Max-Margin Markov Networks
 by Ben Taskar, Carlos Guestrin and Daphne Koller

Moontae Lee and Ozan Sener
Cornell University

February 11, 2014

Overview

- Quiz
- Introduction to Markov Network
- Pairwise Log-linear Model
- Margin-based Formulation
- Exploiting Network Structure
- Polytope Constraints
- Coordinate-wise Optimization
- Training Methods
- Summary and Further Readings

Markov Random Field

- Temporal/Spatial relations need to be modelled by most of the ML systems
- Markov Random Field (MRF) is a way to model such structures.

Markov Random Field

Given a graph $G(V, E)$, a set of variables $\left(X_{v}\right)_{v \in V}$ is a MRF if a variable is conditionally independent of all other variables given its neighbors. ex. $P\left(X_{E} \mid X_{A}, X_{B}, X_{C}, X_{D}\right)=P\left(X_{E} \mid X_{C}, X_{D}\right)$

How to do Inference $-\arg \max P\left(\left\{X_{v}\right\}_{v \in V}\right)$

- If it is a Markov Chain, we can use Viterbi algorithm.
- What if it is not ?

Hammersley \& Clifford theorem

If MRF has positive measure, its probability density can be decomposed over set of cliques.

- $P\left(X_{A}, X_{B}, X_{C}, X_{D}, X_{E}\right)=e^{-E\left(X_{A}, X_{B}, X_{C}, X_{D}, X_{E}\right)}$ where, $E\left(X_{A: E}\right)=E\left(X_{A}, X_{B}, X_{D}\right)+E\left(X_{D}, X_{E}\right)+E\left(X_{C}, X_{E}\right)$

Pairwise Log-linear Model

- Assume pairwise MRF (any two non-adjacent variables are conditionally independent given all other variables)
- Energy function is defined over edges $E(X)=\sum_{(u, v) \in \mathcal{E}} E\left(X_{u}, X_{v}\right)$
- If we use indicator functions, resultant energy is linear.

Consider two nodes $\left(x_{1}, x_{2}\right)$ Markov network;

$$
\begin{array}{lll}
f_{1}(x)=1 & \text { if } \quad x_{1}=0, x_{2}=0 & w_{1}=E\left(x_{1}=0, x_{2}=0\right) \\
f_{2}(x)=1 \quad \text { if } \quad x_{1}=0, x_{2}=1 & w_{2}=E\left(x_{1}=0, x_{2}=1\right) \\
f_{3}(x)=1 \quad \text { if } \quad x_{1}=1, x_{2}=0 & w_{3}=E\left(x_{1}=1, x_{2}=0\right) \\
f_{4}(x)=1 \quad \text { if } \quad x_{1}=1, x_{2}=1 & w_{4}=E\left(x_{1}=1, x_{2}=1\right) \\
& E\left(x_{1}, x_{2}\right)=\sum_{i=1}^{4} f_{i} w_{i}=f\left(x_{1}, x_{2}\right)^{T} w
\end{array}
$$

Problem to be Solved

- Energy function is log-likelihood $\left(\mathrm{E}=w^{T} f\right)$ where f is the concatenation of all edge features.

$$
f=(f(a, b) f(b, a) f(a, c) f(c, a), f(\boldsymbol{b}, a), f(f, b), f(a, a), f(\boldsymbol{C}, \mathrm{c}), f(\overrightarrow{\boldsymbol{E}}, \mathrm{a}))
$$

- And we solve the energy minimization problem which corresponds to ML problem.

$$
y=\arg \max w^{\top} f(\operatorname{brace}, y)
$$

Margin-based Formulation

- We want to learn a weight vector w such that

$$
\left.\begin{array}{c}
\arg \max w^{T} f(b r a c e, y)=" b r a c e " \\
w^{T} f(b r a c e, " b r a c e ")
\end{array}>w^{T} f\left(b r a c e, " a a a a a^{\prime}\right)\right)
$$

- Our goal is to maximize the margin constraining $\|w\| \leq 1$

$$
\begin{aligned}
& \max \lambda \text { s.t } w^{\top} f(\text { race, "brace" })-w^{\top} f(b r a c e, y) \geq \lambda \quad \forall y \\
& \begin{array}{lllll|l|}
b & a & a & r & e & 2 \\
b & r & d & z & e & 2 \\
b & r & b & c & e & 1 \\
b & r & a & c & e & 0 \\
b & r & a & C & e &
\end{array}
\end{aligned}
$$

Max-Margin Markov Network (MMMN)

