# Machine Learning Theory (CS 6783) 

Lecture 5 : Symmetrization, Growth Function, and Effective Size

## 1 Recap

Last class we showed that

$$
\mathcal{V}_{n}^{\text {stat }}(\mathcal{F}) \leq \sup _{D} \mathbb{E}_{S}\left[\sup _{f \in \mathcal{F}}\left\{\mathbb{E}[\ell(f(x), y)]-\frac{1}{n} \sum_{t=1}^{n} \ell\left(f\left(x_{t}\right), y_{t}\right)\right\}\right]
$$

This was using the Empirical Risk Minimizer (ERM)

1. When $|\mathcal{F}|<\infty$, using the above we showed that

$$
\mathcal{V}_{n}^{\text {stat }}(\mathcal{F}) \leq \sqrt{\frac{\log |\mathcal{F}|}{n}}
$$

2. For countably infinite class we showed MDL bound and the algorithm based on this bound.
3. However the learning rate was not uniform over $\mathcal{F}$

## 2 Symmetrization and Rademacher Complexity

$$
\begin{aligned}
\mathbb{E}_{S}\left[L_{D}\left(\hat{y}_{\text {erm }}\right)\right] & -\inf _{f \in \mathcal{F}} L_{D}(f) \\
& \leq \mathbb{E}_{S}\left[\sup _{f \in \mathcal{F}}\left\{\mathbb{E}[\ell(f(x), y)]-\frac{1}{n} \sum_{t=1}^{n} \ell\left(f\left(x_{t}\right), y_{t}\right)\right\}\right] \\
& \leq \mathbb{E}_{S, S^{\prime}}\left[\sup _{f \in \mathcal{F}}\left\{\frac{1}{n} \sum_{t=1}^{n} \ell\left(f\left(x_{t}^{\prime}\right), y_{t}^{\prime}\right)-\frac{1}{n} \sum_{t=1}^{n} \ell\left(f\left(x_{t}\right), y_{t}\right)\right\}\right] \\
& =\mathbb{E}_{S, S^{\prime}} \mathbb{E}_{\epsilon}\left[\sup _{f \in \mathcal{F}}\left\{\frac{1}{n} \sum_{t=1}^{n} \epsilon_{t}\left(\ell\left(f\left(x_{t}^{\prime}\right), y_{t}^{\prime}\right)-\ell\left(f\left(x_{t}\right), y_{t}\right)\right)\right\}\right] \\
& \leq 2 \mathbb{E}_{S} \mathbb{E}_{\epsilon}\left[\sup _{f \in \mathcal{F}}\left\{\frac{1}{n} \sum_{t=1}^{n} \epsilon_{t} \ell\left(f\left(x_{t}\right), y_{t}\right)\right\}\right] \\
& =: \mathcal{R}_{n}(\mathcal{F})
\end{aligned}
$$

Where in the above each $\epsilon_{t}$ is a Rademacher random variable that is +1 with probability $1 / 2$ and -1 with probability $1 / 2$. The above is called Rademacher complexity of the loss class $\ell \circ \mathcal{F}$. In general Rademacher complexity of a function class measures how well the function class correlates with random signs. The more it can correlate with random signs the more complex the class is.

$$
\text { Example : } \mathcal{X}=[0,1], \mathcal{Y}=[-1,1]
$$


$\mathcal{F}$

## 3 Infinite $\mathcal{F}$ : Binary Classes and Growth Function

First let us simplify the Rademacher complexity for binary classification problem. Note that for binary classification problem where $\mathcal{Y} \in\{ \pm 1\}$, the loss can be rewritten as
$\ell\left(y^{\prime}, y\right)=\mathbb{1}_{\left\{y \neq y^{\prime}\right\}}=\frac{1-y \cdot y^{\prime}}{2}$. Hence

$$
\begin{aligned}
2 \mathbb{E}_{S} \mathbb{E}_{\epsilon}\left[\sup _{f \in \mathcal{F}}\left\{\frac{1}{n} \sum_{t=1}^{n} \epsilon_{t} \ell\left(f\left(x_{t}\right), y_{t}\right)\right\}\right] & =2 \mathbb{E}_{S} \mathbb{E}_{\epsilon}\left[\sup _{f \in \mathcal{F}}\left\{\frac{1}{n} \sum_{t=1}^{n} \epsilon_{t} \frac{1-f\left(x_{t}\right) \cdot y_{t}}{2}\right\}\right] \\
& =\mathbb{E}_{S} \mathbb{E}_{\epsilon}\left[\sup _{f \in \mathcal{F}} \frac{1}{n} \sum_{t=1}^{n} \epsilon_{t} y_{t} f\left(x_{t}\right)\right]
\end{aligned}
$$

