0.8 1.0
recall recall recall




Results: PASCAL VOC 2006

Average Precision Scores on the 10 categories of

PASCAL VOC 2006
bike | bus car cat | cow | dog |horse/m.bike|person |sheep
structured training | .472 | .342| .336 | .300| .275| .150 | .211| .397 | .107 | .204
binary training | .403 | .224| 256 | .228 | .114| .173| .137| .308 | .104 | .099
best in competition| .440 | .169| .444 | .160| .252| .118 | .140| .390 | .164 | .251
post competition| .4987| .249*| .4587| .223*| — | .148*| — | — |.340"7| —




Discussion and Conclusion

Structured training often exceeds state-of-the art
performance.

— It has access to all possible bounding boxes.

— It is able to better handle partial detection problem.




Demo!