- Primal Formulation:

$$
\min \frac{1}{2}\|w\|^{2}+C \sum_{x} \xi_{x} \quad \text { s.t } \quad w^{T} \Delta f_{x}(y) \geq \Delta t_{x}(y)-\xi_{x} \forall_{x, y}
$$

where $\Delta f_{x}(y)=f(x, t(x))-f(x, y), \Delta t_{x}(y)=$ loss against the true label $t(x)$

- Dual Formulation:

$$
\begin{array}{ll}
\max & \sum_{x, y} \alpha_{x}(y) \Delta t_{x}(y)-\frac{1}{2}\left\|\sum_{x, y} \alpha_{x}(y) \Delta f_{x}(y)\right\|^{2} \\
\text { s.t } & \sum_{y} \alpha_{x}(y)=c \quad \forall_{x} \quad \\
\alpha_{x}(y) \geq 0 \quad \forall_{x, y}
\end{array}
$$

Max-Margin Markov Network (MMMN)

- Primal Formulation:

$$
\min \frac{1}{2}\|w\|^{2}+C \sum_{x} \xi_{x} \quad \text { s.t } \quad w^{T} \Delta f_{x}(y) \geq \Delta t_{x}(y)-\xi_{x} \forall_{x, y}
$$

where $\Delta f_{x}(y)=f(x, t(x))-f(x, y), \Delta t_{x}(y)=$ loss against the true label $t(x)$

- Dual Formulation:

$$
\begin{array}{ll}
\max & \sum_{x, y} \alpha_{x}(y) \Delta t_{x}(y)-\frac{1}{2}\left\|\sum_{x, y} \alpha_{x}(y) \Delta f_{x}(y)\right\|^{2} \\
\text { s.t } \quad \sum_{y} \alpha_{x}(y)=C \quad \forall_{x} \quad \alpha_{x}(y) \geq 0 \quad \forall_{x, y}
\end{array}
$$

Q1. \# of dual variables? (m examples, / binary outputs)

Max-Margin Markov Network (MMMN)

- Primal Formulation:

$$
\min \quad \frac{1}{2}\|w\|^{2}+C \sum_{x} \xi_{x} \quad \text { s.t } \quad w^{T} \Delta f_{x}(y) \geq \Delta t_{x}(y)-\xi_{x} \forall_{x, y}
$$

where $\Delta f_{x}(y)=f(x, t(x))-f(x, y), \Delta t_{x}(y)=$ loss against the true label $t(x)$

- Dual Formulation:

$$
\begin{array}{ll}
\max & \sum_{x, y} \alpha_{x}(y) \Delta t_{x}(y)-\frac{1}{2}\left\|\sum_{x, y} \alpha_{x}(y) \Delta f_{x}(y)\right\|^{2} \\
\text { s.t } \quad \sum_{y} \alpha_{x}(y)=C \quad \forall_{x} \quad \alpha_{x}(y) \geq 0 \quad \forall_{x, y}
\end{array}
$$

Q1. \# of dual variables? (m examples, / binary outputs)
Q2. \# of addends?

Max-Margin Markov Network (MMMN)

- Primal Formulation:

$$
\min \quad \frac{1}{2}\|w\|^{2}+C \sum_{x} \xi_{x} \quad \text { s.t } \quad w^{T} \Delta f_{x}(y) \geq \Delta t_{x}(y)-\xi_{x} \forall_{x, y}
$$

where $\Delta f_{x}(y)=f(x, t(x))-f(x, y), \Delta t_{x}(y)=$ loss against the true label $t(x)$

- Dual Formulation:

$$
\begin{array}{ll}
\max & \sum_{x, y} \alpha_{x}(y) \Delta t_{x}(y)-\frac{1}{2}\left\|\sum_{x, y} \alpha_{x}(y) \Delta f_{x}(y)\right\|^{2} \\
\text { s.t } \quad \sum_{y} \alpha_{x}(y)=C \quad \forall_{x} \quad \alpha_{x}(y) \geq 0 \quad \forall_{x, y}
\end{array}
$$

Q1. \# of dual variables? (m examples, I binary outputs)
Q2. \# of addends $=m \cdot 2^{\prime}+m \cdot 2^{\prime}$

Max-Margin Markov Network (MMMN)

- Primal Formulation:

$$
\min \frac{1}{2}\|w\|^{2}+C \sum_{x} \xi_{x} \quad \text { s.t } \quad w^{T} \Delta f_{x}(y) \geq \Delta t_{x}(y)-\xi_{x} \forall_{x, y}
$$

where $\Delta f_{x}(y)=f(x, t(x))-f(x, y), \Delta t_{x}(y)=$ loss against the true label $t(x)$

- Dual Formulation:

$$
\begin{array}{ll}
\max & \sum_{x, y} \alpha_{x}(y) \Delta t_{x}(y)-\frac{1}{2}\left\|\sum_{x, y} \alpha_{x}(y) \Delta f_{x}(y)\right\|^{2} \\
\text { s.t } & \sum_{y} \alpha_{x}(y)=c \quad \forall_{x} \quad \alpha_{x}(y) \geq 0 \quad \forall_{x, y}
\end{array}
$$

Q1. \# of dual variables? (m examples, I binary outputs)
Q2. \# of addends $=m \cdot 2^{\prime}+m \cdot 2^{\prime}$
Q3. Is it equivalent to Structural SVM (SSVM)?

