
Machine Learning Theory (CS 6783)

Lecture 19: Prediction with Arbitrary Covariates

1 Linear Betting Game With Covariates

For t = 1 to n

Receive instance xt ∈ X
Predict ŷt ∈ R
Receive label yt ∈ {±1} and pay loss ŷt · yt

End For

Note that the above is a variant of the betting game where we get covariate or side information
on every round and we want to perform as some benchmark φ that uses knowledge of this side
information. You can think of this as an extension of Cover’s result when we have covariates.

We say that the adaptive bound φ : X n × {±1}n is achievable if there exists a strategy for the
learner that ensures that:

n∑
t=1

ŷt · yt ≤ φ(x1, . . . , xn, y1, . . . , yn) (1)

We want to answer the question of when a performance bound φ is achievable and when it is
achievable what the algorithm for the learner should be.

2 Meet The Trees

Definition 1. The sequence of functions X = (X1, . . . ,Xn) with Xt : {±1}t−1 → X will be called
an X -valued tree. Here X1 ∈ X is a constant.

We are now ready to provide the main result characterizing what φ’s are achievable:

Lemma 1. A necessary and sufficient condition for φ to be achievable in the sense of (1) is that

inf
X

Eεφ(X1,X2(ε1), . . . ,Xn(ε1:n−1); ε) ≥ 0 (2)

where the infimum is taken over all X -valued tree X.

Proof.
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Proof of (1) ⇒ (2)
To motivate the appearance of the trees, let us provide a particular way that the sequence (x1, y1), . . . , (xn, yn) ∈
X×{±1} may evolve (i.e. a strategy of Nature). Fix a tree X, and on round t let the Nature present
the side information xt = Xt(y1, . . . , yt−1) and yt = εt, where ε1, . . . , εn are i.i.d. Rademacher. This
strategy is semi-oblivious, and it is clear that the left-hand side of (1) is equal to 0. Hence,

Eεφ(X1,X2(ε1), . . . ,Xn(ε1:n−1); ε) ≥ 0. (3)

Since the lower bound holds for any tree X, can take infimum to conclude the statement.

Proof of (2) ⇒ (1)
As before we choose the right potential for the job to prove this direction. To this end, for any t,
we shall choose the potential:

P ((x1, y1), . . . , (xt, yt)) = sup
xt+1

Eεt+1 sup
xt+2

Eεt+2 . . . sup
xn

Eεn [−φ(x1, . . . , xn, y1, . . . , yt, εt+1, . . . , εn)]

Few observations about this potential before we proceed: First, note that

P ((x1, y1), . . . , (xn, yn)) = −φ(x1, . . . , xn, y1, . . . , yn) (4)

Second, note that

P (·) = sup
x1

Eε1 sup
x2

Eε2 . . . sup
xn

Eεn [−φ(x1, . . . , xn, ε1, . . . , εn)]

However, consider the RHS of the above equation, say x∗1 was the x1 attaining the suprema over
x1 above, we can set X1 = x∗1. Next, if ε1 = +1 then say conditioned on this, we can set

X2(ε1) = argmax
x2

Eε2 . . . sup
xn

Eεn [−φ(X1, x2, . . . , xn, ε1, . . . , εn)]

and similarly, given a draw of ε1, . . . , εt−1, we can set

Xt(ε1, . . . , εt−1) = argmax
xt

Eεt Eε2 . . . sup
xn

Eεn [−φ(X1, X2(ε1), . . . , Xt−1(ε1, εt−2), xt, . . . , xn, ε1, . . . , εn)]

and so clearly we have:

P (·) = sup
x1

Eε1 sup
x2

Eε2 . . . sup
xn

Eεn [−φ(x1, . . . , xn, ε1, . . . , εn)]

= sup
X

Eε [−φ(X1,X2(ε1), . . . ,Xn(ε1:n−1); ε)]

= − inf
X

Eε [−φ(X1,X2(ε1), . . . ,Xn(ε1:n−1); ε)]

But by (2) we know that the RHS above is bounded above by 0 and so we can conclude that:

P (·) ≤ 0 (5)

Finally, observe that

P ((x1, y1), . . . , (xt, yt)) = sup
xt+1

Eεt+1P ((x1, y1), . . . , (xt, yt), (xt+1, εt+1)) (6)
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Now I claim that if we have that for any xt:

inf
ŷt

sup
yt
{ŷt · yt + P ((x1, y1), . . . , (xt, yt))} ≤ P ((x1, y1), . . . , (xt−1, yt−1)) (7)

then we can conclude that (2) ⇒ (1). Why?

