Machine Learning Theory (CS 6783)

Lecture 21: Relaxations for Online Learning

1 Relaxations

Basic idea: Let us define relaxation Rel,, as any mapping Rel, : ;"o X" x V' — R. Further,
we say that a relaxation is admissible if it satisfies the following two conditions.
1. Dominance condition :

—Qb((-iUl, y1)7 ceey (xna yn)) S Reln (xlzna yl:n)

2. Final condition :
Rel, (1) <0

3. Admissibility condition : For any x1,...,2; € X and any y1,...,y:—1 € V,

Rel,, (z1:4-1,Y1:0-1) > inf  sup {Eg,~q, [€(9¢, y¢)] + Rely, (1.4, y1:4) }
QtGA(y) ytEy

= inf  sup Eyp, {Egnq, [0 30)] + Rely (214, y1:0) }
w€AD) peA(Y)

= Ssup inf ]EQtNQtEytNPt [Z(l}ta yt) + Reln (-leta yl:t)]
preA(Y) EAD)

= Ssup {Ainf Eytht M(Qta yt)] + EytNPt [Reln (xlttv yl:t)]}
peA) (€Y

Proposition 1. If Rel,, is any admissible relaxzation, then if we use the learning algorithm that at

time t, given xy produces qi(xy) = argmin sup,, {Egj,~q: [0(0t, ye)] + Rely, (1.4, y1:4) }, then,
qeA(Y)

% ZEZ)tNQt [z(?}t, yt)] S %qb((xl’ yl)a ceey (xna yn))
t=1

Proof. Assume Rel,, is any admissible relaxation. Also let ¢;’s be obtained by as described above.
Then, by dominance condition,

ZEQtNQt(It) [E(gt, yt)] - (b((xla y1>7 cee (.%'n, yn))
t=1

< Z EQtNQt [Z(Qtv yt)] + Rel, (xl:ny yl:n)

t=1

n—1
< Z E?)tNQt [Z(gta yt)] + ySléI))] {E?)ann(:vn) [f(:l)m yn)] + Reln (xlzna yl:n)}
t=1 t

n—1
= Z E;gtht [f(?)t’ yt)] + inf sup {Egjan [Z(Qn, yn)] + Rel, (l'l:na yl:n)}
=1 m€AY) yrey



by admissibility condition,

n—1

< Eg,~q: 00, ye)] + Rely (Z1:n—1, Y1:n—1)
=1

<...<Rel,(-) <0

Dividing through by n we conclude the result. O

2 Sequential Rademacher Relaxation

Just like we defined Rademacher complexity for statistical learning, one can define an online version
of it called sequential Rademacher Complexity. Specifically, the sequential Rademacher complexity
of a function class G C RZ is defined as:

1 n
RA(G) == Esnge sg;g)Zetg(zt(el,...,et_l))
9SY t=1

where z is a Z valued binary tree of depth n where the nodes at level ¢ can be defined by mapping
7 {£1} 1 Z.
Pictorially, we can view the Rademacher complexity as :

+1

-1

0
1,-1,...,1)
—1 41 —141-141 -1 41
Definition 1. Define the sequential Rademacher relaxation as
n t
Rad,, (z1:4,51:) == sup B sup [2 Y el(f(Xoms(err1:6-1))s Yoorlersra1)) = O LF(s), ys) | —2nR (Lo F)
XY cthin feF s=t+1 s=1

where X above is supremum over X valued tree of depth n —t and similarly Y is a YV-valued tree
of depth n —t.

Remark 2.1. I will leave this as an exercise that you can check. Pretty much aoll the exam-
ples of function classes F for which we obtained upper bounds on the statistical Rademacher
complezity, we can obtain same upper bounds on the sequential one. This is because the term
g el (f(Xe(€e1:4-1)), Ye(er:—1)) is a martingale difference sequence (each term in the sum has



conditional expectation of 0) and almost all the upper bounds we proved, we only needed that the
inner term was a martingale difference sequence and not sum of iid zero mean variables. The only
exception to this is the example of learning thresholds. If F C {:l:l}[o’l] is the class of all thresholds
such that every point to the right of the threshold is labeled —1 and to the left is labeled as +1, then
we can see that for this class, Ry!(£oF) = 1, while statistical Rademacher complexity is 1/v/n. To
see this consider the following tree:

—1 41 —141-1+1 -1 41

For this tree, we have the property that on every path, some threshold attains the label of signs on
that path implies that the sequential Rademacher complexity is 1. However VC dimension for this
class is 1 and so statistical Rademacher complexity is 1/y/n