Exploiting Structure in MMMN (1)

(Observation 1) Dual variables $\left\{\alpha_{x}(y)\right\}_{x, y}$ satisfy
 $$
\sum_{y} \alpha_{x}(y)=C \text { and } \alpha_{x}(y) \geq 0 \quad \forall_{y}
$$

So, $\alpha_{x}(y)$ can be an unnormalized density function over y given x

Exploiting Structure in MMMN (1)

(Observation 1) Dual variables $\left\{\alpha_{x}(y)\right\}_{x, y}$ satisfy

$$
\sum_{y} \alpha_{x}(y)=C \text { and } \alpha_{x}(y) \geq 0 \quad \forall_{y}
$$

So, $\alpha_{x}(y)$ can be an unnormalized density function over y given x

(Observation 2) Both are decomposed into

$\Delta t_{x}(y)=$ loss against $t(x)=\#$ of disagreements $=\sum_{i \in V} I\left[y_{i} \neq(t(x))_{i}\right]=\sum_{i \in V} \Delta t_{x}\left(y_{i}\right)$ $\Delta f_{x}(y)=f(x, t(x))-f(x, y)=\sum_{(i, j) \in E}\left(f\left(x, t(x)_{i}, t(x)_{j}\right)-f\left(x, y_{i}, y_{j}\right)\right)=\sum_{(i, j) \in E} \Delta f_{x}\left(y_{i}, y_{j}\right)$

The decompositions are sums over edges and nodes coherent to our network structure $G=(V, E)$!

Exploiting Structure in MMMN (2)

- Define new dual variables via marginalizations $\left\{\alpha_{x}(y)\right\}_{x, y}$

$$
\begin{aligned}
\mu_{x}\left(y_{i}\right) & =\sum_{y \sim\left[y_{i}\right]} \alpha_{x}(y) \quad \forall i \in V, \quad \forall y, \quad \forall x \\
\mu_{x}\left(y_{i}, y_{j}\right) & =\sum_{y \sim\left[y_{i}, y_{j}\right]} \alpha_{x}(y) \quad \forall(i, j) \in E, \quad \forall y_{i}, y_{j}, \quad \forall x
\end{aligned}
$$

- Then the 1st term has a new representation such that

$$
\begin{aligned}
\sum_{y} \alpha_{x}(y) \Delta t_{x}(y) & =\sum_{y} \alpha_{x}(y)\left(\sum_{i \in V} \Delta t_{x}\left(y_{i}\right)\right)=\sum_{y} \sum_{i \in V} \alpha_{x}(y) \Delta t_{x}\left(y_{i}\right) \\
& =\sum_{i \in V}\left(\sum_{y_{i}} \Delta t_{x}\left(y_{i}\right) \sum_{y \sim\left[y_{i}\right]} \alpha_{x}(y)\right)=\sum_{i \in V} \sum_{y_{i}} \mu_{x}\left(y_{i}\right) \Delta t_{x}\left(y_{i}\right)
\end{aligned}
$$

Exploiting Structure in MMMN (3)

- (Example) Given a sample x, see the following transformation:

	y_{1}	y_{2}	y_{3}	$\Delta t_{\times}\left(y_{1}\right)$	$\Delta t_{x}\left(y_{2}\right)$	$\Delta t_{x}\left(y_{3}\right)$	$\Delta t_{x}(y)$	$\alpha_{x}(y)$
$t(x)$	1	0	1	true label				
all possible labels y	0	0	0	1	0	1	2	0.1
	0	0	1	1	0	0	1	0.2
	0	1	0	1	1	1	3	0.1
	0	1	1	1	1	0	2	0.1
	1	0	0	0	0	1	1	0.1
	1	0	1	0	0	0	0	0.1
	1	1	0	0	1	1	2	0.2
	1	1	1	0	1	0	1	0.1
$\mu_{x}\left(y_{i}=0\right)$	0.5	0.5	0.5	0.5*1	0.5*0	$0.5 * 1$	$\Sigma=1.5$	
$\mu_{x}\left(y_{i}=1\right)$	0.5	0.5	0.5	0.5*0	0.5*1	0.5*0		

$$
\begin{aligned}
\sum_{y} \alpha_{x}(y) \Delta t_{x}(y)=\text { sum of } 8 \text { terms }=1.5 & \left(\because y \in\{0,1\}^{3}\right) \\
\sum_{i} \sum_{y_{i}} \mu_{x}\left(y_{i}\right) \Delta t_{x}\left(y_{i}\right)=\text { sum of } 6 \text { terms }=1.5 & \left(\because i \in\{1,2,3\} \quad y_{i} \in\{0,1\}\right)
\end{aligned}
$$

