
Machine Learning Theory (CS 6783)

Lecture 5 : Symmetrization, Growth Function, and Effective Size

1 Recap

Last class we showed that

Vstatn (F) ≤ sup
D

ES

[
sup
f∈F

{
E [`(f(x), y)]− 1

n

n∑
t=1

`(f(xt), yt)

}]

This was using the Empirical Risk Minimizer (ERM)

1. When |F| <∞, using the above we showed that

Vstatn (F) ≤
√

log |F|
n

2. For countably infinite class we showed MDL bound and the algorithm based on this bound.

3. However the learning rate was not uniform over F

2 Symmetrization and Rademacher Complexity

ES [LD(ŷerm)]− inf
f∈F

LD(f)

≤ ES

[
sup
f∈F

{
E [`(f(x), y)]− 1

n

n∑
t=1

`(f(xt), yt)

}]

≤ ES,S′

[
sup
f∈F

{
1

n

n∑
t=1

`(f(x′t), y
′
t)−

1

n

n∑
t=1

`(f(xt), yt)

}]

= ES,S′Eε

[
sup
f∈F

{
1

n

n∑
t=1

εt(`(f(x′t), y
′
t)− `(f(xt), yt))

}]

≤ 2ESEε

[
sup
f∈F

{
1

n

n∑
t=1

εt`(f(xt), yt)

}]
=: Rn(F)

Where in the above each εt is a Rademacher random variable that is +1 with probability 1/2 and
−1 with probability 1/2. The above is called Rademacher complexity of the loss class ` ◦ F . In
general Rademacher complexity of a function class measures how well the function class correlates
with random signs. The more it can correlate with random signs the more complex the class is.
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3 Infinite F : Binary Classes and Growth Function

First let us simplify the Rademacher complexity for binary classification problem. Note that for
binary classification problem where Y ∈ {±1}, the loss can be rewritten as

`(y′, y) = 11{y 6=y′} = 1−y·y′
2 . Hence

2ESEε

[
sup
f∈F

{
1

n

n∑
t=1

εt`(f(xt), yt)

}]
= 2ESEε

[
sup
f∈F

{
1

n

n∑
t=1

εt
1− f(xt) · yt

2

}]

= ESEε

[
sup
f∈F

1

n

n∑
t=1

εtytf(xt)

]

Now consider the inner term in the expectation above, ie. Eε
[
supf∈F

1
n

∑n
t=1 εtytf(xt)

]
. Note that

given any fixed choice of y1, . . . , yn ∈ {±1}, ε1y1, . . . , εnyn are also Rademahcer random variables.
Hence for the binary classification problem,

2ESEε

[
sup
f∈F

{
1

n

n∑
t=1

εt`(f(xt), yt)

}]
= ESEε

[
sup
f∈F

1

n

n∑
t=1

εtf(xt)

]

In the above statement we moved from Rademacher complexity of loss class `◦F to the Rademacher
complexity of the function class F for binary classification task. This is a precursor to what we
will refer to as contraction lemma which we will show later.

Why is symmetrization useful? Think what we gain for an infinite class . . .

4 Effective size of function class on Data

Why is the introduction of Rademacher averages important ? To analyze the term,
ESEε

[
supf∈F

1
n

∑n
t=1 εt`(f(xt), yt)

]
consider the inner expectation, that is conditioned on sample

consider the term Eε
[
supf∈F

1
n

∑n
t=1 εt`(f(xt), yt)

]
. Note that 1

n

∑n
t=1 εt`(f(xt), yt) is still average

of 0 mean random variables (conditioned on data) and we can apply Hoeffding bound for each
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fixed f ∈ F individually. Now F might be an infinite class, but, conditioned on input instances
(x1, y1), . . . , (xn, yn), one can ask, what is the size of the projection set

F|x1,...,xn = {f(x1), . . . , f(xn) : f ∈ F}

For any binary class F , first note that this set can have a maximum cardinality of 2n however it
could be much smaller. In fact we can have,

ESEε

[
sup
f∈F

1

n

n∑
t=1

εt`(f(xt), yt)

]
= ESEε

[
sup

f∈F|x1,...,xn

1

n

n∑
t=1

εt`(f [t], yt)

]
≤ ES

[√
log |F|x1,...,xn |

n

]
where the last step is using the finite Lemma. Now one can define the growth function for a
hypothesis class F as follows.

ΠF (F , n) = sup{|F|x1,...,xn | : x1, . . . , xn ∈ X}

Example : thresholds
What does the growth function of the class of threshold function look like ?
Well sort any given n points in ascending order, using thresholds, we can get at most n+ 1 possible
labeling on the n points. Hence ΠF (n) = n + 1. From this we conclude that for the learning
thresholds problem,

Vstatn (F) ≤
√

log(n)

n

5 Growth Function and VC dimension

Growth function is defined as,
Π(F , n) = max

x1,...,xn

∣∣F|x1,...,xn∣∣
Clearly we have from the previous results on bounding minimax rates for statistical learning in
terms of cardinality of growth function that :

Vstatn (F) ≤
√

2 log Π(F , n)

n

Note that Π(F , n) is at most 2n but it could be much smaller. In general how do we get a handle
on growth function for a hypothesis class F? Is there a generic characterization of growth function
of a hypothesis class ?

