
Machine Learning Theory (CS 6783)

Lecture 13 :Matrix Prediction/ Collaborative Filtering Via Burkholder Method

1 Matrix Prediction and Collaborative Filtering

Consider the task of predicting if a given user will like of dislike a particular movie. Specifically,
we would like to predict if user i would like movie j. As past data, to aid our prediction we have
samples of user movie pairs and the corresponding ratings for that pair. If there are M users and M
movies over all, we can view the set of user movie pair ratings as entries in a matrix. We would like
to predict entries in a matrix. The key modeling assumption we would like to capture is something
like, similar users might like similar movies.

This problem we write down in the online framework as follows:

For t = 1 to n

Adversary picks user movie pair (it, jt) to predict

Learner predicts rating ŷt

True rating yt for that user movie pair is revealed.

Learner suffers convex loss `(yt, ŷt)

End For

Now given a bench mark set of matrices F ∈ RM×N we would like to measure regret against, we
can phrase our goal as minimizing regret given by

Regn =
n∑
t=1

`(ŷt, yt)− inf
F∈F

n∑
t=1

`(F [it, jt], yt)

if F is all possible set of matrices, then no meaningful regret bound is possible. A commonly used
modeling choice is that F is a set of matrices with rank at most r, and entries bounded by 1. Such
a modeling choice captures the idea that each user can be represented by an r dimensional vector
and rating for each movie can be represented by a fixed linear combination of the r co-oridinates
for the corresponding user. That is, we use

F = {F = UV : where U ∈ RM×r and V = Rr×N , F ∈ [−1, 1]M×N}

It turns out that the benchmark F is a computationally infeasible benchmark. However one can
instead use the larger set

F̄ = {F :
∑
i

|λi(F )| ≤ d×
√
r}
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where we will use d = M+N . That is, F̄ ⊃ F is the set of all matrices with trace norm bounded by
d
√
r. Whys is this? Well note that if we have a rank r matrix F , then since only r of the singular

values are non-zero, we have that:∑
i

|λi(F )| ≤
√
r
√

max
i
|λi(F )|2 =

√
r‖F‖Fr ≤

√
r
√
M ×N ≤

√
r(M +N)

Hence,
∑

i |λi(F )| ≤ d ×
√
r and so F̄ ⊃ F . Hence obtaining diminishing regret against F̄ yields

regret bound against F as well.

2 First Cut: Lets Try and Use Mirror Descent

One can formulate the above problem as a online convex optimization problem. Especially one
with linear predictors. To see this, let us encode user movie entry to predict (it, jt) by the indicator
matrix Xt = eite

>
jt

. That is, a matrix with one in the entry (it, jt) and 0 elsewhere. In this case,

we can write regret against F̄ as:

Regn =

n∑
t=1

`(ŷt, yt)− inf
F∈F̄

n∑
t=1

`(〈F,Xt〉, yt)

where 〈F,Xt〉 is the generalized inner product and this instance gives F [it, jt]. Now since this is a
convex loss with linear predictor, we can try and use mirror descent type algorithms. In this case,
note first that ‖∇t‖∗ ∝ ‖Xt‖∗ (in fact for absolute loss its equality). Now irrespective of which
norm we pick, ‖Xt‖∗ = 1. Hence we get a bound of form,

Regn ≤ O

(√
supF∈F̄ DR(F |ŷ1)

n

)

But notice that by strong convexity w.r.t. whatever norm we pick, DR(F |ŷ1) ≥ ‖F − ŷ1‖2 ≈ ‖F‖2.
At this point, note that since F̄ is all trace norm bounded matrices, the only real option for the
norm we can pick in mirror descent to be strong convex w.r.t. has to be the trace norm and we
know that supF∈F̄ ‖F‖2tr = d2r. Hence. the mirror descent bound can never be better than order√

rd2

n

But this means that we need n number of samples to be larger than number of entries in the entire
matrix. But at this point the prediction problem is mute.

Can we even hope to do better?

In general, it turns out that this is the worst case regret rate when competing with F̄ .

3 Burkholder Method

It turns out however that one can go for an adaptive bound that can yield improvement. If for
instance, user movie pairs are picked uniformly at random, once can improve the bound on regret
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for instance. In fact what we will show is an adaptive bound that is same in the worst case as the
mirror descent one but can be much smaller when empirical distributions of user movie pairs are
not very “peaky”. Specifically, in the Burkholder termminology, we will go for the bound

φ(X1, y1, . . . , Xn, yn) = inf
F∈F̄

n∑
t=1

`(〈F,Xt〉, yt)+O

R
√√√√max

{∥∥∥∥∥
n∑
t=1

XtX>t

∥∥∥∥∥
σ

,

∥∥∥∥∥
n∑
t=1

X>t Xt

∥∥∥∥∥
σ

}
log(M +N)


where in the above ‖ · ‖σ is the spectral norm (magnitude of largest eigenvalue) and R is bound on
trace norm which in our case is d