Exploiting Structure in MMMN (4)

- Similarly the 2 nd term has a new representation such that

$$
\left\|\sum_{x, y} \alpha_{x}(y) \Delta f_{x}(y)\right\|^{2}=\sum_{x, x^{\prime}} \sum_{(i, j) \in E} \sum_{\left(i^{\prime}, j^{\prime}\right) \in E} \sum_{y_{i}, y_{j}} \sum_{y_{i^{\prime}}, y_{j^{\prime}}} \mu_{x}\left(y_{i}, y_{j}\right) \mu_{x^{\prime}}\left(y_{i^{\prime}}, y_{j^{\prime}}\right) \Delta f_{x}\left(y_{i}, y_{j}\right)^{T} \Delta f_{x^{\prime}}\left(y_{i^{\prime}}, y_{j^{\prime}}\right)
$$

- Therefore the new equivalent formulation is to maximize
$\sum_{x} \sum_{i \in V} \sum_{y_{i}} \mu_{x}\left(y_{i}\right) \Delta t_{x}\left(y_{i}\right)-\frac{1}{2} \sum_{x, x^{\prime}} \sum_{(i, j) \in E} \sum_{\left(i^{\prime}, j^{\prime}\right) \in E} \sum_{y_{i}, y_{j}} \sum_{y_{i^{\prime}}, y_{j^{\prime}}} \mu_{x}\left(y_{i}, y_{j}\right) \mu_{x^{\prime}}\left(y_{i^{\prime}}, y_{j^{\prime}}\right) \Delta f_{x}\left(y_{i}, y_{j}\right)^{T} \Delta f_{x^{\prime}}\left(y_{i^{\prime}}, y_{j^{\prime}}\right)$

Exploiting Structure in MMMN (4)

- Similarly the 2 nd term has a new representation such that
$\left\|\sum_{x, y} \alpha_{x}(y) \Delta f_{x}(y)\right\|^{2}=\sum_{x, x^{\prime}} \sum_{(i, j) \in E} \sum_{\left(i^{\prime}, j^{\prime}\right) \in E} \sum_{y_{i}, y_{j}} \sum_{y_{i^{\prime}}, y_{j^{\prime}}} \mu_{x}\left(y_{i}, y_{j}\right) \mu_{x^{\prime}}\left(y_{i^{\prime}}, y_{j^{\prime}}\right) \Delta f_{x}\left(y_{i}, y_{j}\right)^{T} \Delta f_{x^{\prime}}\left(y_{i^{\prime}}, y_{j^{\prime}}\right)$
- Therefore the new equivalent formulation is to maximize
$\sum_{x} \sum_{i \in V} \sum_{y_{i}} \mu_{x}\left(y_{i}\right) \Delta t_{x}\left(y_{i}\right)-\frac{1}{2} \sum_{x, x^{\prime}} \sum_{(i, j) \in E} \sum_{\left(i^{\prime}, j^{\prime}\right) \in E} \sum_{y_{i}, y_{j}} \sum_{y_{i^{\prime}}, y_{j^{\prime}}} \mu_{x}\left(y_{i}, y_{j}\right) \mu_{x^{\prime}}\left(y_{i^{\prime}}, y_{j^{\prime}}\right) \Delta f_{x}\left(y_{i}, y_{j}\right)^{T} \Delta f_{x^{\prime}}\left(y_{i^{\prime}}, y_{j^{\prime}}\right)$
Q1. \# of dual variables? (m examples, / binary outputs)

Exploiting Structure in MMMN (4)

- Similarly the 2 nd term has a new representation such that

$$
\left\|\sum_{x, y} \alpha_{x}(y) \Delta f_{x}(y)\right\|^{2}=\sum_{x, x^{\prime}} \sum_{(i, j) \in E} \sum_{\left(i^{\prime}, j^{\prime}\right) \in E} \sum_{y_{i}, y_{j}} \sum_{y_{i}^{\prime}, y_{j^{\prime}}} \mu_{x}\left(y_{i}, y_{j}\right) \mu_{x^{\prime}}\left(y_{i^{\prime}}, y_{j^{\prime}}\right) \Delta f_{x}\left(y_{i}, y_{j}\right)^{T} \Delta f_{x^{\prime}}\left(y_{i^{\prime}}, y_{j^{\prime}}\right)
$$