Now consider the inner term in the expectation above, ie. $\mathbb{E}_{\epsilon}\left[\sup _{f \in \mathcal{F}} \frac{1}{n} \sum_{t=1}^{n} \epsilon_{t} y_{t} f\left(x_{t}\right)\right]$. Note that given any fixed choice of $y_{1}, \ldots, y_{n} \in\{ \pm 1\}, \epsilon_{1} y_{1}, \ldots, \epsilon_{n} y_{n}$ are also Rademahcer random variables. Hence for the binary classification problem,

$$
2 \mathbb{E}_{S} \mathbb{E}_{\epsilon}\left[\sup _{f \in \mathcal{F}}\left\{\frac{1}{n} \sum_{t=1}^{n} \epsilon_{t} \ell\left(f\left(x_{t}\right), y_{t}\right)\right\}\right]=\mathbb{E}_{S} \mathbb{E}_{\epsilon}\left[\sup _{f \in \mathcal{F}} \frac{1}{n} \sum_{t=1}^{n} \epsilon_{t} f\left(x_{t}\right)\right]
$$

In the above statement we moved from Rademacher complexity of loss class $\ell \circ \mathcal{F}$ to the Rademacher complexity of the function class $\mathcal{F}$ for binary classification task. This is a precursor to what we will refer to as contraction lemma which we will show later.

Why is symmetrization useful? Think what we gain for an infinite class ...

## 4 Effective size of function class on Data

Why is the introduction of Rademacher averages important? To analyze the term,
$\mathbb{E}_{S} \mathbb{E}_{\epsilon}\left[\sup _{f \in \mathcal{F}} \frac{1}{n} \sum_{t=1}^{n} \epsilon_{t} \ell\left(f\left(x_{t}\right), y_{t}\right)\right]$ consider the inner expectation, that is conditioned on sample consider the term $\mathbb{E}_{\epsilon}\left[\sup _{f \in \mathcal{F}} \frac{1}{n} \sum_{t=1}^{n} \epsilon_{t} \ell\left(f\left(x_{t}\right), y_{t}\right)\right]$. Note that $\frac{1}{n} \sum_{t=1}^{n} \epsilon_{t} \ell\left(f\left(x_{t}\right), y_{t}\right)$ is still average of 0 mean random variables (conditioned on data) and we can apply Hoeffding bound for each
fixed $f \in \mathcal{F}$ individually. Now $\mathcal{F}$ might be an infinite class, but, conditioned on input instances $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$, one can ask, what is the size of the projection set

$$
\mathcal{F}_{\mid x_{1}, \ldots, x_{n}}=\left\{f\left(x_{1}\right), \ldots, f\left(x_{n}\right): f \in \mathcal{F}\right\}
$$

For any binary class $\mathcal{F}$, first note that this set can have a maximum cardinality of $2^{n}$ however it could be much smaller. In fact we can have,

$$
\mathbb{E}_{S} \mathbb{E}_{\epsilon}\left[\sup _{f \in \mathcal{F}} \frac{1}{n} \sum_{t=1}^{n} \epsilon_{t} \ell\left(f\left(x_{t}\right), y_{t}\right)\right]=\mathbb{E}_{S} \mathbb{E}_{\epsilon}\left[\sup _{\mathbf{f} \in \mathcal{F}_{\mid x_{1}, \ldots, x_{n}}} \frac{1}{n} \sum_{t=1}^{n} \epsilon_{t} \ell\left(\mathbf{f}[t], y_{t}\right)\right] \leq \mathbb{E}_{S}\left[\sqrt{\frac{\log \left|\mathcal{F}_{\left|x_{1}, \ldots, x_{n}\right|}\right|}{n}}\right]
$$

where the last step is using the finite Lemma. Now one can define the growth function for a hypothesis class $\mathcal{F}$ as follows.

$$
\Pi_{\mathcal{F}}(\mathcal{F}, n)=\sup \left\{\left|\mathcal{F}_{\mid x_{1}, \ldots, x_{n}}\right|: x_{1}, \ldots, x_{n} \in \mathcal{X}\right\}
$$

## Example : thresholds

What does the growth function of the class of threshold function look like?
Well sort any given $n$ points in ascending order, using thresholds, we can get at most $n+1$ possible labeling on the $n$ points. Hence $\Pi_{\mathcal{F}}(n)=n+1$. From this we conclude that for the learning thresholds problem,

$$
\mathcal{V}_{n}^{\text {stat }}(\mathcal{F}) \leq \sqrt{\frac{\log (n)}{n}}
$$

