Machine Learning Theory (CS 6783)

Lecture 15: Online Mirror Descent

1 Recap

F is a convex subset of a vector space.
Fort=1ton

Learner picks y; € F
Receives instance V; € D
Suffers loss (3¢, Vi)

End

The goal again is to minimize regret :
R 1 o
Reg, = — D (3, Vi) — inf = " (F, V)

feFn
t=1 < t=1

e Online Gradient Descent Algorithm :
yir1 = Hr (1 —nVe)

o= BL\% and y; = 0, then Reg, < R—\/g where supge 7 ||f||, < R and supyep |V, < B

e Matches bound using sequential Rademacher complexity (both upper and lower bounds)

2  Online Mirror Descent
Is the online gradient descent algorithm always the right thing to use? Let us look at the finite
experts problem. F = A(F') and (f,Vy) = Epof [0(f', (21,y:))]. Notice that in this setting, for

any f € A(F'), ||f|l, < |If]]; = 1. However note that ||V||, = \/Zf’e}" (f", (z,50))] < A/|F']-
Hence GD bound can only given a rate of

7]

Reg,, < -

But we know that a rate of /log|F’|/n is possible? What is the right algorithm in general. In fact
in general vector spaces, GD does not even type check!



Strongly convex function: Function R is said to be A-strongly convex w.r.t. norm ||-|| if Vf,f’,

£\ _ R(E)+R(E) A )
n(5F) < MO e

This can equivalently be written as:

R(f") < R(f) + (VR(£), £ — f) — % £ — |

Bregman Divergence w.r.t. function R:
Agr(f'|f) = R(f') — R(f) — (VR(f),f' — f)
Clearly if a function R is A strongly convex, then by definition, Ag(f'|f) > 5 [|f — f]2

Algorithm : Let R be any strongly convex function. We define the mirror descent update as
follows :

VR(Yi41) = VR —1Ve , Y1 = argrrjlrin Ap(Y|¥is1)
ye
Equivalently, Yi+1 = argmin n(Vy, ) + Ar(¥(¥+)

YEF
and we use y; = argmin R(y)
YEF
Bound :

Claim 1. Let R be any 1-strongly convex function. If we use the Mirror descent algorithm with

2 sup. R(f)
n=\—1gz—— then,

Reg < \/2B2 Supfe}- R(f)
"= n

Proof. Consider any f* € F, we have that,

Vo, y1) = Vo, £) = (Vi, 9t = i1 + Vi1 — )
= (V.91 = ¥i1) + (Ve 91 — )

By the mirror descent update, V; = % (VR(yt) - VR(}?QH))
A 1 . . . "
= (Ve, 9t — Vi) + ;<VR(Yt) — VR(¥i11) i1 — )
For any vectors a,b,c, (VR(a) — VR(b),b — ¢) = Ag(cla) — Ar(c|b) — Agr(bla)

~ ~ 1 * |4 * | Sl
= <vt7Yt - y1/e+1> + ; (AR(f lyt) — Ag(f ’ngrl) - AR(Yt|Y£+1))



(a,0) < llal lloll, < g Bl + 2 llall*

1

<N . 2 1 ln i T
5 Hth Yt+1H + ; (AR(f ‘Yt) — Ag(f ’y;eﬂ) - AR(}’;:+1|Yt))

. 2
By strangle convexity of R, Ar(y¢|¥i,1) > % HYt y,’5+1||

77 * 1A N N
- ||VtH ” (AR(f ye) — AR(yff,Jrlb’t))

\V]

Summing over we have,

n

Z Vtv)’t Z Vt,f* g
t=1 t=1

Replacing by projection only decreases the Bregman divergence

n

1 . in
V|2 + - ST (AR(E[51) — AR(E*]111))
t=1
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Dividing through by n we prove the claim. O

2.1 Examples

Gradient Descent R(y) = %HyHg In this case mirror descent update coincides with that of
Gradient descent and we recover the bound. Strong convexity is just Pythagorus theorem

Exponential Weights Let is consider the example of finite experts setting. In this setting we
can consider R to be the negative entropy function,

d
R(y) = Zym log(¥[i]) — 1

i=1
Note that J
i i o yii
lhdyWU-—KwaYU—-Ejyhﬂog<A}l>
— y'[2]
In this case, it is not too hard to check that R is strongly convex w.r.t. [||;. Also note that

supgen(zy R(f) < log|F’| (achieved at the uniform distribution).
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¢, and Schatten, norms Let us consider F to be unit ball under £, norm and D to be unit ball
under dual norm. Let p € (1,2], then one can use R(f) = ﬁ ||fH]23 and this function is strongly

convex w.r.t. £, norm. For matrices with analogous Schatten p norm, use the R(f) = Zﬁ Hf||§p
Remark 2.1. For {; norm one can use R(f) = [ﬁ HfH?D with p ~ lolgflil and hence recover a bound

of form O <\/ BZLOgd> where B is the bound on o, norm of V,’s.