- Therefore the new equivalent formulation is to maximize
$\sum_{x} \sum_{i \in V} \sum_{y_{i}} \mu_{x}\left(y_{i}\right) \Delta t_{x}\left(y_{i}\right)-\frac{1}{2} \sum_{x, x^{\prime}} \sum_{(i, j) \in E} \sum_{\left(i^{\prime}, j^{\prime}\right) \in E} \sum_{y_{i}, y_{j}} \sum_{y_{i^{\prime}}, y_{j^{\prime}}} \mu_{x}\left(y_{i}, y_{j}\right) \mu_{x^{\prime}}\left(y_{i^{\prime}}, y_{j^{\prime}}\right) \Delta f_{x}\left(y_{i}, y_{j}\right)^{T} \Delta f_{x^{\prime}}\left(y_{i^{\prime}}, y_{j^{\prime}}\right)$
Q1. \# of dual variables? (m examples, / binary outputs)

$$
\left|\left\{\mu_{x}\left(y_{i}\right)\right\}_{x, y_{i}}\right|=m l \quad\left|\left\{\mu_{x}\left(y_{i}, y_{j}\right)\right\}_{x, y_{i}, y_{j}}\right|=m l^{2} \Rightarrow m l(1+l)
$$

Exploiting Structure in MMMN (4)

- Similarly the 2 nd term has a new representation such that
$\left\|\sum_{x, y} \alpha_{x}(y) \Delta f_{x}(y)\right\|^{2}=\sum_{x, x^{\prime}} \sum_{(i, j) \in E} \sum_{\left(i^{\prime}, j^{\prime}\right) \in E} \sum_{y_{i}, y_{j}} \sum_{y_{i^{\prime}}, y_{j^{\prime}}} \mu_{x}\left(y_{i}, y_{j}\right) \mu_{x^{\prime}}\left(y_{i^{\prime}}, y_{j^{\prime}}\right) \Delta f_{x}\left(y_{i}, y_{j}\right)^{T} \Delta f_{x^{\prime}}\left(y_{i^{\prime}}, y_{j^{\prime}}\right)$
- Therefore the new equivalent formulation is to maximize
$\sum_{x} \sum_{i \in V} \sum_{y_{i}} \mu_{x}\left(y_{i}\right) \Delta t_{x}\left(y_{i}\right)-\frac{1}{2} \sum_{x, x^{\prime}} \sum_{(i, j) \in E} \sum_{\left(i^{\prime}, j^{\prime}\right) \in E} \sum_{y_{i}, y_{j}} \sum_{y_{i^{\prime}}, y_{j^{\prime}}} \mu_{x}\left(y_{i}, y_{j}\right) \mu_{x^{\prime}}\left(y_{i^{\prime}}, y_{j^{\prime}}\right) \Delta f_{x}\left(y_{i}, y_{j}\right)^{T} \Delta f_{x^{\prime}}\left(y_{i^{\prime}}, y_{j^{\prime}}\right)$
Q1. \# of dual variables? (m examples, / binary outputs)

$$
\left|\left\{\mu_{x}\left(y_{i}\right)\right\}_{x, y_{i}}\right|=m l \quad\left|\left\{\mu_{x}\left(y_{i}, y_{j}\right)\right\}_{x, y_{i}, y_{j}}\right|=m l^{2} \Rightarrow m l(1+l)
$$

Q2. \# of addends?

Exploiting Structure in MMMN (4)

- Similarly the 2 nd term has a new representation such that
$\left\|\sum_{x, y} \alpha_{x}(y) \Delta f_{x}(y)\right\|^{2}=\sum_{x, x^{\prime}} \sum_{(i, j) \in E} \sum_{\left(i^{\prime}, j^{\prime}\right) \in E} \sum_{y_{i}, y_{j}} \sum_{y_{i^{\prime}}, y_{j^{\prime}}} \mu_{x}\left(y_{i}, y_{j}\right) \mu_{x^{\prime}}\left(y_{i^{\prime}}, y_{j^{\prime}}\right) \Delta f_{x}\left(y_{i}, y_{j}\right)^{T} \Delta f_{x^{\prime}}\left(y_{i^{\prime}}, y_{j^{\prime}}\right)$
- Therefore the new equivalent formulation is to maximize
$\sum_{x} \sum_{i \in V} \sum_{y_{i}} \mu_{x}\left(y_{i}\right) \Delta t_{x}\left(y_{i}\right)-\frac{1}{2} \sum_{x, x^{\prime}} \sum_{(i, j) \in E} \sum_{\left(i^{\prime}, j^{\prime}\right) \in E} \sum_{y_{i}, y_{j}} \sum_{y_{i^{\prime}}, y_{j^{\prime}}} \mu_{x}\left(y_{i}, y_{j}\right) \mu_{x^{\prime}}\left(y_{i^{\prime}}, y_{j^{\prime}}\right) \Delta f_{x}\left(y_{i}, y_{j}\right)^{T} \Delta f_{x^{\prime}}\left(y_{i^{\prime}}, y_{j^{\prime}}\right)$
Q1. \# of dual variables? (m examples, / binary outputs)