## 5 Growth Function and VC dimension

Growth function is defined as,

$$
\Pi(\mathcal{F}, n)=\max _{x_{1}, \ldots, x_{n}}\left|\mathcal{F}_{\mid x_{1}, \ldots, x_{n}}\right|
$$

Clearly we have from the previous results on bounding minimax rates for statistical learning in terms of cardinality of growth function that:

$$
\mathcal{V}_{n}^{\text {stat }}(\mathcal{F}) \leq \sqrt{\frac{2 \log \Pi(\mathcal{F}, n)}{n}}
$$

Note that $\Pi(\mathcal{F}, n)$ is at most $2^{n}$ but it could be much smaller. In general how do we get a handle on growth function for a hypothesis class $\mathcal{F}$ ? Is there a generic characterization of growth function of a hypothesis class?

Definition 1. VC dimension of a binary function class $\mathcal{F}$ is the largest number of points $d=$ $\mathrm{VC}(\mathcal{F})$, such that

$$
\Pi_{\mathcal{F}}(d)=2^{d}
$$

If no such $d$ exists then $\operatorname{VC}(\mathcal{F})=\infty$
If for any set $\left\{x_{1}, \ldots, x_{n}\right\}$ we have that $\left|\mathcal{F}_{\mid x_{1}, \ldots, x_{n}}\right|=2^{n}$ then we say that such a set is shattered. Alternatively VC dimension is the size of the largest set that can be shattered by $\mathcal{F}$. We also define VC dimension of a class $\mathcal{F}$ restricted to instances $x_{1}, \ldots, x_{n}$ as

$$
\mathrm{VC}\left(\mathcal{F} ; x_{1}, \ldots, x_{n}\right)=\max \left\{t: \exists i_{1}, \ldots, i_{t} \in[n] \text { s.t. }\left|\mathcal{F}_{\mid x_{i_{1}}, \ldots, x_{i_{n}}}\right|=2^{t}\right\}
$$

That is the size of the largest shattered subset of $n$. Note that for any $n \geq \operatorname{VC}(\mathcal{F})$, $\sup _{x_{1}, \ldots, x_{n}} \mathrm{VC}\left(\mathcal{F}_{\mid x_{1}, \ldots, x_{n}}\right)=\mathrm{VC}(\mathcal{F})$.

1. To show $\operatorname{VC}(\mathcal{F}) \geq d$ show that you can at least pick $d$ points $x_{1}, \ldots, x_{d}$ that can be shattered.
2. To show that $\operatorname{VC}(\mathcal{F}) \leq d$ show that no configuration of $d+1$ points can be shattered.

Eg. Thresholds One point can be shattered, but two points cannot be shattered. Hence VC dimension is 1 . (If we allow both threshold to right and left, VC dimension is 2 ).

Eg. Spheres Centered at Origin in $d$ dimensions one point can be shattered. But even two can't be shattered. VC dimension is 1 !

Eg. Half-spaces Consider the hypothesis class where all points to the left (or right) of a hyperplane in $\mathbb{R}^{d}$ are marked positive and the rest negative. In 1 dimension this is threshold both to left and right. VC dimension is 2 . In $d$ dimensions, think of why $d+1$ points can be shattered. $d+2$ points can't be shattered. Hence VC dimension is $d+1$.

Claim 1. VC dimension of half-spaces in $\mathbb{R}^{d}$ is $d+1$
Proof. We consider half-spaces that map vector in $\mathbb{R}^{d}$ to $\{ \pm 1\}$. That is

$$
\mathcal{F}=\left\{\mathbf{x} \mapsto \operatorname{sign}\left(\mathbf{f}^{\top} \mathbf{x}+f_{0}\right): \mathbf{f} \in \mathbb{R}^{d}, f_{0} \in \mathbb{R}\right\}
$$

We prove the statement as follows.

