
Machine Learning Theory (CS 6783)

Lecture 12: Online Learning, Bit Prediction and more

1 Bit Prediction

Say we have a sequence of coin flips y1 = +1, y2 = −1, y3 = +1, y4 = +1, . . .. How do we predict
the t+ 1’th outcome given the past t outcomes?

If the bits are produces iid by coin flips, then picking majority amongst outcomes so far, or
estimating probability of +1 by its empirical frequency and using a randomized predictor qt such
that Eŷt∼qt [ŷt] = 1

t−1
∑t−1

j=1 yj both work equally well. Specifically, for randomized predictor qt =
1
2

1
t−1
∑t−1

j=1 yj + 1
2 we can show using Chernoff-type bounds that if yt’s were drawn iid from some

fixed Bernoulli distribution with parameter p (unknown to learner), then:

1

n
E

[
n∑
t=1

1{ŷt 6= yt}

]
≤ min

b∈{±1}

1

n

n∑
t=1

1{yt 6= b}+O

(
1√
n

)
and indeed minb∈{±1}

1
n

∑n
t=1 1{yt 6= b} is close to the Bayes error and we can’t really do better

than this.
But here we made the crucial assumption that bits were drawn iid from a Bernoulli distribution.

What if this were not true? In this case how do we make predictions? In this case, can we bound
the below quantity referred to as regret? Maybe even by 1/

√
n like the iid case (as long as we are

wishing)?

1

n
Regn =

1

n
E

[
n∑
t=1

1{ŷt 6= yt}

]
− min
b∈{±1}

1

n

n∑
t=1

1{yt 6= b}

When the bits are not drawn iid, this problem is far more complicated and interesting. First
off, any deterministic algorithm can be made to incur maximal regret. Specifically, think of the
process where learner deterministically on a round t predicts ŷt ∈ {±1}, then setting yt = −ŷt, we
guarantee that our average loss is 1 while in hindsight, minb∈{±1}

1
n

∑n
t=1 1{yt 6= b} is at worst 1/2.

Hence deterministic algorithms like majority so far have to fail.
In fact, even the randomized algorithm that predicts based on estimated frequency so far qt =

1
2

1
t−1
∑t−1

j=1 yj + 1
2 fails. To see this, say we flip coins and with probability 2/3 we pick +1 and with

probability 1/3 its −1. But now say we sort these bits and present the n/3, bits of −1 first then
the 2n/3 bits of +1 next. In this case, note that the strategy qt = 1

2
1
t−1
∑t−1

j=1 yj + 1
2 (after the very

first round which we can ignore), makes 0 mistakes for the first n/3 rounds when −1 labels are

1



presented. But from then on, we have a larger expected error on every round. Specifically, we get,

1

n

n∑
t=1

Eŷt∼qt1{yt 6= ŷt} ≥
1

n

n∑
t=n/3+1

Eŷt∼qt1{+1 6= ŷt} =
1

n

n∑
t=n/3+1

(1− qt)

=
1

n

n∑
t=n/3+1

1− 1

2

1

t− 1

t−1∑
j=1

yj −
1

2


=

1

2n

n∑
t=n/3+1

(
1− 1

t− 1

(
t− 1− 2n

3

))
=

1

3

n∑
t=n/3+1

(
1

t− 1

)

Note that in the above,
∑n

t=n/3+1

(
1
t−1

)
is approximately log(3) > 1 or at least is a fixed constant

greater than 1 while minb∈{±1}
1
n

∑n
t=1 1{yt 6= b} = 1/3. Thus we see that for this algorithm, we

can never hope to get regret that diminishes to 0.

So is it at all possible to get average regret to diminish to 0 with n?

2 Cover Result and Algorithm

Lets get back to the problem of predicting arbitrary (possibly adversarially chosen) sequence of
bits as well as majority. In fact, think of the online learning problem where on each round t we
we predict the next bit yt ∈ {±1}. Also say F ⊂ {±1}n and we want to minimize regret (in
expectation) :

Regn =
1

n

n∑
t=1

11{ŷt 6=yt} − inf
f∈F

1

n

n∑
t=1

11{ft 6=yt}

Note that for the majority case, F = {(+1,+1, . . . ,+1), (−1,−1, . . . ,−1)} are the two predictors.
When can we ensure E [Regn]→ 0 ?

Claim 1. There exists a randomized prediction strategy that ensures that

E [Regn] ≤ 1

2n
Eε

[
sup
f∈F

n∑
t=1

ftεt

]

To prove the above claim we first prove this following lemma, a result by Thomas Cover.

Lemma 2 (T. Cover’65). Let φ : {±1}n 7→ R be a function such that, for any i, and any
y1, . . . , yi−1, yi+1, . . . , yn,

|φ(y1, . . . , yi−1,+1, yi+1, . . . , yn)− φ(y1, . . . , yi−1,−1, yi+1, . . . , yn)| ≤ 1

n
, (stability condition)

then, there exists a randomized strategy such that for any sequence of bits,

1

n

n∑
t=1

Eŷt∼qt [1{ŷt 6= yt}] ≤ φ(y1, . . . , yn)

2



if and only if,

Eεφ(ε1, . . . , εn) ≥ 1

2

and further, the strategy achieving this bound on expected error is given by:

qt =
1

2
+
n

2
Eεt+1,...,εn [φ(y1, . . . , yt−1,−1, εt+1, . . . , εn)− φ(y1, . . . , yt−1,+1, εt+1, . . . , εn)]

Once we have the above lemma, using φ(y1, . . . , yn) = inff∈F
1
n

∑n
t=1 11{ft 6=yt}+

1
2nEε

[
supf∈F

∑n
t=1 ftεt

]
which satisfies the stability condition, we can conclude the result.

3