$$
\left|\left\{\mu_{x}\left(y_{i}\right)\right\}_{x, y_{i}}\right|=m l \quad\left|\left\{\mu_{x}\left(y_{i}, y_{j}\right)\right\}_{x, y_{i}, y_{j}}\right|=m l^{2} \Rightarrow m l(1+l)
$$

Q2. \# of addends $=m l \cdot 2+m^{2} \cdot, C_{2}{ }^{2} \cdot 2^{4}$

Exploiting Structure in MMMN (4)

- Similarly the 2 nd term has a new representation such that

$$
\left\|\sum_{x, y} \alpha_{x}(y) \Delta f_{x}(y)\right\|^{2}=\sum_{x, x^{\prime}} \sum_{(i, j) \in E} \sum_{\left(i^{\prime}, j^{\prime}\right) \in E} \sum_{y_{i}, y_{j}} \sum_{y_{i}^{\prime}, y_{j^{\prime}}} \mu_{x}\left(y_{i}, y_{j}\right) \mu_{x^{\prime}}\left(y_{i^{\prime}}, y_{j^{\prime}}\right) \Delta f_{x}\left(y_{i}, y_{j}\right)^{T} \Delta f_{x^{\prime}}\left(y_{i^{\prime}}, y_{j^{\prime}}\right)
$$

- Therefore the new equivalent formulation is to maximize
$\sum_{x} \sum_{i \in V} \sum_{y_{i}} \mu_{x}\left(y_{i}\right) \Delta t_{x}\left(y_{i}\right)-\frac{1}{2} \sum_{x, x^{\prime}} \sum_{(i, j) \in E} \sum_{\left(i^{\prime}, j^{\prime}\right) \in E} \sum_{y_{i}, y_{j}} \sum_{y_{i^{\prime}}, y_{j^{\prime}}} \mu_{x}\left(y_{i}, y_{j}\right) \mu_{x^{\prime}}\left(y_{i^{\prime}}, y_{j^{\prime}}\right) \Delta f_{x}\left(y_{i}, y_{j}\right)^{T} \Delta f_{x^{\prime}}\left(y_{i^{\prime}}, y_{j^{\prime}}\right)$
Q1. \# of dual variables? (m examples, / binary outputs)

$$
\left|\left\{\mu_{x}\left(y_{i}\right)\right\}_{x, y_{i}}\right|=m l \quad\left|\left\{\mu_{x}\left(y_{i}, y_{j}\right)\right\}_{x, y_{i}, y_{j}}\right|=m l^{2} \Rightarrow m l(1+l)
$$

Q2. \# of addends $=m / \cdot 2+m^{2} \cdot, C_{2}{ }^{2} \cdot 2^{4}$
Q3. What is a computational trade-off?

Polytope Constraints (1)

- New formulation is subject to marginal polytope constraint

$$
\sum_{y_{i}} \mu_{x}\left(y_{i}\right)=C \quad \forall_{x}, \forall_{i} \in V ; \quad \sum_{y_{i}} \mu_{x}\left(y_{i}, y_{j}\right)=\mu_{x}\left(y_{j}\right) \quad \mu_{x}\left(y_{i}, y_{j}\right) \geq 0 \quad \forall_{x}, \forall_{(i, j) \in E}
$$

Polytope Constraints (1)

- New formulation is subject to marginal polytope constraint

$$
\sum_{y_{i}} \mu_{x}\left(y_{i}\right)=C \quad \forall_{x}, \forall_{i \in V} ; \quad \sum_{y_{i}} \mu_{x}\left(y_{i}, y_{j}\right)=\mu_{x}\left(y_{j}\right) \quad \mu_{x}\left(y_{i}, y_{j}\right) \geq 0 \quad \forall_{x}, \forall(i, j) \in E
$$

(Define 1) For given graph $G=(V, E), \operatorname{Marg}[G]:=$ $\left\{\left.\left\{\mu_{i}\left(C_{i}\right)\right\}_{i \in V} \cup\left\{\mu_{i j}\left(S_{i j}\right)\right\}_{(i, j) \in E}\right|^{\exists}\right.$ legal distribution Q_{G} such that $\left\{\mu_{i}\right\} \&\left\{\mu_{i j}\right\}$ are correct marginals of $\left.Q_{G}\right\}$

