CS6784 Primer on Hidden Markov Models

Spring 2014

Thorsten Joachims

Cornell University Department of Computer Science

Reading:

Koller, Friedman, Getoor, Taskar, "Graphical Models in a Nutshell" http://www.seas.upenn.edu/~taskar/pubs/gms-srl07.pdf

Warm-Up Assignment

Submission

- Deadline today, Thursday 1/30, by 11:59pm
- Make sure to not include your name in PDF

 double-blind reviewing

Reviewing

- Double-blind → academic integrity
 - You do not know who you reviewed. Authors do not know who reviewed them.
 - Do not talk about who you reviewed.
 - Assignments done at random. Let us know if you feel conflicted with some assignment.
- Answer review questions
- Text should justify and your scores as convincingly as possible.

Part-of-Speech Tagging

Predict sequence of POS tags for sequence of words:

sentence	POS
$\mathbf{x}_1 = (The, bear, chased, the, cat)$	$\mathbf{y}_1 = (DET, N, V, DET, N)$
$\mathbf{x}_2 = (Students, bear, a, burden)$	$\mathbf{y}_2 = (N, V, DET, N)$

- Ambiguity
 - He will race/V the car.
 - When will the race/NOUN end?
 - I bank/V at CFCU.
 - Go to the bank/NOUN!
- Average of ~2 parts of speech for each word
- 20 400 different tags (i.e. word classes)

Predicting Sequences

- Bayes rule:
 - Generative model
- Design decisions:
 - Representation
 - Linear chain Hidden Markov Model
 - Prediction (i.e. inference)
 - Viterbi algorithm
 - Learning
 - Maximum likelihood

Representation: Hidden Markov Model

 $\begin{array}{c|c} \mathbf{y} & \overline{\mathrm{Det}} \to \overline{\mathrm{N}} \to \overline{\mathrm{V}} \to \overline{\mathrm{Det}} \to \overline{\mathrm{N}} \\ \hline & & & & & & & \\ \hline \end{array}$

cat

x The bear chased the

- Bayes rule: $h(x) = \underset{y \in Y}{\operatorname{argmax}} [P(X = x | Y = y) P(Y = y)]$
- Independence assumptions for compact representation

$$P(Y = (y^{1}, ..., y^{1}) = \prod_{i=1}^{l} P(Y^{i} = y^{i} | Y^{i-1} = y^{i-1})$$

$$P(X = (x^{1}, ..., x^{l}) | Y = (y^{1}, ..., y^{l})) = \prod_{i=1}^{l} P(X^{i} = x^{i} | Y^{i} = y^{i})$$

 Each sequence pair has probability:

$$P(X = x, Y = y) = \left[\prod_{i=1}^{l} P(Y^{i} = y^{i} | Y^{i-1} = y^{i-1}) P(X^{i} = x^{i} | Y^{i} = y^{i}) \right]$$

Representation: Hidden Markov Model

- States: $y \in \{s_1, ..., s_k\}$
 - Special starting state s₀
- Outputs symbols: $x \in \{o_1, ..., o_m\}$
- Transition probability $P(Y^i = s | Y^{i-1} = s')$
 - Probability that one states succeeds another
- Output/Emission probability $P(X^i = o | Y^i = s)$
 - Probability that word is generated in this state

Learning:

Estimating HMM Probabilities

• Maximum Likelihood: Given $(x_1, y_1), \dots, (x_n, y_n)$, find

$$\widehat{w} = \underset{w \in W}{\operatorname{argmax}} \prod_{i=1}^{n} [P(Y_i = y_i, X_i = x_i | w)]$$

- Closed-form solutions
 - Estimating transition probabilities

$$P(Y^{j} = a | Y^{j-1} = b) = \frac{\#of\ Times\ State\ a\ Follows\ State\ b}{\#of\ Times\ State\ b\ Occurs}$$

Estimating mission probabilities

$$P(X^j = o | Y^j = b) = \frac{\#of\ Times\ Output\ o\ is\ Observed\ in\ State\ b}{\#of\ Times\ State\ b\ Occurs}$$

Need for smoothing the estimates (e.g. Laplace)

Prediction/Inference: Viterbi Algorithm

Prediction: Find most likely state sequence

- Given x and fully specified HMM:
 - transition probabilities
 - emission probabilities
- Find the most likely state (i.e tag) sequence $(y^1, ..., y^l)$ for a given sequence of observed output symbols (i.e. words) $(x^1, ..., x^l)$

$$h(x) = \underset{(y^1, \dots, y^l) \in Y}{\operatorname{argmax}} \left[\prod_{i=1}^l P(Y^i = y^i | Y^{i-1} = y^{i-1}) P(X^i = x^i | Y^i = y^i) \right]$$

- Viterbi algorithm uses dynamic programming
 - Construct trellis graph for HMM
 - Shortest path in this graph is most likely state sequence
- Viterbi algorithm has runtime linear in length of sequence

Viterbi Example

$P(X^i Y^i)$	I	bank	at	CFCU	go	to	the
DET	0.01	0.01	0.01	0.01	0.01	0.01	0.94
PRP	0.94	0.01	0.01	0.01	0.01	0.01	0.01
N	0.01	0.4	0.01	0.4	0.16	0.01	0.01
PREP	0.01	0.01	0.48	0.01	0.01	0.47	0.01
V	0.01	0.4	0.01	0.01	0.55	0.01	0.01

$P(Y^{i} Y^{i-1})$	DET	PRP	N	PREP	V
START	0.3	0.3	0.1	0.1	0.2
DET	0.01	0.01	0.96	0.01	0.01
PRP	0.01	0.01	0.01	0.2	0.77
N	0.01	0.2	0.3	0.3	0.19
PREP	0.3	0.2	0.3	0.19	0.01
V	0.2	0.19	0.3	0.3	0.01

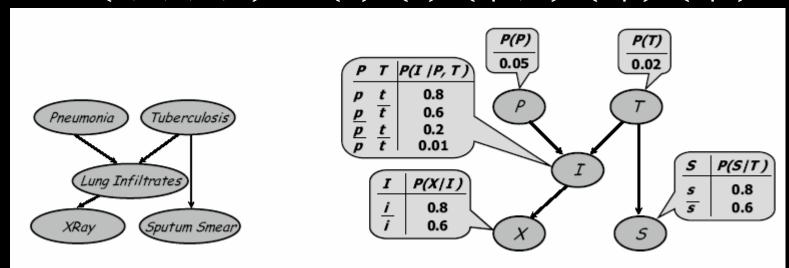
Directed Graphical Models

- Representation of joint distribution
 - Exploit conditional independence between random

variables

- Example
 - Joint distribution

$$P(P,T,I,X,S) = P(P)P(T)P(I|P,T)P(X|I)P(S|T)$$



Undirected Graphical Models

- Markov Networks / Markov Random Fields
 - More flexible representation of joint distribution
- Example
 - Joint distribution $P_H(X_1, ..., X_n) = \frac{1}{Z}P'(X_1, ..., X_n)$
 - $-P'_H(X_1,\ldots,X_n)=\pi_1[D_1]\times\cdots\times\pi_m[D_m]$
 - $-Z = \sum_{X_1,...,X_n} P'_H(X_1,...,X_n)$

from [Koller/etal/07]