Well we want to prove that
∑n

t=1 ŷt · yt − φ(x1, . . . , xn, y1, . . . , yn) ≤ 0. To this end, note that
from (4) we have,

∑n
t=1 ŷt · yt − φ(x1, . . . , xn, y1, . . . , yn) =

∑n
t=1 ŷt · yt + P ((x1, y1), . . . , (xn, yn)).

Now say we pick ŷt = argmin
ŷ

supyt {ŷ · yt + P ((x1, y1), . . . , (xt, yt))}. Then using (7) multiple times

we have,

n∑
t=1

ŷt · yt − φ(x1, . . . , xn, y1, . . . , yn) =
n∑
t=1

ŷt · yt + P ((x1, y1), . . . , (xn, yn))

=

n−1∑
t=1

ŷt · yt + ŷnyn + P ((x1, y1), . . . , (xn, yn))

≤
n−1∑
t=1

ŷt · yt + P ((x1, y1), . . . , (xn−1, yn−1))

≤
n−2∑
t=1

ŷt · yt + P ((x1, y1), . . . , (xn−2, yn−2))

≤ . . .
≤ P (·) ≤ 0

where the last line is due to (5). Thus we have the other direction. Now the only thing left for us
to do is to show that:

inf
ŷt

sup
yt
{ŷt · yt + P ((x1, y1), . . . , (xt, yt))} ≤ P ((x1, y1), . . . , (xt−1, yt−1))

To this end, note that:

min
ŷt

max
yt∈{±1}

{ŷt · yt + P ((x1, y1), . . . , (xt, yt))}

= min
ŷt

max {−ŷt + P ((x1, y1), . . . , (xt,+1)), ŷt + P ((x1, y1), . . . , (xt,−1))}

It is easy to see that the minima above is in fact exactly ŷt = P ((x1,y1),...,(xt,+1))−P ((x1,y1),...,(xt,−1))
2 .
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Irrespective, note that

min
ŷt

max
yt∈{±1}

{ŷt · yt + P ((x1, y1), . . . , (xt, yt))}

≤ max

{
− P ((x1,y1),...,(xt,+1))−P ((x1,y1),...,(xt,−1))

2 + P ((x1, y1), . . . , (xt,+1)),

P ((x1,y1),...,(xt,+1))−P ((x1,y1),...,(xt,−1))
2 + P ((x1, y1), . . . , (xt,−1))

}
= P ((x1,y1),...,(xt,+1))+P ((x1,y1),...,(xt,−1))

2

= EεtP ((x1, y1), . . . , (xt−1, yt−1), (xt, εt))

≤ sup
xt

EεtP ((x1, y1), . . . , (xt−1, yt−1), (xt, εt))

= P ((x1, y1), . . . , (xt−1, yt−1))

Thus we have proved the claim and hence the other direction as well as was shown earlier.

Remark 2.1. We will sometimes write either Xt or Xt(ε) instead of the more precise but longer
expression Xt(ε1, . . . , εt−1) whenever this does not cause confusion.

Example 2.1. Let us define

φ(x1, . . . , xn, y1, . . . , yn) = inf
f∈F

n∑
t=1

yt · f(xt) + Complexn(F)

we want to ask the question, what is the smallest value of Complexn(F) such that

inf
X

Eεφ(X1,X2(ε1), . . . ,Xn(ε1:n−1); ε) ≥ 0

To this end, note that:

inf
X

Eεφ(X1,X2(ε1), . . . ,Xn(ε1:n−1); ε) = inf
X

Eε inf
f∈F

n∑
t=1

εt · f(Xt(ε1, . . . , εt−1)) + Complexn(F)

= − sup
X

Eε sup
f∈F

n∑
t=1

(−εt) · f(Xt(ε1, . . . , εt−1)) + Complexn(F)

= − sup
X

Eε sup
f∈F

n∑
t=1

εt · f(Xt(ε1, . . . , εt−1)) + Complexn(F)

Thus from this exercise, it clear that

Complexn(F) = sup
X

Eε sup
f∈F

n∑
t=1

εt · f(Xt(ε1, . . . , εt−1))

is the right complexity term. We will refer to this complexity term as sequential Rademacher
complexity which we will discuss about more in the next lecture. Note that if we had a tree X above
which had the same value for all its nodes on level t, that is if Xt(ε1, . . . , εt−1) = xt for all ε’s then
the above would be exactly the worst case statistical Rademacher Complexity. The crucial difference
however is that we have an arbitrary tree that can make the sequential Rademacher complexity much
larger than the statistical one in some settings.
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