Polytope Constraints (1)

- New formulation is subject to marginal polytope constraint

$$
\sum_{y_{i}} \mu_{x}\left(y_{i}\right)=C \quad \forall_{x}, \forall_{i \in V} ; \quad \sum_{y_{i}} \mu_{x}\left(y_{i}, y_{j}\right)=\mu_{x}\left(y_{j}\right) \quad \mu_{x}\left(y_{i}, y_{j}\right) \geq 0 \quad \forall_{x}, \forall_{(i, j) \in E}
$$

(Define 1) For given graph $G=(V, E), \operatorname{Marg}[G]:=$ $\left\{\left.\left\{\mu_{i}\left(C_{i}\right)\right\}_{i \in V} \cup\left\{\mu_{i j}\left(S_{i j}\right)\right\}_{(i, j) \in E}\right|^{\exists}\right.$ legal distribution Q_{G} such that $\left\{\mu_{i}\right\} \&\left\{\mu_{i j}\right\}$ are correct marginals of $\left.Q_{G}\right\}$
(Define 2) For given graph $G=(V, E)$, Local $[G]:=$ $\left\{\left\{\mu_{i}\left(C_{i}\right)\right\}_{i \in V} \cup\left\{\mu_{i j}\left(S_{j i}\right)\right\}_{\left(i_{i}\right) \in E} \mid\right.$ marginals are locally consistent satisfying the calibration constraints\}

Polytope Constraints (2)

Q1. Between Marg[G] and Local[G], which is the superset?

Polytope Constraints (2)

Q1. Between Marg[G] and Local[G], which is the superset?
(Fact) For general graph G,
Local[G] is the superset. That means Local[G] $\supseteq \operatorname{Marg}[G]$

Polytope Constraints (2)

Q1. Between $\operatorname{Marg}[G]$ and Local[G], which is the superset?
(Fact) For general graph G,
Local[G] is the superset. That means Local[G] $\supseteq \operatorname{Marg}[G]$
Q2. Can you come up with an example in Local[G] - Marg[G]?

Polytope Constraints (2)

Q1. Between Marg[G] and Local[G], which is the superset?
(Fact) For general graph G,
Local[G$]$ is the superset. That means Local $[\mathrm{G}] \supseteq \operatorname{Marg}[G]$
Q2. Can you come up with an example in Local[G] - Marg[G]?
Think about the example given in the black board

Polytope Constraints (2)

Q1. Between Marg[G] and Local[G], which is the superset?
(Fact) For general graph G,
Local[G] is the superset. That means Local[G] $\supseteq \operatorname{Marg}[G]$
Q2. Can you come up with an example in Local[G] - Marg[G]?
Think about the example given in the black board

- Q2-a. Is $\left\{\left\{\mu_{1}, \mu_{2}, \mu_{3}\right\},\left\{\mu_{12}, \mu_{23}, \mu_{13}\right\}\right\} \in \operatorname{Local}[G]$?

Polytope Constraints (2)

Q1. Between Marg[G] and Local[G], which is the superset?

(Fact) For general graph G,

Local[G] is the superset. That means Local[G] $\supseteq \operatorname{Marg}[G]$
Q2. Can you come up with an example in Local[G] - Marg[G]?
Think about the example given in the black board

- Q2-a. Is $\left\{\left\{\mu_{1}, \mu_{2}, \mu_{3}\right\},\left\{\mu_{12}, \mu_{23}, \mu_{13}\right\}\right\} \in$ Local[G]?
- Q2-b. Is $\left\{\left\{\mu_{1}, \mu_{2}, \mu_{3}\right\},\left\{\mu_{12}, \mu_{23}, \mu_{13}\right\}\right\} \in \operatorname{Marg}[G]$?

Polytope Constraints (3)

- Our formulation requires marginal polytope constraint on tree-structured graph G

Polytope Constraints (3)

- Our formulation requires marginal polytope constraint on tree-structured graph G

> (Theorem) If G:tree-structured Local $[G]=$ Marg[G] (i.e., two polytopes are consistent)

Polytope Constraints (3)

- Our formulation requires marginal polytope constraint on tree-structured graph G

(Theorem) If G:tree-structured

Local[G] $=\operatorname{Marg}[G]$ (i.e., two polytopes are consistent)

- Thus constraints coincide with the local consistency polytope

Polytope Constraints (3)

- Our formulation requires marginal polytope constraint on tree-structured graph G

(Theorem) If G:tree-structured Local[G] $=\operatorname{Marg}[G]$ (i.e., two polytopes are consistent)

- Thus constraints coincide with the local consistency polytope
Q. If the given graph G is not tree-structured?

