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3D Segmentation

e.g. 3D scan segmentation of Stanford University
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http://ai.stanford.edu/~drago/Projects/Detector/index.html




3D Segmentation

* Why is this challenging?
- 3D scanning points lack color clues
- data is often noisy and sparse
- extracting features for unseen object can be hard



Paper Highlight

- Markov Random Fields (MRFs) incorporate both node and edge features

- Enforce the preference that adjacent points have the same label.

- Formulate a compact quadratic programming based on maximum-
margin framework , making the estimation tractable.

- Scale up to tens of millions of points and multiple object classes.



Learning Algorithm Overview

Learning Phase

- Training data: scene points labeled with cIasses
- Goal: find a good set of feature weights W = (wn ,We)
- Approach: maximum margin Markov network (M3N)

 Segmentation Phase
- Goal: classify the points of a new scene
- Approach: compute both point and edge features and run the
graph-cut algorithm using the weights y_{; :



Markov Random Fields

Motivation: neighboring scan points can be correlated
Definitions:

- Markov network G=(V,E), v={1,2,...N}

- Edge (i, j): probabilistic interaction between nodes

- Labels are the discrete variables Y = {V,.Y,,....Y, } , Where
Y. e{l,2,....K}



Markov Random Fields

Nodes and edges associated with potentials ¢,(Y;), ¢.(Y;,Y;)
Associative Markov Network: ¢, (k,k) 21, ¢,(k,[)=1 Vk#I
The joint distribution speciﬁed by the network is:

P(y)=— H¢ Gl 9.0y

ijek
where Z/ is the partmon funchon given by

Z= ZH¢ G190y

ijek
Dependence of potentlals on features: log¢.(k) = w’ -x. and

log®, (k,k) = wh X,



Markov Random Fields

Maximum a posteriori (MAP) inference:
- find the maximum of the conditional distribution:

N K K
log P, (y1%)= D > (W, -X,)yi +, > (W. X))y} ¥}

i=1 k=1 ijeE k=1

where y: =1(y, =k)



Markov Random Fields

Maximum a posteriori (MAP) inference:

- find the maximum of the conditional distribution

logP, (ylx)= EZ(W X))V +22(W Xl])ylyj

i=1 k=1 ijeE k=1

where yi=1(y, =k)

- formulate the problem as integer programming:

maXZZ(W X)y,+2(w le)le

i=1 k=1 ijek
st. y;,y; €{0,1}
yl.]J‘.Syik, yl.’;Syf, Vije E. k.
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Markov Random Fields

Maximum a posteriori (MAP) inference:

- find the maximum of the conditional distribution

logP, (ylx)= ZZ(W X))V +22(W Xl])yl)’]

i=1 k=1 ijeE k=1

where yi=1(y, =k)

- formulate the problem as integer programming:

max Z Z (W "X, )yl + 2 (W XlJ )le Why these two

i=1 k=1 ijek
problems are
k .k i
st. y;,y;, €40,1} equaivalent?

yl.]; <y, yl.’; Sy;‘, Vije E. k.



Markov Random Fields

Maximum a posteriori (MAP) inference:

- find the maximum of the conditional distribution:
N K K
logP, (ylx)= zz(w,’j X )Y +22(w’e‘ -Xl.j)yl.ky;‘
i=1 k=1 ijeE k=1

where v =1(y, =k)

- Using linear programming relaxation:
N K

maXEE(W,]j 'X,-))’,-]C"'E(Wle{'xzj)yg

i=1 k=1 ijicE

st. y' =20, Vik; zy,k =1, Vi
k

yl.’]‘. <y, yl.’;. Syf, Vije E k.



Learning the weights

*Maximum margin estimation:
- Maximize our confidence in the true labels relative to any
other possible joint l[abeling



Learning the weights

*Maximum margin estimation:
- Maximize our confidence in the true labels relative to any

other possible joint l[abeling
- Define the gain of the true label<y over another joint

labeling Yy as:

log Pw (y|x) — log Pw (y|x) = wX (y — y)



Learning the weights
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Learning the weights
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Learning the weights
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Learning the weights
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Learning the weights

*Maximum margin estimation:
- Maximize our confidence in the true labels relative to
any other possible joint labeling



Learning the weights

*Maximum margin estimation:

- Maximize our confidence in the true labels relative to
any other possible joint labeling

- Define the gain of the true label: 5’ over another joint
labeling Y as:

log Pw (y]x) — log Pw (y]x) = wX (y — y)



Learning the weights

*Maximum margin estimation:

- Maximize our confidence in the true labels relative to any other
possible joint labeling

- Define the gain of the true labels yover another joint labeling Yas:

log Pw (}A"X) — log Pw (Y‘X) :WX(S’—Y)

- Want the gain to scale linearly with the number of mislabeled

points l(f’,}’):
maxy s.t. wX (y—y) > (y,y)

Wi <1



Learning the weights

.Note that l(S’,Y) :AN — }A’;Lryfn



Learning the weights

.Note that Z(S’, Y) = N — }A’;Lryfn

.Add in a slack variable &

1
min §W2 + C¢

s.t. wX(y—y) ZN—}Afgyn—ﬁ, Vy € VY



Learning the weights

.Note that Z(S’, Y) = N — }A’;Lryfn

.Add in a slack variable &
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«Exponentially many constraints - replace them with a
single nonlinear constraint,

WXy — N +{ > max wXy — V. yn



Learning the weights

.Note that l(S’, Y) = N — }A’;Lryfn

.Add in a slack variable &
1

min §W2 + C¢
s.t. wX(y—y)> N—}Af,zyn — &Ny e
«Exponentially many constraints - replace them with a
single nonlinear constraint,
wXy — N + £ > max wXy — Sflyn

yey
«Where the right hand side can be found using the MAP



Learning the weights

«Plugging the dual of the MAP linear program, we get the
following quadratic program for learning the weights:

1
min 5 w|® + C¢

N
S.t. wxy—N+£zZai; w, > 0;
1=1
Qg — Z & an'xi_yia \V/Z,]f;

1,]€E

e ija



Experiment:
Terrain classification

eData set: 3-D map of parts of Stanford from a robot
equipped with a laser scanner
- 35 million noisy 3-D points

Classify points into:
- Ground, Building, Tree, Shrubbery

*Classifying the ground is trivial
- Threshold the z-coordinate at ~0



Features

1. Distribution of surrounding points relative to principal
plane

2. Distribution of points in vertical cylinder (r=0.25m)

3. Binary feature: whether within 2m of the ground



Edges

*Associative Markov Network (AMN) requires pair-wise
connections ('edges’)

*Each point is randomly connected to 6 other points
- 3 from sphere of radius 0.5m
- 3 from vertical cylinder of radius 0.25m



Experimental Setup

*Training:
- Roughly 30,000 images that represent the classes well

*Compare multi-class SVM, Voted SVM, and AMN
- All used same training data and features



Results

a) Robot and campus map

Accuracy: SVM: 68%, Voted-SVM: 73%, AMN: 93%



Conclusions

*A simple Associative Markov Network (AMN) model was introduced
for segmenting 3D image data
- Model rewards cases where nearby points have the same label

Classification is done by maximum a-posteriori (MAP) inference,
which maximizes the log-likelihood

*Training of the weights is done by maximizing the margin between
the log-likelihoods of the true labeling ¥ and any other labeling y

*Experiments on classifying 3D images demonstrated a large gain in
accuracy over an SVM