√
r. Again as we have been doing in previous lectures (which we

fix via doubling trick), we go for the following edited φη (assuming loss is 1-Lipschitz):

φη(X1, y1, . . . , Xn, yn) = inf
F∈F̄

n∑
t=1

`(〈F,Xt〉, yt)+
η

2
Rmax

{∥∥∥∥∥
n∑
t=1

XtX
>
t

∥∥∥∥∥ ,
∥∥∥∥∥

n∑
t=1

X>t Xt

∥∥∥∥∥
}

+
R log(M +N)

η

We now give an algorithm via the Burkholder method. To do this, let us first introduce the so
called Hermitian dilation of a matrix given by

H(X) =

(
0 X
X> 0

)
The key thing about the hermitian dilation is that it makes the M ×N matrix into a square matrix
of size M +N ×M +N . Further, the eigen values of this matrix are ±λ(X), that is plus and minus
the singular values of matrix X.

Lemma 1. The mapping T(X,α) = (αH(X), H(X)2) along with

U(H,M) =
R

η
log tr exp

(
ηH − 1

2
η2M

)
− R log(M +N)

η

is both a valid sufficient statistic for φη described above and is a Burkholder mapping.

Proof. First, note that U(0) ≤ 0 because:

U(0) =
R

η
log tr exp

(
η0− 1

2
η20

)
− R log(M +N)

η

=
R

η
log tr exp (0)− R log(M +N)

η

=
R

η
log trIM+N×M+N −

R log(M +N)

η
= 0

=
R

η
log(M +N)− R log(M +N)

η
= 0

Next, to show that U is a valid sufficient statistic, note that first of all,

max

{∥∥∥∥∥
n∑
t=1

XtX
>
t

∥∥∥∥∥
σ

,

∥∥∥∥∥
n∑
t=1

X>t Xt

∥∥∥∥∥
σ

}
=

∥∥∥∥∥
n∑
t=1

H(Xt)
2

∥∥∥∥∥
σ

and so,
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n∑
t=1

`(ŷt, yt)− inf
F∈F̄

n∑
t=1

`(〈F,Xt〉, yt)−
η

2
Rmax

{∥∥∥∥∥
n∑
t=1

XtX
>
t

∥∥∥∥∥
σ

,

∥∥∥∥∥
n∑
t=1

X>t Xt

∥∥∥∥∥
σ

}
− R log(M +N)

η

=

n∑
t=1

`(ŷt, yt)− inf
F∈F̄

n∑
t=1

`(〈F,Xt〉, yt)−
η

2
R

∥∥∥∥∥
n∑
t=1

H(Xt)
2

∥∥∥∥∥
σ

− R log(M +N)

η

≤
n∑
t=1

∂`(ŷt, yt)ŷt − inf
F∈F̄

n∑
t=1

∂`(ŷt, yt)〈F,Xt〉 −
η

2
R

∥∥∥∥∥
n∑
t=1

H(Xt)
2

∥∥∥∥∥
σ

− R log(M +N)

η

=
n∑
t=1

∂`(ŷt, yt)ŷt + sup
F :‖F‖tr≤R

〈
F,

n∑
t=1

∂`(ŷt, yt)Xt

〉
− η

2
R

∥∥∥∥∥
n∑
t=1

H(Xt)
2

∥∥∥∥∥
σ

− R log(M +N)

η

=

n∑
t=1

∂`(ŷt, yt)ŷt +R

∥∥∥∥∥
n∑
t=1

∂`(ŷt, yt)Xt

∥∥∥∥∥
σ

− η

2
R

∥∥∥∥∥
n∑
t=1

H(Xt)
2

∥∥∥∥∥
σ

− R log(M +N)

η

=

n∑
t=1

∂`(ŷt, yt)ŷt +R

∥∥∥∥∥
n∑
t=1

∂`(ŷt, yt)H(Xt)

∥∥∥∥∥
σ

− η

2
R

∥∥∥∥∥
n∑
t=1

H(Xt)
2

∥∥∥∥∥
σ

− R log(M +N)

η

=
n∑
t=1

∂`(ŷt, yt)ŷt +Rλ1

(
n∑
t=1

∂`(ŷt, yt)H(Xt)

)
− η

2
Rλ1

(
n∑
t=1

H(Xt)
2

)
− R log(M +N)

η

≤
n∑
t=1

∂`(ŷt, yt)ŷt +Rλ1

(
n∑
t=1

∂`(ŷt, yt)H(Xt)−
η

2
R

n∑
t=1

H(Xt)
2

)
− R log(M +N)

η

≤
n∑
t=1

∂`(ŷt, yt)ŷt +Rλ1

(
n∑
t=1

∂`(ŷt, yt)H(Xt)−
η

2
R

n∑
t=1

H(Xt)
2

)
− R log(M +N)

