
Machine Learning Theory (CS 6783)

Tu-Th 1:25 to 2:40 PM
Phillips Hall, 407

Instructor : Karthik Sridharan



ABOUT THE COURSE

No exams !

5 assignments that count towards your grades (55%)

One term project (40%)

5% for class participation



PRE-REQUISITES

Basic probability theory

Basics of algorithms and analysis

Introductory level machine learning course

Mathematical maturity, comfortable reading/writing formal
mathematical proofs.



Lets get started . . .



WHAT IS MACHINE LEARNING

Use past observations to automatically learn to make better
predictions/decisions in the future.



WHERE IS IT USED ?

Recommendation Systems



WHERE IS IT USED ?

Pedestrian Detection



WHERE IS IT USED ?

Market Predictions



WHERE IS IT USED ?

Spam Classification



WHERE IS IT USED ?

Online advertising (improving click through rates)

Climate/weather prediction

Text categorization

Unsupervised clustering (of articles . . . )

. . .



WHAT IS LEARNING THEORY

Oops . . .



WHAT IS LEARNING THEORY

Oops . . .



WHAT IS MACHINE LEARNING THEORY

How do we formalize machine learning problems

Right framework for right problems (Eg. online , statistical)

How do we pick the right model to use and what are the tradeoffs
between various models

How many instances do we need to see to learn to given accuracy

How do we design learning algorithms with provable guarantees
on performance

Computational learning theory : which problems are efficiently learnable



OUTLINE OF TOPICS

Learning problem and frameworks, settings, minimax rates

Statistical learning theory
Probably Approximately Correct (PAC) and Agnostic PAC frameworks
Empirical Risk Minimization, Uniform convergence, Empirical process theory
Bound on learning rates: MDL bounds, PAC Bayes theorem, Rademacher
complexity, VC dimension, covering numbers, fat-shattering dimension
Supervised learning : necessary and sufficient conditions for learnability

Online learning theory
Sequential minimax and value of online learning game
Regret bounds: Sequential Rademacher complexity, Littlestone dimension,
sequential covering numbers, sequential fat-shattering dimension
Online supervised learning : necessary & sufficient conditions for learnability

Algorithms for online convex optimization: Exponential weights algorithm, strong
convexity, exp-concavity and rates, Online mirror descent

Deriving generic learning algorithms : relaxations, random play-outs

If time permits, uses of learning theory results in optimization, approximation algorithms,
perhaps a bit of bandits, . . .



LEARNING PROBLEM : BASIC NOTATION

Input space/ feature space : X
(Eg. bag-of-words, n-grams, vector of grey-scale values, user-movie pair to rate)

Feature extraction is an art, . . . an art we won’t cover in this course

Output space/ label space Y
(Eg. {±1}, [K], R-valued output, structured output)

Loss function : ` ∶ Y ×Y ↦ R
(Eg. 0 − 1 loss `(y ′, y) = 1{y ′ ≠ y}, sq-loss `(y ′, y) = (y − y ′)2), absolute loss
`(y ′, y) = ∣y − y ′∣

Measures performance/cost per instance (inaccuracy of
prediction/ cost of decision).

Model class/Hypothesis class F ⊂ YX
(Eg. F = {x↦ f⊺x ∶ ∥f∥2 ≤ 1} , F = {x↦ sign(f⊺x)})



FORMALIZING LEARNING PROBLEMS

How is data generated ?

How do we measure performance or success ?

Where do we place our prior assumption or model assumptions ?

What we observe ?
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PROBABLY APPROXIMATELY CORRECT LEARNING

Y = {±1} , `(y ′,y) = 1{y ′ ≠ y} , F ⊂ YX

Learner only observes training sample S = {(x1,y1), . . . , (xn,yn)}
x1, . . . ,xn ∼ DX
∀t ∈ [n],yt = f ∗(xt) where f ∗ ∈ F

Goal : find ŷ ∈ YX to minimize

Px∼DX (ŷ(x) ≠ f ∗(x))

(Either in expectation or with high probability)



PROBABLY APPROXIMATELY CORRECT LEARNING

Definition
Given δ > 0 , ε > 0, sample complexity n(ε,δ) is the smallest n such
that we can always find forecaster ŷ s.t. with probability at least 1 − δ,

Px∼DX (ŷ(x) ≠ f ∗(x)) ≤ ε

(efficiently PAC learnable if we can learn efficiently in 1/δ and 1/ε)

Eg. : learning output for deterministic systems



NON-PARAMETRIC REGRESSION

Y ⊂ R , `(y ′,y) = (y − y ′)2 , F ⊂ YX

Learner only observes training sample S = {(x1,y1), . . . , (xn,yn)}
x1, . . . ,xn ∼ DX
∀t ∈ [n],yt = f ∗(xt) + εt where f ∗ ∈ F and εt ∼ N(0,σ)

Goal : find ŷ ∈ RX to minimize

∥ŷ − f ∗∥2
L2(DX)

= Ex∼DX [(ŷ(x) − f ∗(x))2]
= Ex∼DX [(ŷ(x) − y)2] − inf

f∈F
Ex∼DX [(f (x) − y)2]

(Either in expectation or in high probability)

Eg. : clinical trials (inference problems) model class known.



NON-PARAMETRIC REGRESSION
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STATISTICAL LEARNING (AGNOSTIC PAC)

Learner only observes training sample S = {(x1,y1), . . . , (xn,yn)}
drawn iid from joint distribution D on X ×Y

Goal : find ŷ ∈ RX to minimize expected loss over future instances

E(x,y)∼D [`(ŷ(x),y)] − inf
f∈F

E(x,y)∼D [`(f (x),y)] ≤ ε

LD(ŷ) − inf
f∈F

LD(f ) ≤ ε

Well suited for Prediction problems.



STATISTICAL LEARNING (AGNOSTIC PAC)

Definition
Given δ > 0 , ε > 0, sample complexity n(ε,δ) is the smallest n such
that we can always find forecaster ŷ s.t. with probability at least 1 − δ,

LD(ŷ) − inf
f∈F

LD(f ) ≤ ε



LEARNING PROBLEMS

Pedestrian Detection Spam Classification

(Batch/Statistical setting) (Online/adversarial setting)
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Pedestrian Detection Spam Classification
(Batch/Statistical setting) (Online/adversarial setting)



ONLINE LEARNING (SEQUENTIAL PREDICTION)

For t = 1 to n
Learner receives xt ∈ X
Learner predicts output ŷt ∈ Y
True output yt ∈ Y is revealed

End for

Goal : minimize regret

Regn(F) ∶= 1
n
∑
t=1
`(ŷt,yt) − inf

f∈F

1
n
∑
t=1
`(f (xt),yt)



OTHER PROBLEMS/FRAMEWORKS

Unsupervised learning, clustering

Semi-supervised learning

Active learning and selective sampling

Online convex optimization

Bandit problems, partial monitoring, . . .



SNEEK PEEK

No Free Lunch Theorems

Minimax rates for various setting/problems

Comparing the various settings