Claim 2. Rad, s an admissible relaxation. Further using the q; corresponding to this relazation
one get that

n

. ZEywqt )] < 5 int > Uf (o). ) + 2R3 (E F)
t=1

Proof. First note that the ¢ function in this case is simply:

n

o(@y1)s- - (T yn)) = inf 2 ((f (1), ye) + 20 Ry (Lo F)

Now, as for Dominance condition, note that,

Radn (xlzna Y1: n = sup E — 277/qu(£ o f)
fer 1

= — inf 0(f(xe),ye) — 2nRI(L o F
i Y ) 2R F)

=—o((x1,91)5 -+ (Tny Yn))

Next, we check the final condition. Note that:

Rad, (-) = sup E sup 2263 (Xs(er:6-1)), Ys(ers—1)) | —2nR3(Lo F) =0
XY tn feF | 45



Now to check admissibility, note that

Sup {hinf Eyt"“lﬂt M(:l)h yt)] + Eyt’\’pt [Rad’ﬂ (Il:ta yl:t)]}
peea(y) (9:&Y

= sup inf E Yl ~py [g(gtvyzlf)]
peA) | 9V

n t
+Ey,mp, Ls{ug eHI.Ei ) ]bclelg [2 Z esl(f(Xs—t(€t+1:5-1)), Ys—i(€141:5-1)) — Zf(f(xsﬁ ys)H —2nR;1(Lo f)}

s=t+1 s=1

IN

PtEA(Y)

)

sup {Eyt~pt )S(ug E5t+17~~,5n ;lelp {E ’~pt [g(f(xt%y;)]

t
+2 Z esl(f(Xo—t(€t+1:5-1)), Ys—i(€t41:5-1) Zg ),ys)}}Qanﬂ(Eo]—")
s=1

s=t+1

S Sup Eyt7y{~pt sup E€¢+17...,en sup {2 Z ese(f(xs—t(et-i-l:s—l))vYs—t(et-i-l:s—l))
prEA(Y) XY feF s=t+1
t—1
+ (C(f (), yt) = L(F (o)) — Y (f (), ys)} — 2R} (Lo F)
s=1

n
sup E’yt ythtEet sup Eet+1,...,en sup 2 Z 6sé(f()is—t(Gt-‘rl:s—l))aYs—t(€t-§—1:s—1))
pr€A(Y) X, Y ferF

s=t+1

t—1

+ e (0(f (o), yp) — £(F (20),9e)) — Zg(f(ws),ys)} — 2nRyH (o F)
s=1

S SUP Eet sup E€t+1,“.,6n sup {2 Z Esg(f(xsft(€t+1:sfl))astt(EtJrl:sfl))
Yt, Y €Y XY fEF s=t+1

t—1

+ee (U(f (@) yh) = O(f (xe),9e)) = D U(f (), ys)} —2nR;1(Lo F)
s=1

n
< sup E, sup Ee,, ..., sup Z esl(f(Xs—t(€t11:5-1)), Ys—i(€r41:5-1))
TASNY XY feF | s

t—1
+ etﬂ(f(.%’t),y;) - ;Zg(f(xs)vys)}

n
+ sup Eet sup Eet+1,..4,en sup Z €s€(f(xs—t(€t+1:s—1))7Ys—t(6t+1:s—l))
Yt€Y XY feF s—t11

—el(f Ze } —20R3 (L o F)



=2 sup Eet sup Eet+1,...,en sup { Z Esé(f(xsft(6t+l:sfl))7stt(6t+1:sfl))

ney XY TeF  s=tt1
t—1
1 sq
el () ) — 5 O U F (), 0s) § — 2RI F)
s=1
n
S sup sup Eet sup EeH_l ..... €n sup 2 Z Es‘g(f(xsft(gwrl:sfl))vstt(€t+1:sfl))
ri€X Yy €Y X, Y feF s=t+1
t—1
+el(f(xe),ye) = D 0(f (), ys>} — 2R (Lo F)
s=1
Put the x; that achieves the supremum as the root of a new tree of depth n — ¢ + 1 and its left sub-tree is
the X T tree that attains supremum when ¢; = —1 and right sub-tree is the one that attains supremum when
€; = —1. Similarly for the y’s, hence,

t

= sup Eét:n ]Sclég)_ {22 Esg(f(Xsft(et:sfl))astt(et:sfl)) - Zé(f(xs)7ys)} - 2nR;Slq(£ o ]:)

XY s—t s=1

= Rad,, (z1.4—1,Y1:4-1)

This shows admissibility. From the earlier proposition and dividing throughout by n, we conclude
the final statement. O