η

≤
n∑
t=1

∂`(ŷt, yt)ŷt +
R

η
log

(
M+N∑
i=1

exp

(
η

n∑
t=1

∂`(ŷt, yt)H(Xt)−
η2

2
R

n∑
t=1

H(Xt)
2

))
− R log(M +N)

η

=

n∑
t=1

∂`(ŷt, yt)ŷt + U(τn)

Finally to prove the restricted concavity condition more generally we use the fact that α 7→
U(τ+T(x, α)) is convex in α and hence we only need to prove the condition over uniform distribution
over {±1} for α. But instead of trying to prove this, let us just assume that the loss is the absolute
loss and so α ∈ {±1}. Hence the only 0 mean distribution is in fact α = ε which is a Rademacher
random variable. Now to prove the restricted concavity assumption, note that:

EεU((H,M) + T(x, ε)) = EεU(H + εH(X),M +H(X)2)

=
R

η
Eε log tr exp

(
ηH + ηεH(X)− 1

2
η2M − η2H(X)2

)
− R log(M +N)

η
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Using concavity of (scalar) logarithm function:

≤ R

η
logEεtr exp

(
ηH + ηεH(X)− 1

2
η2M − η2H(X)2

)
− R log(M +N)

η

Think of how you would have proceeded in the scalar case. We would have gone with say-
ing exp

(
ηH + ηεH(X)− 1

2η
2M − η2H(X)2

)
= exp

(
ηH − 1

2η
2M − η2H(X)2

)
× exp(ηεH(X)) and

then pushed expectation inside trace and bounded Eε exp(ηεH(X)). This inequality is false for the
matrix case!

Here is the proof for the matrix case:

EεU((H,M) + T(x, ε)) ≤ R

η
logEεtr exp

(
ηH + ηεH(X)− 1

2
η2M − η2H(X)2

)
− R log(M +N)

η

=
R

η
logEεtr exp

(
ηH + log (exp(ηεH(X)))− 1

2
η2M − η2H(X)2

)
− R log(M +N)

η

Now we use (without proof) a theorem from matrix analysis called Leib’s Concavity theorem
which states that for any square matrix B and any positive definite matrix A, the mapping A 7→
tr exp(B + logA) is concave. Now in the above use B = ηH − 1

2η
2M − η2H(X)2 which is a square

matrix since we only ever use sums of hermitian dilations. and use A = exp(ηεH(X)) which is
positive definite since its exponential of a matrix. Hence using concavity to push expectation inside
we get,

EεU((H,M) + T(x, ε)) ≤ R

η
logEεtr exp

(
ηH + log (exp(ηεH(X)))− 1

2
η2M − η2H(X)2

)
− R log(M +N)

η

≤ R

η
log tr exp

(
ηH + log (Eε exp(ηεH(X)))− 1

2
η2M − η2H(X)2

)
− R log(M +N)

η

Now note that Eε exp(ηεH(X)) � exp(η2H(X)2/2). Further, log(X) the matrix logarithm is what
is called operator monotone, meaning that if X � Y then log(A) � log(B). Hence we have that
log(Eε exp(ηεH(X))) � log(exp(η2H(X)2/2)) = η2H(X)2/2. Finally, the scalar function tr exp(X)
of a matrix is monotone and so

tr exp

(
ηH + log (Eε exp(ηεH(X)))− 1

2
η2M − η2H(X)2

)
≤ tr exp

(
ηH +

η2

2
H(X))2 − 1

2
η2M − η2H(X)2

)
Putting all this together, we conclude that,

EεU((H,M) + T(x, ε)) ≤ R

η
log tr exp

(
ηH + log (Eε exp(ηεH(X)))− 1

2
η2M − η2H(X)2

)
− R log(M +N)

η

≤ R

η
log tr exp

(
ηH +−1

2
η2M

)
− R log(M +N)

η

= U(H,M)

This proves the restricted concavity of U . But be vary that while some of the inequalities look
exactly like the scalar ones, the results of leib’s concavity and operator monotonicity of log(·) are
highly non-trivial results unlike the scalar case.
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Algorithm: As previously mentioned, the the mapping α 7→ U(τ + T(x, α)) is convex and so
the algorithm at round t is simply to predict

ŷt =
1

2
(U(τt−1 + T(X,−1))− U(τt−1 + T(X,−1)))

=
R

2η

(
log tr exp

η t−1∑
j=1

H(Xj)− ηH(X)− 1

2
η2

t−1∑
j=1

H(Xj)
2 − η2H(Xt)

2


− log tr exp

η t−1∑
j=1

H(Xj) + ηH(X)− 1

2
η2

t−1∑
j=1

H(Xj)
2 − η2H(Xt)

2

)
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