1. $\operatorname{VC}(\mathcal{F}) \geq d+1$ :

We can shatter the points $\mathbf{e}_{1}, \ldots, \mathbf{e}_{d}, \mathbf{0}$. To see this, note that given any $y_{1}, \ldots, y_{d+1} \in$ $\{ \pm 1\}^{d+1}$, if we consider $f \in \mathcal{F}$ given by $f_{0}=y_{d+1}$ and for all $i \in[d], \mathbf{f}[i]=y_{i}-y_{d+1}$. Hence note that, $f(\mathbf{0})=\operatorname{sign}\left(\mathbf{f}^{\top} \mathbf{0}+f_{0}\right)=\operatorname{sign}\left(y_{d+1}\right)=y_{d+1}$. Also, for any $i \in[d]$, $f\left(\mathbf{e}_{i}\right)=\operatorname{sign}\left(\mathbf{f}^{\top} \mathbf{e}_{i}+f_{0}\right)=\operatorname{sign}\left(y_{i}-y_{d+1}+y_{d+1}\right)=y_{i}$.
2. $\operatorname{VC}(\mathcal{F})<d+2$ :

By Radon theorem, any set of $d+2$ points in $\mathbb{R}^{d}$ can be partitioned into two disjoint subsets whose convex hulls have a non-empty intersection. Label one of these partitions +1 and other -1 . No half-space can successfully label points in the intersection.

## Eg. Finite Hypothesis Class

Claim 2. For any binary hypothesis class $\mathcal{F}$,

$$
\mathrm{VC}(\mathcal{F}) \leq \log _{2}|\mathcal{F}|
$$

Proof. Note that for any $d, \Pi(\mathcal{F}, d) \leq|\mathcal{F}|$. From the definition of VC dimension, we have, $\mathrm{VC}(\mathcal{F})=$ $\max \left\{d: \Pi(\mathcal{F}, d)=2^{d}\right\}$. Hence $2^{\mathrm{VC}(\mathcal{F})} \leq|F|$

Claim 3. Learnability with binary hypothesis class $\mathcal{F}$ implies $\operatorname{VC}(\mathcal{F})<\infty$.
Proof. First note that learnability in the statistical learning framework implies learnability in the realizable PAC setting. Hence to prove the claim, it suffices to show that if a hypothesis class has infinite VC dimension, then it is not even learnable in the realizable PAC setting. To this end, assume that a hypothesis class $\mathcal{F}$ has infinite VC dimension. This means that for any $n$, we can find $2 n$ points $x_{1}, \ldots, x_{2 n}$ that are shattered by $\mathcal{F}$. Also drawn $y_{1}, \ldots, y_{2 n} \in\{ \pm 1\}$ Rademacher random variables. Let $D$ be the uniform distribution over the $2 n$ instance pairs $\left(x_{1}, y_{1}\right), \ldots,\left(x_{2 n}, y_{2 n}\right)$. Notice that since $x_{1}, \ldots, x_{2 n}$ are shattered by $\mathcal{F}$, we are indeed in the realizable PAC setting for any choice of $y$ 's. Now assume we get $n$ input instances drawn iid from this distribution. Clearly in this sample of size $n$, we can at most witness $n$ unique instances. Let us denote $J \subset[2 n]$ as the indices of the $2 n$ instances witnessed in the draw of $n$ samples $S$. Clearly $|J| \leq n$. Hence we have,

$$
\begin{aligned}
\mathcal{V}_{n}^{\mathrm{PAC}}(\mathcal{F}) & \geq \sup _{x_{1}, \ldots, x_{2 n}} \inf _{\hat{y}} \mathbb{E}_{y_{1}, \ldots, y_{2 n}} \mathbb{E}_{S}\left[\frac{1}{2 n} \sum_{j=1}^{2 n} \mathbb{1}_{\left\{\hat{y}\left(x_{i}\right) \neq y_{i}\right\}}\right] \\
& =\frac{1}{2 n} \sup _{x_{1}, \ldots, x_{2 n}} \inf _{\hat{y}} \mathbb{E}_{y_{1}, \ldots, y_{2 n}} \mathbb{E}_{J}\left[\sum_{i \in J} \mathbb{1}_{\left\{\hat{y}\left(x_{i}\right) \neq y_{i}\right\}}+\sum_{i \in[2 n] \backslash J\}} \mathbb{1}_{\left\{\hat{y}\left(x_{i}\right) \neq y_{i}\right\}}\right] \\
& \geq \frac{1}{2 n} \sup _{x_{1}, \ldots, x_{2 n}} \inf _{\hat{y}} \min _{J \subset[2 n]:|J| \leq n} \mathbb{E}_{y_{1}, \ldots, y_{2 n}}\left[\sum_{i \in[2 n] \backslash J} \mathbb{1}_{\left\{\hat{y}\left(x_{i}\right) \neq y_{i}\right\}}\right] \\
& =\frac{1}{4 n} \min _{J \subset[2 n]:|J| \leq n}|[2 n] \backslash J|=\frac{n}{4 n}=\frac{1}{4}
\end{aligned}
$$