Definition 1. VC dimension of a binary function class F is the largest number of points d =
VC(F), such that

ΠF (d) = 2d

If no such d exists then VC(F) =∞

If for any set {x1, . . . , xn} we have that |F|x1,...,xn | = 2n then we say that such a set is shattered.
Alternatively VC dimension is the size of the largest set that can be shattered by F . We also define
VC dimension of a class F restricted to instances x1, . . . , xn as

VC(F ;x1, . . . , xn) = max
{
t : ∃i1, . . . , it ∈ [n] s.t.

∣∣∣F|xi1 ,...,xin ∣∣∣ = 2t
}
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That is the size of the largest shattered subset of n. Note that for any n ≥ VC(F),
supx1,...,xn VC(F|x1,...,xn) = VC(F).

1. To show VC(F) ≥ d show that you can at least pick d points x1, . . . , xd that can be shattered.

2. To show that VC(F) ≤ d show that no configuration of d+ 1 points can be shattered.

Eg. Thresholds One point can be shattered, but two points cannot be shattered. Hence VC
dimension is 1. (If we allow both threshold to right and left, VC dimension is 2).

Eg. Spheres Centered at Origin in d dimensions one point can be shattered. But even two
can’t be shattered. VC dimension is 1!

Eg. Half-spaces Consider the hypothesis class where all points to the left (or right) of a hyper-
plane in Rd are marked positive and the rest negative. In 1 dimension this is threshold both to left
and right. VC dimension is 2. In d dimensions, think of why d+ 1 points can be shattered. d+ 2
points can’t be shattered. Hence VC dimension is d+ 1.

Claim 1. VC dimension of half-spaces in Rd is d+ 1

Proof. We consider half-spaces that map vector in Rd to {±1}. That is

F = {x 7→ sign
(
f>x + f0

)
: f ∈ Rd, f0 ∈ R}

We prove the statement as follows.

1. VC(F) ≥ d+ 1 :
We can shatter the points e1, . . . , ed,0. To see this, note that given any y1, . . . , yd+1 ∈
{±1}d+1, if we consider f ∈ F given by f0 = yd+1 and for all i ∈ [d], f [i] = yi − yd+1.
Hence note that, f(0) = sign

(
f>0 + f0

)
= sign(yd+1) = yd+1. Also, for any i ∈ [d],

f(ei) = sign
(
f>ei + f0

)
= sign (yi − yd+1 + yd+1) = yi.

2. VC(F) < d+ 2 :
By Radon theorem, any set of d+ 2 points in Rd can be partitioned into two disjoint subsets
whose convex hulls have a non-empty intersection. Label one of these partitions +1 and other
−1. No half-space can successfully label points in the intersection.

Eg. Finite Hypothesis Class

Claim 2. For any binary hypothesis class F ,

VC(F) ≤ log2 |F|

Proof. Note that for any d, Π(F , d) ≤ |F|. From the definition of VC dimension, we have, VC(F) =
max{d : Π(F , d) = 2d}. Hence 2VC(F) ≤ |F |
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Claim 3. Learnability with binary hypothesis class F implies VC(F) <∞.

Proof. First note that learnability in the statistical learning framework implies learnability in the
realizable PAC setting. Hence to prove the claim, it suffices to show that if a hypothesis class has
infinite VC dimension, then it is not even learnable in the realizable PAC setting. To this end,
assume that a hypothesis class F has infinite VC dimension. This means that for any n, we can find
2n points x1, . . . , x2n that are shattered by F . Also drawn y1, . . . , y2n ∈ {±1} Rademacher random
variables. Let D be the uniform distribution over the 2n instance pairs (x1, y1), . . . , (x2n, y2n).
Notice that since x1, . . . , x2n are shattered by F , we are indeed in the realizable PAC setting for
any choice of y’s. Now assume we get n input instances drawn iid from this distribution. Clearly
in this sample of size n, we can at most witness n unique instances. Let us denote J ⊂ [2n] as the
indices of the 2n instances witnessed in the draw of n samples S. Clearly |J | ≤ n. Hence we have,

VPAC
n (F) ≥ sup

x1,...,x2n
inf
ŷ
Ey1,...,y2nES

 1

2n

2n∑
j=1

11{ŷ(xi)6=yi}


=

1

2n
sup

x1,...,x2n
inf
ŷ
Ey1,...,y2nEJ

∑
i∈J

11{ŷ(xi)6=yi} +
∑

i∈[2n]\J}

11{ŷ(xi)6=yi}


≥ 1

2n
sup

x1,...,x2n
inf
ŷ

min
J⊂[2n]:|J |≤n

Ey1,...,y2n

 ∑
i∈[2n]\J

11{ŷ(xi)6=yi}


=

1

4n
min

J⊂[2n]:|J |≤n
|[2n] \ J | = n

4n
=

1

4
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