Polytope Constraints (3)

- Our formulation requires marginal polytope constraint on tree-structured graph G

(Theorem) If G:tree-structured Local[G] = Marg[G] (i.e., two polytopes are consistent)

- Thus constraints coincide with the local consistency polytope
Q. If the given graph G is not tree-structured?
\Rightarrow Solve the relaxed optimization on Local[G] via approximate algorithms such as loopy belief propagation.

Coordinate Ascent/Descent

- Consider the problem of $\max _{\alpha_{0}, \ldots, \alpha_{n}} f\left(\alpha_{0}, \ldots, \alpha_{n}\right)$
- If we only want to reach local maximum (it is global if KKT is satisfied), we can replace the gradient with gradient in a predefined direction.

Coordinate Ascent

while until convergence:
for $\mathrm{i}=0$ to n :
$\alpha_{i}:=\arg \max _{\alpha_{i}} f\left(\alpha_{0}, \ldots, \alpha_{i}, \ldots \alpha_{n}\right)$

Check KKT Conditions

Convergence: Same as gradient
 descent

Sequential Minimal Optimization (SMO)

- Recall the initial dual formulation.

$$
\begin{array}{ll}
\max & f=\sum_{x, y} \alpha_{x}(y) \Delta t_{x}(y)-\frac{1}{2}\left\|\sum_{x, y} \alpha_{x}(y) \Delta f_{x}(y)\right\|^{2} \\
\text { s.t } \quad \sum_{y} \alpha_{x}(y)=C \quad \forall_{x} \quad \alpha_{x}(y) \geq 0 \quad \forall_{x, y}
\end{array}
$$

- If we choose a specific coordinate $\alpha_{x}\left(y^{1}\right)$;

$$
\alpha_{x}\left(y^{1}\right)=C-\sum_{y \in Y / y^{1}} \alpha_{x}(y)
$$

- We can choose two coordinates y^{1}, y^{2}; then,

$$
\begin{aligned}
& \alpha_{x}\left(y^{1}\right)+\alpha_{x}\left(y^{2}\right)=C-\sum_{y \in Y /\left\{y^{1}, y^{2}\right\}} \alpha_{x}(y)=\gamma \Longrightarrow \alpha_{x}\left(y^{2}\right)=\gamma-\alpha_{x}\left(y^{1}\right) \\
& \max _{\alpha_{x}\left(y^{1}\right), \alpha_{x}\left(y^{2}\right)} f=\max _{\alpha_{x}\left(y^{1}\right)} a \alpha_{x}\left(y^{1}\right)^{2}+b \alpha_{x}\left(y^{1}\right)+c
\end{aligned}
$$

- Corresponding update in primal

$$
\begin{aligned}
\lambda & =\alpha_{x}\left(y^{1}\right)-\alpha_{x}\left(y^{1}\right)^{\prime} \\
\mu_{x}\left(y_{i}, y_{j}\right)^{\prime} & =\mu_{x}\left(y_{i}, y_{j}\right)+\lambda I\left[y_{i}=y_{i}^{1}, y_{j}=y_{j}^{1}\right]-\lambda I\left[y_{i}=y_{i}^{2}, y_{j}=y_{j}^{2}\right]
\end{aligned}
$$

How to Train MMMN/SSVM in General?

- Polynomial-Size Reformulation
- Exploit sparse dependency structure in underlying distribution
- Implicit representation requires an inference in graphical model
- Cutting-plane Method
- Efficiently manage only polynomially many working constraints
- The next quadratic programming has only a different constraint
- \# of constraints needed can be large for good approximation
- Subgradient Method
- Formulate the optimization objective as an unconstrained non-differentiable function having a maximum operation
- \# of iterations needed is improved $\left(\left(O\left(1 / \epsilon^{2}\right)\right.\right.$ vs $(O(1 / \epsilon))$
- The problem is that we haven't seen it yet!

Summary and Further Reading

- MMMN/SSVM allow us to encode various dependencies on completely general graph structures whereas HMM/CRF is mostly about linear/skip chain dependencies
- When a graph satisfies sub-modularity, computing maximum in min-max formulation can be efficiently solved by linear program via finding min-cut
- The exact inference to train the CRF is intractable in this case
- Associative Max-Margin Markov Netowrks by [Taskar 2004]
- Dual Extragradient and Bregman Projections by [Taskar 2006]
- Learning Structural SVM with Latent Variables by [Yu/Joachim 2009]

The End

Do you have any question?

Question

...Which tool do you use?...

Answer
 ...ShareLaTeX...

